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Abstract
We show that inflation and current cosmic acceleration can be generated by a
metric-affine f (R) gravity formulated in the Einstein conformal frame, if the
gravitational Lagrangian L(R) contains both positive and negative powers of
the curvature scalar R. In this frame, we give the equations for the expansion
of the homogeneous and isotropic matter-dominated universe in the case
L(R) = R + R3

β2 − α2

3R
, where α and β are constants. We also show that

gravitational effects of matter in such a universe at very late stages of its
expansion are weakened by a factor that tends to 3/4, and the energy density
of matter ε scales the same way as in the �CDM model only when κε � α.

PACS numbers: 04.50.+h, 98.80.−k

1. Introduction

Recent observations of type Ia supernovae [1] and the cosmic microwave background radiation
[2, 3] indicate that the universe is undergoing a phase of accelerated expansion. It is also
believed that shortly after the big bang, the universe passed through a phase of extremely rapid
expansion (inflation) [4]. Such an idea resolves several problems in big bang cosmology,
e.g., the flatness problem and the horizon problem. The most accepted explanation of current
cosmic acceleration is that the universe is dominated by dark energy [5], whereas inflation is
thought to be driven by scalar fields with an appropriate potential.

However, it is also possible to modify Einstein’s general relativity to obtain gravitational
field equations that allow both inflation and present cosmic acceleration. A particular class of
alternative theories of gravity that has recently attracted a lot of interest is that of the f (R)

gravity models, in which the gravitational Lagrangian is a function of the curvature scalar R
[6]. It has been shown that current acceleration may originate from the addition of a term
R−1 (or other negative powers of R) to the Einstein–Hilbert Lagrangian R, whereas terms
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with positive powers of R may be the source of inflation [7, 8]. As in general relativity,
these models obtain the field equations by varying the total action for both the field and
matter.

There are two different approaches for how to vary the action in these models: metric
and metric-affine. The first one is the usual Einstein–Hilbert variational principle, according
to which the action is varied with respect to the metric tensor gµν , and the affine connection is
given by the Christoffel symbols (the Levi-Civita connection) [9]. The other one is the Palatini
variational principle (originally formulated by Einstein), according to which the metric and
the connection are considered as geometrically independent quantities, and the action must
be varied with respect to both of them [10]. Both the metric and the metric-affine approaches
give the same result only if we use the standard Einstein–Hilbert action, since variation with
respect to the connection gives the usual expression for the Christoffel symbols.

Of the two approaches, the metric-affine formalism seems more general since it requires
one less constraint than the metric approach (no a priori relation between the metric and the
connection). Moreover, the field equations in this formalism are second-order differential
equations (and the Cauchy problem is similar to that in general relativity), whereas in metric
theories they are fourth-order [11]. Another remarkable property of the metric-affine approach
is that the field equations in vacuum reduce to the standard Einstein equations of general
relativity with a cosmological constant [12], whereas vacuum metric theories allow both
accelerated and decelerated phases of the universe expansion [13]. This approach is also
free of instabilities that appear in the metric formulation of 1/R gravity [14], although such
instabilities can be suppressed by adding to the Lagrangian terms with positive powers of R
[15], or by quantum effects [16]. Furthermore, there is a debate on the compatibility of f (R)

gravities with solar system observations [17], and on the Newtonian limit of these theories
[18]. There is theoretical evidence suggesting that metric-affine models with the inverse power
of the curvature scalar have a good Newtonian limit [19], and that metric models pass the solar
system tests [15, 20].

One can show that any of these theories of gravitation is conformally equivalent to
the Einstein theory of the gravitational field interacting with additional matter fields [21].
However, a GR-like formulation can be obtained without any redefinition of the metric, by
isolating the spin-0 degree of freedom due to the occurrence of nonlinear second-order terms
in the Lagrangian, and encoding it into an auxiliary scalar field φ by means of a Legendre
transformation. Such a transformation in classical mechanics replaces the Lagrangian of a
mechanical system with the Helmholtz Lagrangian [22].

The set of variables (gµν, φ) is commonly called the Jordan conformal frame, although
it refers to a choice of dynamical variables rather than to a choice of a frame of reference.
In the Jordan frame of metric f (R) theories, the self-gravitating scalar field φ violates the
stability of vacuum and the positivity of energy [11, 22]. These unphysical properties can be
eliminated by a certain conformal transformation of the metric: gµν → hµν = f ′(R)gµν . The
new set (hµν, φ) is called the Einstein conformal frame. Although both frames are equivalent
mathematically, they are not equivalent physically [23], and the interpretation of cosmological
observations can drastically change depending on the adopted frame [24]. The physically
measured metric is determined from the coupling to matter, and the principle of equivalence
can provide an operational definition of the metric tensor [25]. Furthermore, in the Einstein
frame, the principle of equivalence is violated [23] and the available tests of this principle can
serve as the constraints on nonlinear gravities.

In the metric-affine formalism, the auxiliary field φ has no kinetic term and does not violate
the positivity of energy. Therefore, which frame is physical is a matter of choice, although
this question should be ultimately answered by experiment or observation. Remarkably, it is
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the Einstein frame in which the connection is metric-compatible. Therefore, in this work we
treat hµν as the physical metric tensor [11, 22, 23].

The authors of [7, 8] applied the metric variational formalism to f (R) theories of
gravitation. It has been shown that positive and negative powers of the curvature scalar
in the gravitational Lagrangian can cause inflation and current acceleration also in the metric-
affine formalism [26–29], although the compatibility of Palatini f (R) models with experiment
is being debated [30, 31], and these models may face the problem of stability of matter
perturbations [32]. The simplest Lagrangian in a metric-affine theory, which drives both
phases of acceleration, has the form L(R) = R + R3

β2 − α2

3R
[33]. Here, α and β are constants,

and a cubic term was chosen because a quadratic term R2 cannot lead to gravity driven
inflation in the Palatini formalism [34]. We emphasize that, in both formalisms, the above
authors studied cosmology in the Jordan frame.

In this paper, we show that inflation and present cosmic acceleration can be generated by
a metric-affine f (R) gravity formulated in the Einstein frame, if the Lagrangian contains both
positive and negative powers of the curvature scalar. In this frame, we give explicit formulae
for the expansion of the homogeneous and isotropic matter-dominated universe, using the
Lagrangian of [33]. We also show that gravitational effects of matter in such a universe at late
stages of its expansion are weakened, and the energy density of matter differs in scaling from
that in the �CDM model.

In section 2, we introduce the metric-affine formalism for an f (R) gravity in the Einstein
frame. In section 3, we apply the gravitational field equations to a homogeneous and isotropic
universe, and study them for the above Lagrangian. The results are summarized in section 4.

2. Metric-affine formalism in the Einstein conformal frame

In this section we review the metric-affine variational approach to a gravitational theory [35].
The equations of the field are obtained from the Palatini variational principle, according to
which both the metric tensor gµν and the affine connection �ρ

µν are regarded as independent
variables. The action for an f (R) gravity in the original (Jordan) frame is given by

SJ = − 1

2κc

∫
d4x[

√−g̃L(R̃)] + Sm(g̃µν, ψ). (1)

Here,
√−g̃L(R̃) is a Lagrangian density that depends on the curvature scalar R̃, Sm is the

action for matter represented symbolically by ψ , and κ = 8πG
c4 . Tildes indicate quantities

calculated in the Jordan frame. The curvature scalar is obtained by contracting the Ricci tensor
Rµν with the metric tensor,

R̃ = Rµν(�)g̃µν, (2)

and the Ricci tensor depends on the symmetric connection �ρ
µν ,

Rµν(�) = ∂ρ�
ρ
νµ − ∂ν�

ρ
ρµ + �σ

νµ�ρ
ρσ − �σ

ρµ�ρ
νσ . (3)

Variation of the action with respect to gµν yields the field equations,

L′(R̃)Rµν − 1
2L(R̃)g̃µν = κTµν, (4)

where the dynamical energy–momentum tensor of matter is generated by the Jordan metric
tensor,

δSm = 1

2c

∫
d4x

√−g̃Tµνδg̃
µν, (5)
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and the prime denotes the derivative of a function with respect to its argument. If we assume
that Sm is independent of �ρ

µν , then variation of the action with respect to the connection
leads to

∇ρ(L
′(R̃)g̃µν

√−g̃) = 0, (6)

from which it follows that the affine connection coefficients are the Christoffel symbols,

�ρ
µν = {ρ

µν

}
g

= 1
2gρλ(∂µgνλ + ∂νgµλ − ∂λgµν), (7)

with respect to the conformally transformed metric

gµν = L′(R̃)g̃µν. (8)

The metric gµν (denoted by hµν in section 1) defines the Einstein frame with a geodesic
structure (metric-compatible connection).

One can show that the action (1) is dynamically equivalent to the following Helmholtz
action [11, 22]:

SH = − 1

2κc

∫
d4x

√−g̃[L(φ(p)) + p(R̃ − φ(p))] + Sm(g̃µν, ψ), (9)

where p is a new scalar variable. The function φ(p) is determined by

∂L(R̃)

∂R̃

∣∣∣∣
R̃=φ(p)

= p. (10)

From equations (8) and (10) it follows that

φ = RL′(φ). (11)

In the Einstein frame, the action (9) becomes the standard Einstein–Hilbert action of
general relativity with additional non-kinetic scalar field terms:

SE = − 1

2κc

∫
d4x

√−g

[
R − φ(p)

p
+

L(φ(p))

p2

]
+ Sm(p−1gµν, ψ). (12)

Here, R is the curvature scalar of the metric gµν . Choosing φ as the variable leads to

SE = − 1

2κc

∫
d4x

√−g[R − 2V (φ)] + Sm([L′(φ)]−1gµν, ψ), (13)

where V (φ) is the effective potential,

V (φ) = φL′(φ) − L(φ)

2[L′(φ)]2
. (14)

Variation of the action (13) with respect to gµν yields

Rµν − 1

2
Rgµν = κTµν

L′(φ)
− V (φ)gµν, (15)

and variation with respect to φ gives

−2V ′(φ) = κT
L′′(φ)

[L′(φ)]2
, (16)

where T = Tµνg
µν . Equations (15) and (16) are the equations of the gravitational field in the

Einstein frame [30, 35]. One can easily check that equation (16) is not independent, it results
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from equations (11), (14) and (15). From equation (15) it follows that the tensor Tµν is not
covariantly conserved, unlike that in the Jordan frame [36]1.

Contracting equation (15) with the metric tensor gµν gives

R = − κT

L′(φ)
+ 4V (φ), (17)

which is an equation for R since both φ and T depend only on R due to equations (11) and
(16). This is equivalent to

φL′(φ) − 2L(φ) = κT L′(φ), (18)

which is an equation for φ as a function of T, and called the structural equation [27]. For the
case of T = 0 which holds at the early stages of the universe (relativistic matter) and, to good
approximation, during advanced cosmic acceleration (when κT � |φ|), we obtain

φL′(φ) − 2L(φ) = 0, (19)

which agrees with the structural equation in vacuum for an f (R) gravity in the Jordan frame
[26]. Equation (19) gives φ = const, which, upon substitution into equation (15), leads to the
Einstein equations of general relativity with a cosmological constant [12] and the gravitational
coupling κ modified by a constant factor L′(φ). Therefore, inflation and current cosmic
acceleration can be generated by a metric-affine f (R) gravity formulated in the Einstein
frame if the gravitational Lagrangian L(R) contains both positive and negative powers of the
curvature scalar, because such a possibility results from the structural equation.

Let us consider the Lagrangian [33],

L(φ) = φ +
φ3

β2
− α2

3φ
, (20)

where β and α are positive constants, remembering that φ is the curvature scalar in the Jordan
frame, R̃. Equation (19) reads

φ4 − β2φ2 + α2β2 = 0, (21)

and for α � β it has two de Sitter solutions:

φinf = −β, φca = −α, (22)

describing inflation and present acceleration, respectively [8, 33]. The corresponding values
of the curvature scalar in the Einstein frame are obtained with equation (11):

Rinf = −β

4
, Rca = −3α

4
. (23)

If T �= 0, equation (18) leads to a quintic equation for φ as a function of T.

1 By covariant conservation of a tensor, we mean that the divergence of this tensor vanishes using �
ρ
µν in the definition

of the covariant derivative. If instead of �
ρ
µν , we used Christoffel symbols associated with g̃µν in this definition,

then the energy–momentum tensor from equation (5), which is associated with g̃µν as well, would be automatically
conserved [9, 36].

Instead of Tµν , one might have interpreted the energy–momentum tensor generated by the geodesic metric gµν

as the true energy–momentum tensor of matter. Such a tensor, equal to the first term on the right-hand side of
equation (15), is covariantly conserved according to the above definition, since the connection �

ρ
µν is compatible with

gµν . Yet this equation would imply the constancy of V (φ), which, with equation (14), yields L(φ) = φ. Therefore,
we would arrive at general relativity with a cosmological constant, which is not interesting from a modified gravity
perspective [35].
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3. Inflation and current cosmic acceleration in FLRW cosmology

We now proceed to study a Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) cosmology
driven by the above field equations. Let us consider a homogeneous and isotropic universe
which is spatially flat [3]. In this case, the interval is given by

ds2 = c2 dt2 − a2(t)(dx2 + dy2 + dz2), (24)

where a(t) is the scale factor. Moreover, the energy–momentum tensor of matter in the
co-moving frame of reference is of the form

T ν
µ = diag(ε,−P,−P,−P), (25)

where ε is the energy density and P denotes the pressure. Clearly, T = ε − 3P . In the
matter-dominated universe we can approximate matter by dust and set P = 0.

The Hubble parameter H = ȧ
a

can be obtained from the 00 component of equation (15),
which for the metric (24) and for dust becomes

H(φ) = c

√
φL′(φ) − 3L(φ)

6[L′(φ)]2
. (26)

The dot denotes the time-derivative and we used equation (18). At very late stages of the
universe expansion (T ∼ 0) equations (18) and (26) give

H(φ) = c

√
− L(φ)

6[L′(φ)]2
. (27)

For early stages we must use the ultrarelativistic equation of state, P = ε
3 , for which T vanishes

as well. In this case, the Hubble parameter is given by

H(φ) = c

√
L(φ) − φL′(φ)

6[L′(φ)]2
. (28)

If we use the Lagrangian (20), the Einstein frame values of H for the two de Sitter phases
become

Hinf = c
√

β/48, Hca = c
√

α/16. (29)

For lower temperatures, matter becomes non-relativistic and T increases. Since T deviates
from zero, φ ceases to be constant and the field equations differ from those with a cosmological
constant. The universe gradually becomes matter-dominated, and undergoes a transition from
inflationary acceleration to a decelerated expansion phase. At some moment, T reaches
a maximum and then decreases. When κT becomes much smaller than |φ|, the universe
undergoes a smooth transition back to an exponential acceleration.

We do not establish the kind of matter considered here since, for cosmological purposes,
matter in a homogeneous and isotropic universe can be simply described by the energy density
and pressure related to each other by the effective equation of state. In the late universe,
the kind of matter does not influence the deceleration–acceleration transition because matter
is non-relativistic (P = 0). For the early universe, the composition of matter is crucial to
establish when and how the transition from inflation to the matter-dominated epoch occurs.
Since the purpose of this paper is to show that inflation and present cosmic acceleration can
arise from nonlinear gravity in the Einstein frame, we did not address the particle physics of
the inflation–deceleration transition.

For dust, the covariant conservation of the right-hand side of equation (15) leads to

L′(φ)
d

dt

[
ε(φ)

L′(φ)
− V (φ)

κ

]
+ 3H(φ)ε(φ) = 0, (30)
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which with equations (14) and (18) reads

φ̇ = 6L′H(φL′ − 2L)

2L′2 + φL′L′′ − 6LL′′ . (31)

From now on, the prime denotes the φ-derivative. Therefore, making use of equation (26) we
obtain

φ̇ =
√

6c(φL′ − 2L)
√

φL′ − 3L

2L′2 + φL′L′′ − 6LL′′ , (32)

which can be integrated for a given function L = L(φ), yielding φ = φ(t) and R = R(t).
Combining equations (26) and (32) gives the function H = H(t), from which we obtain the
final expression for expansion, a = a(t).

For the Lagrangian (20), equation (26) reads

H 2

c2
=

−φ

3 + 2α2

9φ(
1 + 3φ2

β2 + α2

3φ2

)2 , (33)

and equation (32) becomes

φ̇ =
c
(−φ + φ3

β2 + α2

φ

)√
2α2

φ
− 3φ

1 − 2α4

3φ4 − 9φ2

β2 + 7α2

3φ2 + 10α2

β2

. (34)

In the Jordan frame, the equation for φ̇ is more complicated (see [33]). From the time-
dependence of φ we can derive the time-dependence of R by simply applying equation (11).
We give the approximate expressions for φ̇ for three regions: inflation (φ ∼ −β), the matter-
dominated era (−α � φ � −β) and advanced cosmic acceleration (φ ∼ −α). In the course
of expansion, the quantity φ varies between −β and −α (the two de Sitter values).

In the first case, we use φ � −α to obtain

H 2

c2
= − φ

3
(
1 + 3φ2

β2

)2 (35)

and

φ̇ =
c
(−φ + φ3

β2

)√−3φ

1 − 9φ2

β2

. (36)

We see that this expression becomes singular at φ = − β

3 . We note, however, that in our
derivation of equation (32) we assumed P = 0. Therefore, the condition φ = − β

3 is the limit
of validity of this assumption, i.e., may be regarded as the limit of non-relativisticity of matter.
In order to derive the universe expansion for smaller values of φ (down to −β), we must use
a relativistic equation of state, for which P �= 0.

In the second case, we neglect all terms with α or β, arriving at

H 2

c2
= −φ

3
, φ̇ =

√
3c(−φ)3/2. (37)

Since now L′(φ) ≈ 1 and φ ≈ R, the above formulae reproduce the standard Friedmann
cosmology: R ∝ ε ∝ t−2, a ∝ t2/3. Therefore, this region of time also corresponds to the
radiation-dominated era and big bang nucleosynthesis. Note that the Friedmann equations
may be obtained as a limiting case only if α � β.
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In the third case, we have

H 2

c2
=

−φ

3 + 2α2

9φ(
1 + α2

3φ2

)2 , (38)

and equation (32) gives

φ̇ =
c
(−φ + α2

φ

)√
2α2

φ
− 3φ

1 − 2α4

3φ4 + 7α2

3φ2

. (39)

In the course of time φ → −α and φ̇ → 0, and the universe asymptotically approaches a
de Sitter expansion [26].

Finally, we derive the Einstein equations in the universe at very late stages of its
expansion (when κT � α) in the linear and quadratic approximation of a small quantity κT

α
.

Equation (18) becomes cubic in φ,

φ3 + κT φ2 − α2φ +
α2κT

3
, (40)

and its solution, which deviates from −α by a term linear in κT
α

, is

φ = −α − 2
3κT + O(T 2). (41)

In this approximation, we obtain

L(φ) = −2α

3

(
1 +

4κT

3α

)
, L′(φ) = 4

3

(
1 − κT

6α

)
, (42)

and the Einstein equations become

Rµν − 1
2Rgµν = 3

4κTµν + �gµν, (43)

where

� = 3α

16
(44)

plays the role of a cosmological constant. We see that the coupling between matter and the
gravitational field is decreased by a factor of 3/4, as in the Jordan frame [29]. The conservation
law for the energy density (30) in this limit becomes

ε̇ + 3Hε = 0, (45)

which gives the usual scaling of non-relativistic matter, ε ∝ a−3, as in the �CDM model.
The solution of equation (18), which deviates from −α by terms linear and quadratic in

κT
α

, appears to be the same as that in the linear approximation:

φ = −α − 2
3κT + O(T 3). (46)

Consequently, we obtain

L′(φ) = 4

3

(
1 − κT

3α
+

κ2T 2

3α2

)
,

(47)

V (φ) = −3α

16
+

κ2T 2

16α
,

and the Einstein equations become

Rµν − 1

2
Rgµν = 3

4
κTµν

(
1 +

κT

3α

)
+ �gµν, (48)
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where the cosmological constant is now a function of T,

� = 3α

16
− κ2T 2

16α
. (49)

The coupling between matter and the gravtitational field is decreased by a factor which tends
to 3/4 as T → 0. The conservation law for the energy density (30) becomes

d

dt

(
ε +

κε2

4α

)
+ H

(
3ε +

κε2

α

)
= 0, (50)

which gives the energy density scaling that differs from the �CDM scaling, and tends to it
as ε → 0 (κε � α).

4. Summary

Inflation and current cosmic acceleration can be generated by replacing the GR Einstein–
Hilbert Lagrangian with a modified f (R) Lagrangian, which offers an alternative explanation
of cosmological acceleration. We used the metric-affine variational formalism, and chose the
Einstein conformal frame as being physical. In this frame, we derived explicit formulae for
the matter-dominated universe expansion for the particular case L(R) = R + R3

β2 − α2

3R
, and

showed that they reproduce the standard Friedmann cosmology in the region of middle values
of R. We also demonstrated that gravitational effects of matter in such a universe at very late
stages of its expansion are weakened by a factor that tends to the Jordan frame value 3/4.
Finally, we showed that the energy density of matter in the late universe scales according to
the same power law as in the �CDM model only in the limit ε → 0.

We did not address the physical scenario of the inflation–deceleration transition. We
also did not address the problem of constraining the values of the constants α and β from
astronomical observations. Such studies, as well as determination of the function f (R) from
the data, as has been explored in the metric approach [37], will be the subject of future work.
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