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The cosmic jerk parameter in f (R) gravity
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Abstract

We derive the expression for the jerk parameter in f (R) gravity. We use the Palatini variational principle and the field equations in the Einstein

conformal gauge. For the particular case f (R) = R − α2

3R
, the predicted value of the jerk parameter agrees with the SNLS SNIa and X-ray galaxy

cluster distance data but does not with the SNIa gold sample data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A particular class of alternative theories of gravity that has
recently attracted a lot of interest is that of the f (R) gravity
models, in which the gravitational Lagrangian is a function of
the curvature scalar R [1]. It has been shown that current cosmic
acceleration may originate from the addition of a term R−1 to
the Einstein–Hilbert Lagrangian R [2].

As in general relativity, f (R) gravity theories obtain the
field equations by varying the total action for both the field and
matter. In this work we use the metric-affine (Palatini) varia-
tional principle, according to which the metric and connection
are considered as geometrically independent quantities, and the
action is varied with respect to both of them [3]. The other one is
the metric (Einstein–Hilbert) variational principle, according to
which the action is varied with respect to the metric tensor gμν ,
and the affine connection coefficients are the Christoffel sym-
bols of gμν . Both approaches give the same result only if we
use the standard Einstein–Hilbert action [4]. The field equations
in the Palatini formalism are second-order differential equa-
tions, while for metric theories they are fourth-order. Another
remarkable property of the metric-affine approach is that the
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field equations in vacuum reduce to the standard Einstein equa-
tions of general relativity with a cosmological constant [4].

One can show that f (R) theories of gravitation are confor-
mally equivalent to the Einstein theory of the gravitational field
interacting with additional matter fields, if the action for mat-
ter does not depend on connection [3,5]. This can be done by
means of a Legendre transformation, which in classical me-
chanics replaces the Lagrangian of a mechanical system with
the Helmholtz Lagrangian. For f (R) gravity, the scalar degree
of freedom due to the occurrence of nonlinear second-order
terms in the Lagrangian is transformed into an auxiliary scalar
field φ [5]. The set of variables (gμν, φ) is commonly called the
Jordan conformal gauge. In the Jordan gauge, the connection is
metric incompatible unless f (R) = R. The compatibility can
be restored by a certain conformal transformation of the met-
ric: gμν → hμν = f ′(R)gμν . The new set (hμν, φ) is called the
Einstein conformal gauge, and we will regard the metric in this
gauge as physical.

f (R) gravity models have been compared with cosmolog-
ical observations by several authors [6,7] and the problem of
viability of these models is still open (see [8] and references
therein). Current SNIa observations provide the data on the
time evolution of the deceleration parameter q in the form of
q = q(z), where z is the redshift [9]. The extraction of the infor-
mation from these data depends, however, on assumed parame-
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trization of q(z) [10]. For small values of z such a dependence
can be linear, q(z) = q0 + q1z [9], but its validity should fail at
z ∼ 1. A convenient method to describe models close to �CDM
is based on the cosmic jerk parameter j , a dimensionless third
derivative of the scale factor with respect to the cosmic time [11,
12]. A deceleration-to-acceleration transition occurs for models
with a positive value of j0 and negative q0. Flat �CDM models
have a constant jerk j = 1.

In this work we derive the general expression for the jerk
parameter in f (R) gravity. We use the field equations in the
Palatini formalism and the Einstein conformal gauge [13]. We
find the current value of this parameter for the case f (R) =
R− α2

3R
[2,7] and compare it with recent cosmological data [10].

2. Palatini variation in f (R) gravity

The action for f (R) gravity in the original (Jordan) gauge
with the metric g̃μν is given by [13]

(1)SJ = − 1

2κc

∫
d4x

[√−g̃f (R̃)
] + Sm(g̃μν,ψ).

Here,
√−g̃f (R̃) is a Lagrangian density that depends on the

curvature scalar R̃ = Rμν(Γ
λ
ρσ )g̃μν , Sm is the action for matter

represented symbolically by ψ and independent of the connec-
tion, and κ = 8πG

c4 . Tildes indicate quantities calculated in the
Jordan gauge.

Variation of the action SJ with respect to g̃μν yields the field
equations

(2)f ′(R̃)Rμν − 1

2
f (R̃)g̃μν = κTμν,

where the dynamical energy–momentum tensor of matter is
generated by the Jordan metric tensor:

(3)δSm = 1

2c

∫
d4x

√−g̃Tμνδg̃
μν,

and the prime denotes the derivative of a function with re-
spect to its variable. From variation of SJ with respect to the
connection Γ

ρ
μν it follows that this connection is given by the

Christoffel symbols of the conformally transformed metric [5]

(4)gμν = f ′(R̃)g̃μν.

The metric gμν defines the Einstein gauge, in which the con-
nection is metric-compatible.

The action (1) is dynamically equivalent to the following
Helmholtz action [5,13]:

SH = − 1

2κc

∫
d4x

√−g̃
[
f

(
φ(p)

) + p
(
R̃ − φ(p)

)]
(5)+ Sm(g̃μν,ψ),

where p is a new scalar variable. The function φ(p) is deter-
mined by

(6)
∂f (R̃)

∂R̃

∣∣∣∣
R̃=φ(p)

= p.
From Eqs. (4) and (6) it follows that

(7)φ = Rf ′(φ),

where R = Rμν(Γ
λ
ρ σ )gμν is the Riemannian curvature scalar of

the metric gμν .
In the Einstein gauge, the action (5) becomes the standard

Einstein–Hilbert action of general relativity with an additional
scalar field:

SE = − 1

2κc

∫
d4x

√−g
[
R − p−1φ(p) + p−2f

(
φ(p)

)]

(8)+ Sm

(
p−1gμν,ψ

)
.

Choosing φ (which is the curvature scalar in the Jordan gauge)
as the scalar variable leads to

SE = − 1

2κc

∫
d4x

√−g
[
R − 2V (φ)

]

(9)+ Sm

([
f ′(φ)

]−1
gμν,ψ

)
,

where V (φ) is the effective potential

(10)V (φ) = φf ′(φ) − f (φ)

2[f ′(φ)]2
.

Variation of the action (9) with respect to gμν yields the
equations of the gravitational field in the Einstein gauge [13]:

(11)Rμν − 1

2
Rgμν = κTμν

f ′(φ)
− V (φ)gμν,

while variation with respect to φ reproduces (7). Eqs. (7) and
(11) give

(12)φf ′(φ) − 2f (φ) = κTf ′(φ),

from which we obtain φ = φ(T ). Substituting φ into the field
equations (11) leads to a relation between the Ricci tensor and
the energy–momentum tensor. Such a relation is in general non-
linear and depends on the form of the function f (R).

3. The jerk parameter in f (R) gravity

The jerk parameter in cosmology is defined as [11,12]

(13)j = ˙̈a
aH 3

,

where a is the cosmic scale factor, H is the Hubble parameter,
and the dot denotes differentiation with respect to the cosmic
time. This parameter appears in the fourth term of a Taylor ex-
pansion of the scale factor around a0:

a(t)

a0
= 1 + H0(t − t0) − 1

2
q0H

2
0 (t − t0)

2

(14)+ 1

6
j0H

3
0 (t − t0)

3 + O
[
(t − t0)

4],
where the subscript 0 denotes the present value. We can rewrite
Eq. (13) as

(15)j = q + 2q2 − q̇

H
,
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where q is the deceleration parameter. For flat �CDM model
j = 1 [10].1

From the gravitational field equations (11) applied to a flat
Robertson–Walker universe with dust we can derive the φ-
dependence of the Hubble parameter [13]

(16)H(φ) = c

f ′(φ)

√
φf ′(φ) − 3f (φ)

6

and the deceleration parameter [7]

(17)q(φ) = 2φf ′(φ) − 3f (φ)

φf ′(φ) − 3f (φ)
.

We also have the expression for the time dependence of φ [13]

(18)φ̇ =
√

6c(φf ′ − 2f )
√

φf ′ − 3f

2f ′2 + φf ′f ′′ − 6ff ′′ .

Combining Eqs. (16)–(18) and using q̇ = φ̇q ′(φ) leads to

(19)
q̇

H
= 18f ′(φf ′ − 2f )(φf ′2 − φff ′′ − ff ′)

(φf ′ − 3f )2(2f ′2 + φf ′f ′′ − 6ff ′′)
.

From Eq. (15) we finally obtain

j (φ) = [
2φ2f ′4 + 10φ3f ′3f ′′ − 75φ2f ′2ff ′′ − 12φff ′3

+ 18f 2f ′2 + 189φf 2f ′f ′′ − 162f 3f ′′]
(20)× [

(φf ′ − 3f )2(2f ′2 + φf ′f ′′ − 6ff ′′)
]−1

.

We now examine the case f (R) = R − α2

3R
, where α is

a constant, which is a possible explanation of current cos-
mic acceleration [2]. In this model the present value of φ is
φ0 = (−1.05 ± 0.01)α, where α = (7.35±1.12

1.17) × 10−52 m−2

[7]. We do not need to know the exact value of α since it does
not affect non-dimensional cosmological parameters. Substitut-
ing φ0 into (20) gives

(21)j0 = 1.01+0.08
−0.21.

This value does not overlap with the value j = 2.16+0.81
−0.75, ob-

tained from the combination of three kinematical data sets: the
gold sample of type Ia supernovae [9], the SNIa data from the
SNLS project [14], and the X-ray galaxy cluster distance mea-
surements [10]. The origin of this disagreement could come
from the assumption of constant jerk used there. However,
two of the three data sets separately are consistent with the

f (R) = R − α2

3R
model: the SNLS SNIa set gives j = 1.32+1.37

−1.21

and the cluster set gives j = 0.51+2.55
−2.00, and it is the gold sample

data that yields larger j = 2.75+1.22
−1.10 [10]. 2

In the f (R) = R − α2

3R
model the deceleration-to-accelerat-

ion transition occurred at φt = −√
5/3α [7]. The cosmic jerk

1 This identity can be easily verified from Eq. (15) for special cases where
the deceleration parameter is constant: q = 1/2 (matter-dominated universe)
and q = −1 (de Sitter universe).

2 The value q0 = −0.81 ± 0.14 found in [10] from the combined three data

sets agrees with q0 = −0.67±0.06
0.03 derived in the f (R) = R − α2

3R
model [7].

Each set separately agrees with our model as well.
parameter at this moment can be found from Eq. (20):

(22)jt = 10

9
.

This value shows that the jerk parameter in f (R) gravity
changes significantly between the deceleration-to-acceleration
transition and now, indicating the departure of f (R) gravity
models from �CDM. It would be interesting to generalize the
kinematical approach of [10] to time dependent jerk and com-
pare the results with f (R) gravity models. More constraints on
these models could also be provided by non-dimensional para-
meters containing higher derivatives of the scale factor, such as
the snap parameter s = ¨̈a

aH 4 [12].

4. Summary

We derived the expression for the cosmic jerk parameter in
f (R) gravity formulated in the Einstein gauge. We used the
Palatini variational principle to obtain the field equations and
apply them to a flat, homogeneous, and isotropic universe filled
with dust. The value of the jerk parameter for the particular

case f (R) = R − α2

3R
does not overlap with the value obtained

from cosmological data of the SNIa gold sample, but is con-
sistent with the values obtained from more recent SNLS SNIa
data and the X-ray galaxy cluster data [10]. Therefore, Pala-
tini f (R) models in the Einstein gauge, including the case

f (R) = R − α2

3R
, provide a possible explanation of current

cosmic acceleration. Further observations should give stronger
constraints on j and on f (R) gravity.
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