


Affine connection & torsion

The affine connection Ff’j allows to construct the covariant derivative V;
of a vector that transforms under coordinate transformations like a tensor:

V,VF=0,V*+TEVI VW, Vi = 0,V — TLV;.

For tensors with more indices, each index produces a term with the affine con-
nection. The affine connection is not a tensor, but its variation is a tensor. The
antisymmetric part of the affine connection defines the torsion tensor:

1
Skij — §(F£€j - F?@) (1)

The curvature tensor is given by R, = T% —8,,T%, +T7 L FilFém.
The covariant derivative of the metric tensor is zero (metricity): V;g;; = 0.
This relation determines the affine connection in terms of the metric, its partial

derivatives, and torsion:
k _ Tk k k k
where the Christoffel symbols (Levi-Civita connection) are given by

o 1 .
I = §9ﬂ(5¢9kz + Okgit — Ogir)-



Dirac equation & tetrad

In a flat spacetime, the Dirac equation for a free particle with mass m is
given by
ithy" 0, = mcey,

where 1) is the four-component wave function and v* are the 4 x4 Dirac matrices,
satisfying the relation
YA+ =207 Ay,

where n*¥ = diag(1, —1,—1,—1) is the Minkowski metric tensor and I, is the
four-dimensional unit matrix. In the presence of the electromagnetic field, 9, is
extended to 0, 4+ iqA,, where A, is the electromagnetic potential and ¢ is the
electric charge of the particle.

In a curved spacetime, the partial derivatives 0, must be replaced with the
covariant derivatives. At every point in spacetime, in addition to a general
coordinate system, it is possible to set up a tetrad: four linearly independent
vectors e, such that

Pk
€,€,9ik = Muv-
The tetrad relates the Greek vector indices of the locally flat, Lorentz coordinate

system (of special relativity) to the Latin vector indices of the general coordinate
system (of general relativity): V' = ¢ V#. The choice of the tetrad is not

unique: a Lorentz transformation ¢, = Aje),, where A are the Lorentz

OMNpe = Muv, produces a new tetrad e

matrices satisfying Af A7

i
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Spin connection

The spin connection is given by

o=k = el!'Vel = el (0;ef + T el). (2)

W Ji-v

The spin connection allows to extend covariant differentiation to vectors with
Lorentz indices:
VvV, V¥ =0; V! + LU’UJL,?;VV, ViV, = 8ivu — meVU.
For tensors with Lorentz indices, each index produces a term with the spin
connection. Consequently, the covariant derivative of a tetrad is zero:
Ve, = Oge,, + el —w” e, = 0.

Therefore, the covariant differentiation commutes with converting between co-
ordinate and Lorentz indices. This relation determines the spin connection in
terms of the affine connection, the tetrad, and its partial derivatives.

The metricity of the affine connection leads to Vg1 = ek'ey i
— —ef’e%(wpmnp,, + wpyjn,up) = —(wmj + w%kj) = 0. Consequently, vi’]’]w_y = ()
and the spin connection is antisymmetric in its first two indices: Wy, = —Wy ;.



Spinor representation of Lorentz group

Let L be a 4x4 matrix such that
vH = Aij'y”Lfl.

This condition represents the constancy of the Dirac matrices under a Lorentz
tetrad rotation combined with a similarity transformation and gives the matrix
L as a function of the Lorentz matrix A%. For an infinitesimal Lorentz trans-

formation AY = 0k + €*,, where €,, = —¢,, are infinitesimal quantities, the
solution for L is
1 iz —1 1 iz
L:I4—|— 56#“/(; 3 L :I4— §€HVG 3

where G* are the generators of the spinor representation of the Lorentz group:

The matrices L compose the Lorentz group in spinor representation.



Spinors

A spinor 1 and its adjoint v are defined as quantities that transform ac-
cording to

Accordingly, the product 1) is a scalar: J{DV — ). The transformation law of
the Dirac matrices shows that they can be regarded as quantities that have, in
addition to the Lorentz vector index i, one spinor index and one adjoint-spinor

index. The product 1) transforms like the Dirac matrices: ¥) = Lipip L1

The spinors ¢ and ¢ can be used to construct bilinear forms that are linear
both in 1 and v and transform like tensors. For example, ¢y*1) transforms like
a contravariant Lorentz vector: ¥y — L= ALY L= Lap = AFapy¥ap.

For an infinitesimal Lorentz transformation, the Hermitian conjugate of L
is LT = Iy + (1/8)eu (77 TAHT — 4#T14¥T). The relations 1°T = 40 and T =
—v%, where o € {1,2,3}, together with the definition of y* give LT4" =
~vOL~1. Therefore, the quantity 1T7° transforms like an adjoint spinor: ¥~° —
YTLTA0 = TAOL =1, Accordingly, we can associate the adjoint and the conju-
gate of a spinor:



Covariant derivative of spinor

The derivative of a spinor does not transform like a spinor: 9;¢ = Ld;i +
0; L. Introducing the spinor connection I'; that transforms according to

;= L0,L~ ' + 0, LL~"
allows to construct the covariant derivative of a spinor:

Vith = 0itp — T, (3)

which transforms like a spinor: V9 = 9,90 — Iyt = Loy + 9, Ly — (LT, L1 +
O; LL=Y) L) = LV ;7). Because 1) is a scalar, V;(¢)) = 0;(1)), the chain rule

for covariant differentiation gives the covariant derivative of an adjoint spinor:
Vith = 900 + YT (4)
The Dirac matrices v* transform like 1), whose covariant derivative is

Vi) = Vi) + 9V ip = 0;(¢h)) — Tipap + Ty = 0;(vah) — [Ty, 19p]. There-

fore, the covariant derivative of a Dirac matrix is
Viyt =wh, " = L"),

Quantities ¥7'V;¢ and V;yy", where 4 = ei’y“, transform under Lorentz
rotations (and general coordinate transformations) like scalars. Their difference
1s imaginary.



Fock-Ivanenko coefficients

The relation V;n,, = 0 gives V;+* = 0 because the Dirac matrices ~*
depend only on the tensor 7,,,. Consequently, v, Vv = w i7"y — v, Liy* +
41'; = 0. Its solution is I'; = —iwwﬂ”’)’y — A;I4, where A; is a covariant vector,

which could be proportional to the electromagnetic potential. Therefore, the
spinor connection I'; is given, up to the addition of an arbitrary vector multiple
of the unit matrix, by the Fock—Ivanenko coefficients:

1 v 1 v
I'; = _Zw,u,vif)ﬂu’ﬁ)/ — _§w,u,1/iG'u . (5)

The curvature tensor with two Lorentz and two coordinate indices depends
on the spin connection and its partial derivatives:

p p P M

weoo_ o _
R k=W W pi — WhW

P
vik i vik +w vkW

pk*

The commutator of the covariant derivatives of a spinor is
ViVt = V;Vip = Kyt + 285V,

where | ’
K;; =0;I'; — 0;I'; + [Fz‘,rj] = ZRW@’Y“’YU = §R,u,m’jG’””V

is the curvature spinor, which transforms like a quantity with one spinor index
and one adjoint-spinor index: K;; = LK;;L™". 8



Dirac equation in curved spacetime

The Dirac Lagrangian density for a spinor field, representing a particle in a
gravitational field, is given by

1 R _ _
Ly = sihee,(By*Vitp — Vithy ) = meed), (6)

where e is the determinant of the tetrad ei. Varying the Lagrangian density
with respect to ¢ and 1), respectively, gives the Dirac equation and its adjoint:

'éh’y’“”eiviw = mc, —ihviﬂfy‘”’ei = mcy. (7)

These equations include covariant derivatives and generalize the Dirac equation
to a curved spacetime. )
Subtracting the first equation in multiplied by v from the second equation
multiplied by ¢ gives the conservation law for the Dirac current density j* =
Tk
ePyEY: .
VYV + Vipy™y = Vi(9y"$) = = Vi(edy"y) = 0.



Energy-momentum and spin densities

Varying the Lagrangian density with respect to the spin connection gives
the spin density S, = —S,,," = 20L,/dw"”; for a spinor field:

. o 1
Sy = SiheB Y, b 1]} = GiRed (', G} (8)

This quantity does not depend on the spinor mass. The spin tensor is equal to
the spin density divided by e.

Varying the Lagrangian density with respect to the tetrad gives the tetrad
(canonical) energy-momentum density 7, " = 0L,/ 6efL for a spinor field:

T# = gihe(in Vet — Vilytap — eIV 0
eV i) + meee . o

The energy-momentum tensor is equal to the energy—momentum density di-
vided by e.
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Conservation laws

The conservation law for spin density is
k k
vk‘s@'j — 2Sk5ij — ,Ej - 73'1'7 (10)

where Si = Siki. Without spin, the energy-momentum tensor is symmetric, as
in general relativity.
The conservation law for tetrad energy-—momentum density is

: : : 1 :
VT = 285T,7 =287, T, " + S RY8,). (11)

The conservation law for the energy—momentum density gives the Dirac equa-
tion.

These conservation laws follow from the invariance of the action (1/¢) [ LdQ
under infinitesimal Lorentz rotations and translations, respectively.

N. Poptawski, Classical Physics: Spacetime and Fields, arXiv:0911.0334.
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Einstein-Cartan theory

The Einstein—Cartan—Sciama—Kibble theory is the simplest theory of gravity
that extends general relativity by relaxing the symmetry condition of the affine
connection. In this theory, the Lagrangian density for the gravitational field is
given by L, = (—1/2k)eR, where R = Rirg™ is the Ricci scalar, R, = Rjz'jk;
is the Ricci tensor, and x = 87G/ct. In general relativity, the curvature tensor
Rl ;1 reduces to the Riemann tensor (curvature tensor of Levi-Civita connection)
R ..

gk

The field equations of the Einstein—Cartan theory are obtained from the
principle of least action with the variations of the metric and torsion tensors.
Equivalently, the field equations can be derived from the variations of the tetrad
and spin connection. Equaling the variation of the total Lagrangian density for
the gravitational field and matter with respect to the spin connection to zero
gives the Cartan equations:

i i i K i
S — Suey, + Svey, = —%SW . (12)

Equaling the variation of the total Lagrangian density for the gravitational field
and matter with respect to the tetrad to zero gives the Einstein equations:

Rel' = =T ",

12



Einstein-Cartan theory

The Bianchi identity

ViR ik = 2R 5k

nm/j

and the cyclic identity

where the square brackets denote antisymmetrization of indices except those
between the bars, together with the Einstein and Cartan field equations give
the conservation laws for the spin density and for the tetrad energy—momentum
density, respectively.

The field equations relate the curvature of spacetime to the energy and
momentum of matter and the torsion of spacetime to the spin angular mo-
mentum of matter. According to the Cartan equations, the torsion tensor is
proportional to the spin density. In the absence of spin, the torsion tensor is
therefore zero and the affine connection reduces to the Levi-Civita connection,
given by the Christoffel symbols. In this case, the Einstein—Cartan theory re-
duces general relativity. This theory is also indistinguishable in predictions from
general relativity at densities of matter that are lower than the Cartan density
(~ 10%°kg/m?), so it passes all observational and experimental tests of general
relativity.

13



Einstein-Cartan theory

Extending general relativity to the Einstein—Cartan theory may solve several
problems in quantum field theory and cosmology.

Torsion imposes a spatial extension on fermions and removes the ultraviolet
divergence of radiative corrections represented by loop Feynman diagrams. The
four-momentum operators in quantum mechanics in the presence of torsion do
not commute. Consequently, the integration over four-momentum must be re-
placed by the summation over discrete four-momentum eigenvalues. Divergent
integrals are replaced by convergent sums. Renormalization is finite.

N. J. Poplawski, Phys. Lett. B 690, 73 (2010).
N. Poptawski, Found. Phys. 50, 900 (2020).

Torsion also generates a negative correction from the spin-torsion coupling
to the energy density, which acts like gravitational repulsion, which may prevent
the formation of singularities in black holes and at the beginning of the Universe.
Consequently, the collapsing matter in a black hole would avoid a singularity
and instead reach a nonsingular bounce, after which it would expand as a new,
closed universe on the other side of its event horizon. Accordingly, our Universe
might have originated as a baby universe in a parent black hole existing in
another universe.

N. J. Poptawski, Phys. Lett. B 694, 181 (2010).
N. Poptawski, Astrophys. J. 832, 96 (2016).
N. Poptawski, J. Exp. Theor. Phys. 132, 374 (2021).
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Four-velocity of spinor

In this presentation, we aim to demonstrate that a relativistic spinor wave,
described by the Dirac equation, can be associated with a particle of the same
mass according to

Wyt — ¢jw

b

where u' = dx'/ds is the four-velocity of the particle and s is the affine param-

eter along a world line of the particle. This relation describes the relativistic

wave—particle duality. It is equal to the ratio of the Dirac density four-current

and the Dirac density scalar. In the de Broglie-Bohm pilot-wave interpretation

of quantum mechanics, this relation coincides with the special-relativistic four-
velocity of a particle guided by the wave function.

(13)

F. R. B. Guedes and N. J. Poptawski, arXiv:2211.03234.
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Four-velocity of plane-wave spinor

It is straightforward to demonstrate that the proposed four-velocity relation
is satisfied for a free particle associated with a plane spinor wave in a flat
spacetime (in the absence of torsion). This four-velocity is a normalized timelike
vector, which can be used to define de Broglie-Bohm trajectories for a spin-1/2
particle. This normalization also holds in curved spacetime because at the
location of the particle one can construct a locally flat system of coordinates
and because the normalization is a scalar relation independent of the choice of
the coordinates.

The Dirac equation can be written in the Hamiltonian form:

zha—q’b = —tha - VY + mcf1),
ot
where « is the vector formed from the matrices a* = fv* and 8 = V. If
the particle has four-momentum p,, the corresponding spinor wave function
has a form of a plane wave proportional to exp(—ip,z"/h), where x* are the
spacetime coordinates. Consequently, the Dirac equation becomes

By = p - ach +mc?pip,

where E = mc?y is the energy, with v = (1 — v2/c?)~1/2, and p = mvy is the
momentum of the particle, satisfying E? = (pc)? + (mc?)2.

16



Four-velocity of plane-wave spinor

The normalized plane-wave solution of the Dirac equation is

B 1 (E 4+ mc*) I, o - pc )
virt) = Vv 2mc?(E + mc?) ( g - pc (E +mc?) I

Y ( : )exp[z(p-r— Bt)/1,

where o is the vector formed from the Pauli matrices, I is the two-dimensional
unit matrix, the square matrix is the spinor representation of the boost from
rest to velocity v = pc?/E, and £ and n are two-dimensional (up and down)
spinors describing positive (particle) and negative (antiparticle) energy states.

: .- 1
For a spin-up, positive-energy state, & = ( 0 ) and n = ( 8 )

Similar calculations can be carried out for a spin-down or a negative-energy
state.
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Four-velocity of plane-wave spinor

The scalar bilinear composed from the plane wave is

T A0 1 212
wW=viny = 2mc?(E + mc?) [(E—I—mc )

1 _ (E4+mc?)? —p?c?
—(1,0)(a-p)(o-p)cz( 0 >} - 2mc?(E 4 mc?) = 1.

The vector bilinear components composed from the plane wave, using the

relation p* = mcu* for a free particle and an identity c#o” 4+ oot = —2n"" I,
are
5= = o [(B o+ me?)?
2mc?(E + mc?)

1 (E+mc*)? +p?c* E
1,0)(o - . p)? ]: _ _—
L0 paepe (o )] = GEEEARC - E

and

_ E 2
VY'Y = Moﬂw B 2ch(ETCmc2) [(1’ 0)o™ (o - p)e

x ( é)—l—(l,())(a-p)ca‘”’( [1) N :i—i:uﬂ.
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Momentum and spin of spinor

The conservation of the momentum four-vector P; follows from the symmetry
of a system under spacetime translations. The four-momentum operator P; of
a spinor is therefore associated with a generator of translation, which in curved
spacetime is given by a covariant derivative:

Py = ihVh, Ppap = —ihV,4. (14)

The conservation of the intrinsic angular momentum (spin) four-tensor S fol-
lows from the symmetry of a system under spacetime rotations. The spin four-
tensor operator S;i of a spinor is therefore associated with a generator of rotation
Gig: ) - )

Sikt) = ihGipp, Sk = thpGig, (15)

following Sixth = SiptyTy = (iGu) 17" = =it Gl A0 = i G = WG
For free (without fields other than gravity) particle with definite values of the
four-momentum and spin, which are respectively eigenvalues of their operators,
the operators can be replaced by the eigenvalues. The mass m of the particle is
given by
me = u’iPZ-.

The Dirac equations for a spinor and its adjoint can be written as Piy“) = mcip

and Yy’ P; = mey, giving P; ‘%’y = mc, in agreement with the proposed spinor
four-velocity.

19



Momentum and spin of spinor

Substituting the four-momentum of a spinor into the tetrad energy—momentum

density gives B - B
T " = e(Pay — el P ) + meeel .

Using the spinor four-velocity, this density becomes

T = eiﬁxb(Pz—u'“’ — eijuj) + mceegiw = ey Pyut,
T.* = epyp P, (16)

Substituting the four-spin of a spinor into the spin density gives
i 1o o i T
Sy,j'/ — §Zh€¢(’}/ G,UJ/ + G,UJJ,Y )?7b — ewf)/ wS,u,I/'
Using the spinor four-velocity, this density becomes
S, = ebpSpu’. (17)

The generators satisty v“G,,, = 0. Contracting the four-spin with the four-
velocity gives S;zu® = 0. The spin four-tensor is orthogonal to the four-velocity.

20



Equations of motion for spinor

The orthogonality of the four-spin and four-velocity gives S, kk = 0. Conse-
quently, the Cartan equations give

S; = 0.
The conservation law for spin density with gives
V(e Siu®) = epnh(Piuj — Pju;).
Using ©*V;, = D/ds, this relation can be written as

exﬁw(P-uj — Pju;) = e@wukvk&j + Sijvk(e@wuk)

z DS@
= 6#}@1) Lt S V(e ) = epp—-2,
which is equivalent to
DSt o .
= P'uw) — Plu’. (18)

This equation is the classical Mathisson—Papapetrou equation of motion for the
four-spin of a particle.
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Equations of motion for spinor

Using the conservation law for tetrad energy—momentum density gives
_ . L 1 _ .
Vj(edy Pat) = 287 (e Piuit) + S R (e S
This relation can be written as

. _ 1 _ . L
257, (e Pyu®) + §R’flﬁ(emp5kluﬂ) — e’V ; P;

o _ DP; - - DP;
FPVj(elpnl) = eby— + PV, () = epyp—,
which is equivalent to
DP? i s 1 P
T =25, Pjuk+§Rjkl STkl (19)

This equation is the classical Mathisson—Papapetrou equation of motion for the
four-momentum of a particle.

Consequently, if a spinor satisfies the Dirac equation, then the corresponding
particle with four-momentum eigenvalue P;, spin four-tensor eigenvalue S;x, and

four-velocity u' = % satisfies the Mathisson—Papapetrou equations.

They can also be derived from the covariant Heisenberg equation for opera-

tors, extending to torsion: S. K. Wong, Int. J. Theor. Phys. 5, 221 (1972). )



Antisymmetry of spin tensor

The spin density for a spinor field is equivalent to
Sk — %m eqﬁy[iwjfyk]w — S[ijk']’ (20)
which is completely antisymmetric, leading to
Siru; = —Sjiug.

Contracting this relation with u’ and using the orthogonality of the four-spin
and fur-velocity yields

Sjk; = —Sj@uiuk = 0, S@j = (.

This result mean that the pole approximation of a particle must be extended
to the next-order pole-dipole approximation in order to account for the spin
angular momentum in the equations of motion.

In the pole approximation, the Mathisson—Papapetrou equations reduce to
the geodesic equation of motion. Consequently, if a spinor satisfies the Dirac
equation, then the corresponding particle moves along the geodesic. This rela-
tion constitutes the relativistic wave—particle duality: a wave propagating in a
curved spacetime guides the corresponding particle in a way that is equivalent
to the motion of the particle described by general relativity.
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