Escaping non-tangential approach

Ryan Tully-Doyle
University of New Haven

preliminary report
joint with J. E. Pascoe and M. Seargent

IWOTA, ECNU
July 23, 2018
Let D and Ω be proper open subsets of \mathbb{C}, and ∂D and $\partial \Omega$ denote their respective topological boundaries. There are a number of classically important families of analytic functions $\varphi : D \to \Omega$ that in addition take the boundary ∂D to the boundary $\partial \Omega$ where defined.

1. Schur functions: $D = \Omega = \mathbb{D}$,
2. Herglotz functions: $D = \mathbb{D}$, $\Omega = \{z : \text{Re } z > 0\}$,
3. Nevanlinna functions: $D = \Omega = \{\text{Re } z > 0\}$.
4. Pick functions $D = \Omega = \{z : \text{Im } z > 0\}$.
Let \mathcal{F} denote a family of analytic functions $f : D \to \Omega$. While f is analytic on D, there is no reason to presume that f is necessarily reasonably behaved on ∂D.

We can pose the following question:

Question

Suppose that $f \in \mathcal{F}$ and that $\tau \in \partial D$. Is f “nice” near τ?
What sorts of substitutions for “nice” are typical?

1. Does f have a limit as $z \to \tau$?
2. Does f have a derivative as $z \to \tau$?
3. Does f have an expansion to order n at τ?

Generally, we call these sorts of conditions boundary regularity.
The Julia quotient $J_f^\tau(z)$ is a function that measures the growth of a function f as the input values z tend to a boundary value $\tau \in \partial D$:

$$J_f^\tau(z) = \frac{\text{dist}(f(z), \partial \Omega)}{\text{dist}(z, \tau)}.$$

The Julia quotient is the jumping off point for a theory that understands boundary regularity in terms of restrictions on growth.
A **Stolz region** is a sector of a circle with the point touching the boundary at a point $\tau \in \partial D$.
A **Stolz region** is a sector of a circle with the point touching the boundary at a point $\tau \in \partial D$.

More generally, a Stolz region in a domain D at a point $\tau \in \partial D$ with aperture M, denoted $S_{\tau,M}$, to be the set

$$S_{\tau,M} = \{ z \in D \mid \text{dist}(z, \partial D) \geq M \text{dist}(z, \tau) \}.$$
A **Stolz region** is a sector of a circle with the point touching the boundary at a point \(\tau \in \partial D \).

More generally, a Stolz region in a domain \(D \) at a point \(\tau \in \partial D \) with aperture \(M \), denoted \(S_{\tau,M} \), to be the set

\[
S_{\tau,M} = \{z \in D | \text{dist}(z, \partial D) \geq M \text{dist}(z, \tau)\}.
\]
Suppose that $D = \Omega = \mathbb{D}$ (that is, f is a Schur function).

Theorem (Julia-Carathéodory)

Let $\varphi : \mathbb{D} \to \overline{\mathbb{D}}$ be an analytic function. Let τ be a point in $T = \partial \mathbb{D}$.

There exist $\omega, \eta \in \partial \mathbb{D}$ so that

$$\varphi = \omega + \eta (t - \tau) + o(|t - \tau|)$$

if and only if the Julia quotient J^τ_f is bounded on some Stolz region $S_{\tau, M}$.

The J-C question

One can formulate for a more general notion of regularity what might be called the Julia-Carathédory question:

Question

Is regularity of f at $\tau \in \partial D$ equivalent to boundedness of some growth condition of f at τ?

This question has been answered in the affirmative in quite a number of more general settings. (More variables, operator valued functions, noncommuting variables, different domains, ...
We move from the disk \mathbb{D} to the upper halfplane Π: that is, from the Schur functions of Julia-Carathéodory to the class of Pick functions $f : \Pi \to \overline{\Pi}$.

Theorem (Nevanlinna Representation)

Let $f : \Pi \to \mathbb{C}$. The function f is analytic and maps Π to Π if and only if there exist $a \in \mathbb{R}$, $b \geq 0$ and a finite positive Borel measure μ on \mathbb{R} such that

$$f(z) = a + bz + \int_{\mathbb{R}} \frac{1 + tz}{t - z} d\mu(t) \quad (0.1)$$

for all $z \in \Pi$.
We move from the disk \mathbb{D} to the upper halfplane Π: that is, from the Schur functions of Julia-Carathéodory to the class of Pick functions $f : \Pi \to \overline{\Pi}$. Why?
We move from the disk \mathbb{D} to the upper halfplane Π: that is, from the Schur functions of Julia-Carathéodory to the class of Pick functions $f : \Pi \to \overline{\Pi}$.

Why? A totally sweet representation theorem!
We move from the disk \mathbb{D} to the upper halfplane Π: that is, from the Schur functions of Julia-Carathéodory to the class of Pick functions $f : \Pi \to \overline{\Pi}$.

Why? **A totally sweet representation theorem!**

Theorem (Nevanlinna Representation)

Let $f : \Pi \to \mathbb{C}$. The function f is analytic and maps Π to $\overline{\Pi}$ if and only if there exist $a \in \mathbb{R}$, $b \geq 0$ and a finite positive Borel measure μ on \mathbb{R} such that

$$f(z) = a + bz + \int_{\mathbb{R}} \frac{1 + tz}{t - z} d\mu(t)$$

for all $z \in \Pi$.

(0.1)
There is a Corollary that relates boundary regularity to properties of the measure μ.

Corollary

An analytic function $f : \Pi \to \overline{\mathbb{P}}$ with Nevanlinna representation

$$f(z) = a + bz + \int_{\mathbb{R}} \frac{1 + tz}{t - z} d\mu(t)$$

is regular to order $2n - 1$ at τ if and only if $\frac{1}{(t - \tau)^{2n}}$ is integrable with respect to μ.
Let \(\gamma : [0, \infty) \rightarrow \mathbb{R}^{\geq 0} \) be a monotone increasing function such that \(\gamma(t) \) is \(O(t^2) \).

\(f : \Pi \rightarrow \overline{\Pi} \) is \(\gamma \)-regular whenever there exists a \(C > 0 \) such that

\[
\frac{1}{\gamma(C|t|)}
\]

is integrable with respect to the \(\mu \).
The big idea

Let $\gamma : [0, \infty) \rightarrow \mathbb{R}^{\geq 0}$ be a monotone increasing function such that $\gamma(t)$ is $O(t^2)$.

$f : \Pi \rightarrow \overline{\Pi}$ is γ-regular whenever there exists a $C > 0$ such that $\frac{1}{\gamma(C|t|)}$ is integrable with respect to the μ.

For example, when $\gamma(t) = (t - \tau)^{2n}$, we recover the previous corollary: f is γ-regular iff f is regular to order $2n - 1$.
An illustrative example

Suppose that $\gamma(t) = e^{-1/t}$.
Suppose that $\gamma(t) = e^{-1/t}$.

It turns out that γ-regularity in this case implies \textbf{analytic determinacy} of the measure μ: that is the values of the moments of μ uniquely determine the measure.
There is a tradeoff - because we want to look at more delicate regularity than linear approximation, we need to use regions that are (controllably) tangential at τ.
There is a tradeoff - because we want to look at more delicate regularity than linear approximation, we need to use regions that are (controllably) tangential at \(\tau \).

In a \(\lambda\text{-Stolz region} \), the rays at \(\tau \) in a standard Stolz region are replaced by a curve \(\lambda \).
There is a tradeoff - because we want to look at more delicate regularity than linear approximation, we need to use regions that are (controllably) tangential at τ.

In a λ-Stolz region, the rays at τ in a standard Stolz region are replaced by a curve λ.

If $\lambda(t) = \frac{e^{-1/t}}{t}$, then the associated λ-Stolz region at $\tau = 0$ looks like: picture here
Amortized Julia quotient

Let S_0^λ be a λ-Stolz region. Let $d > 0$, and let C_d denote the set of points in Π that are distance $\lambda(d)$ from the boundary \mathbb{R}.

The amortized Julia quotient of f with respect to λ at τ, denoted $AJ^\tau_{\varphi,\lambda}(d)$, is defined as

$$AJ^\tau_{f,\lambda}(d) = \frac{1}{|C_d|} \int_{C_d} J^\tau_{f}(z) \, d|z|,$$ (0.2)

where $|C_d|$ denotes arclength.
A representative γ J-C theorem

Theorem (Pascoe, Seargent, T.D.)

Let f be an analytic function from $\Pi \to \bar{\Pi}$ and suppose that
$\gamma(t) = e^{-1/t}$ and that $\lambda(t) = \frac{e^{-1/t}}{t}$.

f is γ-regular if and only if $AJ_f^0(z)$ is bounded on $S_0^{\lambda(Ct)}$ for some $C > 0$.
Theorem (Pascoe, Seargent, T.D.)

Let f be an analytic function from $\Pi \rightarrow \bar{\Pi}$ and suppose that $\gamma(t) = e^{-1/t}$ and that $\lambda(t) = \frac{e^{-1/t}}{t}$.

f is γ-regular if and only if $AJ_f(z)$ is bounded on $S_0^{\lambda(Ct)}$ for some $C > 0$ if and only if $J_f(z)$ is bounded on $S_0^{\lambda(Ct)}$ for some $C > 0$.
Extensions and open questions

1. γ-regularity recovers Bolotnikov-Kheifits higher order boundary differentiability.

2. We only have partial results on the disk: in the case that we can use J instead of AJ, can Cayley transform back.

3. Moment determinacy in free probability?

4. Two variables?