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RADIAL MOTION INTO AN EINSTEIN-ROSEN BRIDGE
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We consider the radial geodesic motion of a massive particle into a black hole in isotropic coor-
dinates, which represents the exterior region of an Einstein-Rosen bridge (wormhole). The particle
enters the interior region, which is regular and physically equivalent to the asymptotically flat exte-
rior of a white hole, and the particle’s proper time extends to infinity. Since the radial motion into a
wormhole after passing the event horizon is physically different from the motion into a Schwarzschild
black hole, Einstein-Rosen and Schwarzschild black holes are different, physical realizations of gen-
eral relativity. Yet for distant observers, both solutions are indistinguishable. We show that timelike
geodesics in the field of a wormhole are complete because the expansion scalar in the Raychaudhuri
equation has a discontinuity at the horizon, and because the Einstein-Rosen bridge is represented by
the Kruskal diagram with Rindler’s elliptic identification of the two antipodal future event horizons.
These results suggest that observed astrophysical black holes may be Einstein-Rosen bridges, each
with a new universe inside that formed simultaneously with the black hole. Accordingly, our own
Universe may be the interior of a black hole existing inside another universe.
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I. ISOTROPIC COORDINATES

The interval of the static, spherically symmetric, gravitational field in vacuum, expressed in isotropic coordinates,
was found by Weyl [1]:

ds2 =
(1− rg/(4r))

2

(1 + rg/(4r))2
c2dt2 − (1 + rg/(4r))

4(dr2 + r2dΩ2), (1)

where 0 ≤ r < ∞ is the radial coordinate, dΩ is the element of the solid angle, and rg = 2GM/c2 is the Schwarzschild
radius. This metric does not change its form under the coordinate transformation:

r → r′ =
r2g
16r

, (2)

and is Galilean for r → ∞. Therefore it is also Galilean for r → 0, describing an Einstein-Rosen bridge (wormhole):
two Schwarzschild solutions to the Einstein field equations (a black hole and white hole) connected at the singular
(det gµν = 0) surface r = rg/4 (common event horizon) [2, 3]. The nonzero components of the Riemann curvature
tensor for this metric are given by

R0θ
0θ = R0φ

0φ = Rrθ
rθ = Rrφ

rφ =
rg

2r3(1 + rg/(4r))6
,

R0r
0r = Rθφ

θφ = − rg
r3(1 + rg/(4r))6

, (3)

so the Kretschmann scalar is finite everywhere: RµνρσR
µνρσ = 12r2gr

−6(1 + rg/(4r))
−12, going to zero as r → ∞

and r → 0. The Einstein-Rosen metric for r > rg/4 describes the exterior sheet of a Schwarzschild black hole (the
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transformation of the radial coordinate r → rS = r(1+rg/(4r))
2 brings the interval (1) into the standard Schwarzschild

form [4]). The spacetime given by the metric (1) for r < rg/4 is regarded by an observer at r > rg/4 as the interior
of a black hole. Because of the invariance of the metric (1) under the transformation (2), this interior is an image
of the other exterior sheet. This situation is analogous to the method of image charges for spheres in electrostatics,
where the interaction between an electric charge situated at a distance r from the center of a conducting sphere of
radius R < r is equivalent to the interaction of the same charge with a charge of the opposite sign situated inside
this sphere at a distance R2/r from its center [5]. The radius R corresponds to the Schwarzschild surface in isotropic
coordinates, r = rg/4.

II. RADIAL MOTION

Consider a massive particle moving radially in the gravitational field described by the metric (1). For brevity, we
use

h = g00 =
(1− rg/(4r))

2

(1 + rg/(4r))2
, f = −grr = (1 + rg/(4r))

4. (4)

The motion of the particle is given by the radial geodesic equations. If the particle is at rest at r = r0, then these
equations are

dt

dτ
= u0 =

√
h0/h, (5)

dr

cdτ
= ur = ε(h0h

−1f−1 − f−1)1/2, (6)

where τ is the proper time of the particle, h0 = h|r=r0 , and ε = −1 (+1) for an infalling (outgoing) motion. Consider a
particle falling into a black hole, ε = −1. As r → rg/4, h goes to zero and f → 16, so both u0 and ur become infinite.
Even if the initial motion were not purely radial, the components u0, ur would still become infinite at r = rg/4,
with uθ, uφ remaining finite. Therefore, each motion of a massive particle becomes effectively radial at the surface
r = rg/4.
A distant observer situated in a nearly Galilean spacetime measures the velocity of the infalling particle as

vd =
dr

dt
= c

ur

u0
= −c

(h0f
−1h− f−1h2)1/2√

h0

. (7)

As r → rg/4, vd goes to zero. Writing r = rg/4 + ξ, where 0 < ξ ¿ rg, gives vd ≈ −cξ/(2rg) and thus r − rg/4 ∼
exp(−ct/(2rg)), so the particle reaches the surface of a black hole r = rg/4 after an infinite time t. This surface is
an event horizon for a distant observer, as it is for the standard Schwarzschild metric [6]. The proper time ∆τ of the
particle for moving radially from r = r0 to r = rg/4 is finite, which can be shown by considering r0 = rg/4 + ξ:

c∆τ =

∫ rg/4+ξ

rg/4

dr/ur ≈ rg. (8)

After reaching the surface r = rg/4, the particle continues moving; its radial coordinate r decreases to r1 = r2g/(16r0) ≈
rg/4 − ξ (at which ur = 0) in a proper time ∆τ = rg/c. The radial motion of a massive particle (in terms of the
proper time) in the spacetime (1) for r ≤ rg/4 is the image (in the sense of the method of image charges for spheres
in electrostatics) of the particle’s motion for r ≥ rg/4. Applying the transformation (2) to Eqs. (5) and (6) in the
region r ≤ rg/4 gives

dt

dτ
=

√
h0/h, (9)

dr′

cdτ
= −ε(h0h

−1f−1 − f−1)1/2, (10)

where h = (1− rg/(4r
′))2/(1 + rg/(4r

′))2 and f = (1 + rg/(4r
′))4. An infalling radial geodesic motion inside a black

hole appears, in terms of the new radial coordinate r′, as an outgoing motion from a white hole (the time reversal of
a black hole).
The local velocity of the particle vl, measured in terms of the proper time, as determined by static clocks synchro-

nized along the trajectory of the particle, is related to u0 by u0 = (h(1− v2l /c
2))−1/2 [7]. As the particle moves from
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r = r0 to r = rg/4, vl increases from zero to c, and as the particle moves from r = rg/4 to r = r1, vl decreases to zero.
In a Schwarzschild field, vl exceeds c inside a black hole, which does not violate Einstein’s theory of relativity because
the interior of a Schwarzschild black hole is not static and neither can be clocks synchronized along the trajectory of
the particle.
Consider radially moving geodesic clocks that are falling into a black hole from the isotropic radius r0, and syn-

chronized such that the time of each clock at the instant of release equals the proper time τ0 of a clock at rest that
remains fixed at r0. The time at any event is taken to be equal to the proper time on the radially falling clock that
is coincident with this event, following the procedure due to Gautreau and Hoffmann [8]. Equations (5) and (6) give
(for ε = −1)

cdτ =
√
h0cdt+

√
f(h0 − h)/hdr, (11)

which, using τ0 =
√
h0t0, integrates to

cτ =
√
h0ct+

∫ r

r0

√
f(h0 − h)/hdr, (12)

giving the transformation between the coordinates (r, t) and (r, τ). In terms of τ , the metric (1) becomes

ds2 = h(cdτ −
√
f(h0 − h)/hdr)2/h0 − fdr2 − fr2dΩ2. (13)

Radial null geodesics are given by ds = 0 and dΩ = 0:

cdτ

dr
=

√
fh0/h(

√
1− h/h0 ± 1). (14)

The plus (minus) sign corresponds to an outgoing (infalling) null geodesic. For r → ∞, the spacetime is Galilean and
cdτ/dr = ±1. For r = rg/4, cdτ/dr = ∞ for the outgoing null geodesic and 0 for the infalling one, as shown in Fig. 1.
For r = 0, cdτ/dr = ±∞; however, in terms of the new radial coordinate r′ (2), we obtain cdτ/dr′ = ±1 (Galilean
spacetime). Massive particles can move in both radial directions, except at the unidirectional surface r = rg/4, where
only infalling geodesics (decreasing r) lie inside the light cone.

FIG. 1: Light cones in the gravitational field represented by the metric (13).

The singularity theorem of Penrose guarantees that, whenever matter satisfies reasonable energy conditions, some
sort of geodesic incompleteness occurs inside a black hole [9]. The key component in this theorem is the Raychaudhuri
equation [10], describing the time evolution of the expansion scalar for a timelike congruence. The expansion scalar
θ = ui

;i measures the fractional rate at which a small volume of matter changes with respect to time as measured
by a comoving observer. The Raychaudhuri equation guarantees that any timelike geodesic inside a Schwarzschild
black hole converges in a caustic (θ → −∞) within a finite proper time. For the infalling radial motion into the
Einstein-Rosen bridge (1) from infinity (h0 = 1), Eq. (6) yields

θ =
1√

hf3r2
(
√
hf3r2ur),r = −3

2

√
rg
r3

sgn(1− rg/(4r))

(1 + rg/(4r))3
. (15)

As the particle moves from infinity to r = rg/4, θ decreases from 0 to −3/(2rg). At r = rg/4, θ undergoes a
discontinuity, jumping to 3/(2rg). As the particle moves from r = rg/4 to r = 0, θ decreases back to zero. The
discontinuity of the expansion scalar at the event horizon of a wormhole prevents θ from decreasing to −∞, as
it occurs inside a Schwarzschild black hole. Therefore this discontinuity guarantees that timelike geodesics in the
gravitational field of a wormhole are complete.



4

III. KRUSKAL REPRESENTATION

Amaximal extension of the Schwarzschild metric [11, 12] shows that a massive particle cannot travel in the spacetime
of a Schwarzschild black hole from Kruskal’s right-hand quadrant (exterior region I in Fig. 2) to left-hand quadrant
(exterior region III) without violating causality: the Schwarzschild bridge is not traversable [3, 13]. Such a particle
either remains in region I or moves to the upper quadrant (interior region II), where it reaches the central singularity
and its proper time ends. Equation (7) can be solved in the Schwarzschild coordinates, where h = 1 − rg/rS and
f = (1− rg/rS)

−1, in the parametric form [14]:

rS
rS0

=
1

2
(1 + cosη), (16)

ct

rg
= ln

k + tan(η/2)

k − tan(η/2)
+ k

(
η +

rS0

2rg
(η + sinη)

)
, (17)

where rS0 = r0(1 + rg/(4r0))
2, k = (rS0/rg − 1)1/2, and the parameter η goes from 0 (the particle is at rest at t = 0)

to the value at the event horizon, ηh = 2tan−1k. Equations (6) and (16) give the proper time τ as a monotonously
increasing function of η:

τ =
1

2c

√
r3S0

rg
(η + sinη). (18)

Transforming from the Schwarzschild coordinates (r, t) to the Kruskal coordinates (U, V ) (in region I) [12],

U = (rS/rg − 1)1/2erS/(2rg)cosh
ct

2rg
, (19)

V = (rS/rg − 1)1/2erS/(2rg)sinh
ct

2rg
, (20)

together with Eq. (7), gives the derivative dV/dU :

dV

dU
=

k − tanh ct
2rg

· ( rS0

rS
− 1)1/2

ktanh ct
2rg

− ( rS0

rS
− 1)1/2

. (21)

In the limit η → ηh we can write η = ηh − ξ, where 0 < ξ ¿ 1, which gives rS/rg − 1 ≈ kξ, exp(ct/(2rg)) ≈
2cos(ηh/2)

√
k/ξexp[k(ηh + rS0(ηh +sinηh)/(2rg))/2] and (rS0/rS − 1)1/2 ≈ k− ξ/2. We obtain the values of U, V for

the particle at the event horizon:

Uh = Vh =

√
ek√

1 + k2
e

k
2

(
(k2+3)tan−1

k+k
)
, (22)

and the value of the slope dV/dU at the horizon:

dV

dU

∣∣∣
h
= ζ = coth

[k
2

(
(k2 + 3)tan−1k + k

)]
. (23)

After the particle, which started moving from the radius rS0 > rg at t = 0 (point A in Fig. 2), reaches the event
horizon of a Schwarzschild black hole at rS = rg, r = rg/4 (point B), it moves toward the central singularity at rS = 0
(point E) as η (which is an increasing function of the particle’s proper time τ) goes to π.
The completeness of the particle’s geodesic in the spacetime of the Einstein-Rosen bridge in the Kruskal coordinates

can be explained if we note that both coordinate pairs (−U,−V ) and (U, V ) mathematically correspond to the same
coordinates r, t. Rindler suggested that both coordinate pairs (−U,−V ) and (U, V ) physically represent the same
coordinates r, t, i.e. region III is identical with region I, and (interior) region IV is identical with region II; the
Kruskal spacetime is elliptic [15]. In order to represent the Einstein-Rosen bridge in the Kruskal coordinates, we need
to impose Rindler’s elliptic identification of event antipodes only on the line V = U , i.e. only the two antipodal future
event horizons are identical. After the particle reaches the event horizon of an Einstein-Rosen black hole at point B,
it moves from point C, which is identical with point B, to point D, which is related to point A via the transformation
(2) of the isotropic radial coordinate r. As the particle moves from point C to D, the proper time τ increases, while
the coordinate time t decreases (runs in the reverse direction with respect to observers in region I). This reversion
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FIG. 2: Infalling radial geodesic motion of a massive particle into a Schwarzschild black hole (ABE) and an Einstein-Rosen
black hole (ABCD) in the Kruskal coordinates. For the Einstein-Rosen black hole, the events on the segment OF are identified
with the events on the segment OG, e.g., points B and C represent the same spacetime event.

does not cause any problems, because it occurs after t → ∞, so observers in region I never see it. At infinity of region
III, the proper time τ of the particle coincides with −t, so −t has the meaning of the physical coordinate time of a
white hole (region III).
The dependence of r on η in the radial geodesic motion of a massive particle into an Einstein-Rosen black hole is

given by

r
(
1 +

rg
4r

)2

=
1

2
(1 + cosη)r0

(
1 +

rg
4r0

)2

. (24)

The segment AB corresponds to the motion from r = r0 (τ = 0, dV/dU = ∞) to r = rg/4 (τ = τh =
√
r3S0/rg(ηh +

sinηh)/(2c), dV/dU = ζ), and the segment CD corresponds to the motion from r = rg/4 (τ = τh, dV/dU = ζ;
the slope dV/dU is continuous at the horizon as we go from point B to C) to r = r1 = r2g/(16r0) (τ = 2τh,
dV/dU = ∞). Therefore crossing the Einstein-Rosen bridge is possible if we regard Rindler’s elliptic identification of
the two antipodal future event horizons as physical. The particle enters region III (with no possibility of coming back
to region I), which has no curvature singularities and is mathematically equivalent to the asymptotically flat exterior
of a white hole [16]. The particle’s proper time does not end in this region, but extends to infinity.

IV. DISCUSSION

The difference in the character of the radial motion inside the event horizon between an Einstein-Rosen black hole
and a Schwarzschild black hole indicates that the two black hole solutions are physically different with regard to the
nature of the interior sheet and equivalent with regard to the nature of the static exterior sheet (region I). For an
Einstein-Rosen black hole with Rindler’s elliptic identification of the two antipodal future event horizons the interior
(from the point of view of a distant observer; it really is the exterior region III) is static, while for a Schwarzschild
black hole the interior (region II) is nonstatic. Rindler’s identification also guarantees that the Einstein-Rosen bridge
is a stable solution to the gravitational field equations; without this identification the bridge would be unstable [3].
Another difference between a Schwarzschild black hole and an Einstein-Rosen black hole comes from the integral of
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the time-time component of the gravitational energy-momentum pseudotensor (either Einstein or Landau-Lifshitz)
over the interior hypersurface, i.e. the total energy of the system [7, 17]. This energy equals the sensible physical
value rgc

4/2G = Mc2 for an Einstein-Rosen black hole, but diverges for a Schwarzschild black hole. Although the
construction of the Einstein-Rosen bridge in the Kruskal coordinates through Rindler’s elliptic identification of the
two antipodal future event horizons may seem artificial, the necessity for Rindler’s identification to avoid the particle’s
motion to the central singularity may be related to a singular behavior of the Kruskal metric in the Minkowski limit
rg → 0. However, the Kruskal coordinates are advantageous in describing the Einstein-Rosen bridge because the
surface r = rg/4 is regular (det gµν < 0) in these coordinates.
The Schwarzschild black hole solution, singular at the center, does not exist in isotropic coordinates, while the

Einstein-Rosen bridge (wormhole) geometry, regular everywhere, can be built in the Schwarzschild coordinates by
gluing together two Schwarzschild exterior sheets at their common event horizon [18]. While the Schwarzschild metric
is the spherically symmetric solution to the Einstein field equations in vacuum if we solve these equations using
the Schwarzschild coordinates, the Einstein-Rosen bridge is the spherically symmetric solution to the Einstein field
equations if we solve these equations using isotropic coordinates for a source which is vacuum everywhere except at
the surface r = rg/4. It has been shown that the Einstein-Rosen bridge metric (1) is not a solution of the vacuum
Einstein equations but it requires the presence of a nonzero energy-momentum tensor source Tµν that is divergent and
violates the energy conditions at the throat of the wormhole [18, 19]. This metric satisfies the Levi-Civita identity,
R0

0 = 1√
g00

∇2(
√
g00), where ∇2 is the Laplace-Beltrami operator [19, 20]. This identity gives for (1):

R0
0 =

8πG

c4

(
T 0
0 − 1

2
T

)
=

δ(r − rg/4)

8|r − rg/4| =
δ
(
(r − rg/4)

2
)

4
. (25)

The curvature scalar at the throat of such a wormhole acquires a similar delta-function contribution. It has been
shown in [19] that the delta-function matter source in the Einstein-Rosen bridge at r = rg/4 is a lightlike brane
self-consistently interacting with gravity.
Both black hole solutions are mathematically legitimate, and only experiment or observation can reveal the nature

of the infalling radial motion of a particle into a physical black hole. Since the two solutions are indistinguishable for
distant observers, which can see only the exterior sheet, the nature of the interior of a physical black hole cannot be
satisfactorily determined, unless an observer enters or resides in the interior region. This condition would be satisfied
if our Universe were the interior of a black hole existing in a bigger universe [21]. Because Einstein’s general theory
of relativity does not choose a time orientation, if a black hole can form from the gravitational collapse of matter
through an event horizon in the future then the reverse process also possible. Such a process would describe an
exploding white hole: matter emerging from an event horizon in the past, like the expanding Universe. Scenarios
in which the Universe was born from the interior of an Einstein-Rosen black hole may avoid many of the problems
of the standard Big-Bang cosmology and the black hole information-loss problem [22]. These scenarios, involving
gravitational collapse of a sphere of dust in isotropic coordinates, and generalization of the results of the present
Letter to Schwarzschild-de Sitter and Kerr black holes will be the subjects of further study.
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