Mixed Partial Are Equal

Theorem 0.1 (Clairaut) f is defined on a disk D containing the point (a,b). If the functions f_{xy} and f_{yx} are both continuous on D, then $f_{xy}(a,b) = f_{yx}(a,b)$. □

Proof For small values of h, $h \neq 0$, consider the difference

$$
\Delta(h) = [f(a+h, b+h) - f(a+h, b)] - [f(a, b+h) - f(a, b)]
$$

Notice that if we let $g(x) = f(x, b+h) - f(x, b)$, then

$$
\Delta(h) = g(a+h) - g(a)
$$

By the Mean Value Theorem, there is a number c between a and $a+h$ such that

$$
g(a+h) - g(a) = g'(c)h = h[f_x(c, b+h) - f_x(c, b)]
$$

Applying the Mean Value Theorem again, this time to f_x, we get a number d between b and $b+h$ such that

$$
f_x(c, b+h) - f_x(c, b) = f_{xy}(c, d)h
$$

Combining these equations, we obtain

$$
\Delta(h) = h^2 f_{xy}(c, d)
$$

If $h \to 0$, then $(c, d) \to (a, b)$, so the continuity of f_{xy} gives

$$
\lim_{h \to 0} \frac{\Delta(h)}{h^2} = \lim_{(c,d) \to (a,b)} f_{xy}(c, d) = f_{xy}(a, b)
$$

Similarly by writing

$$
\Delta(h) = [f(a+h, b+h) - f(a, b+h)] - [f(a+h, b) - f(a, b)]
$$

and using the Mean Value Theorem twice and the continuity of f_{yx} at (a,b), we obtain

$$
\lim_{h \to 0} \frac{\Delta(h)}{h^2} = f_{yx}(a, b)
$$

It follows that $f_{xy}(a,b) = f_{yx}(a,b)$. ■