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Problems of standard cosmology
Einstein-Cartan-Sciama-Kibble theory of gravity

Dirac spinors in spacetime with torsion
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Solution: cosmology with torsion

* Nonsingular big bounce instead of singular big bang
* Torsion as simplest alternative to inflation

5. Simplest affine theory of gravity

 Cosmological constant from torsion



Problems of standard cosmology

Big-bang singularity — can be solved by LQG

But LQG has not been shown to reproduce GR in classical limit

Flatness and horizon problems — solved by inflation

consistent with cosmological perturbations observed in CMB
But:

Scalar field with a specific (slow-roll) potential needed

fine-tuning problem not resolved

What physical field causes inflation?

What ends inflation?

Existing alternatives to GR:

* Use exotic fields

* Are more complicated
Dark matter Do not address all problems

Matter-antimatter asymmetry (usually 1, sometimes 2)

Dark energy



Einstein-Cartan-Sciama-Kibble theory

Spacetime with gravitational torsion

This talk:
Big-bang singularity, inflation and dark energy problems
all naturally solved by torsion



Affine connection

e Vectors & tensors — under coordinate transformations behave
like differentials and gradients & their products.

 Differentiation of vectors in curved spacetime requires
subtracting two vectors at two infinitesimally separated points
with different transformation properties.

* Parallel transport brings one vector to the origin of
the other, so that their difference would make sense.

6A* = Tk Alda?

T

SA Affine connection

dx




Curvature and torsion

Calculus in curved spacetime requires geometrical structure:
affine connection

Covariant derivative of a vector
B*;, = B*, +T};B'

Two tensors constructed from affine connection:

e (Curvature tensor

l

ijl. C)ka —dl\rnzlj F rmk—rlkrrn]

* Torsion tensor — antisymmetric part of connection

S — r[z 7l E. Cartan (1921)

. 11 ot ~ 1 ~ %
Contortion tensor C"j = 57 + S, + Sy,



Theories of spacetime

Special Relativity — flat spacetime (no affine connection)
Dynamical variables: matter fields

General Relativity — (curvature, no torsion)
Dynamical variables: matter fields + metric tensor gix

'Vk =

LS L] — U

Connection restricted to be symmetric —ad hoc
(equivalence principle)

Degrees
of freedom

ECSK gravity (simplest theory with curvature & torsion)
Dynamical variables: matter fields + metric + torsion



ECSK gr'avi'fy T. W. B. Kibble, J. Math. Phys. 2, 212 (1961)
D. W. Sciama, Rev. Mod. Phys. 36, 463 (1964)

Riemann-Cartan spacetime — metricity g;..;, =0
kK _ [k k
2 F'z'j - {ij}"‘C ij

!

Christoffel symbols of metric
Matter Lagrangian density

|

Total Lagrangian density like in GR: — ,,'—KR =g Ay

Two tensors describing matter:

* Energy-momentum tensor 7, = 2(6¥ /’531'&)/ =g

* Spintensor sk = 2(;\'\',,,/5(7,‘\,'1(_)/\/_5’



ECSK gravity

Curvature tensor = Riemann tensor
+ tensor quadratic in torsion + total derivative

Stationarity of action under 8¢’ - Einstein equations
Gik = k(Ty + Uy)

1 ; : 1 S .
- 1] vl vl Y] gm ] vmal /7
L’ik =—(C ZJC | C g'jC' 3 e 3gzl\(c J( mil ™ C'ljm )
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Stationarity of action under 6C;;, - Cartan equations
l

’j — . ’\j 4 € '\"i T Vo \ 1 Y, = 'k
S8 — S;0p + 8,0; = KSjy S, =8k,

e Torsion is proportional to spin density
e Contributions to energy-momentum from spin are quadratic



Dirac spinors with torsion

Simplest case: minimal coupling

. . . . e R T
Dirac Lagrangian density (natural units)
’S\)m = %\/ 8 lll’)’ (//z - l,[/ Y (/, —omy/ Ql[ll[/

. . L o Sl
Dirac equation Yo=Yy + Zcijky Yy

v = my ) i | I

\

Covariant derivative of a spinor GR covariant derivative of a spinor

arXiv.org > gr-gc > arXiv:0911.0334

F. W. Hehl, P. von der Heyde, G. D. Kerlick & J. M. Nester, Rev. Mod. Phys. 48, 393 (1976)



Dirac spinors with torsion

Spin tensor is completely antisymmetric
Sl]k - _(’UMSI .\'i s = ‘7[’ ,yi,yS l[l

Torsion and contortion tensors are also antisymmetric

I
Cijk = Sijx = ~ K€ijk1d

-

[

LHS of Einstein equations

I : o~ 3
= o] QJ ' =
Tik 23 Uik o ;( ")(,‘Yk) ‘!’Ij | (!’Ijb(,")/k') l!’) T Z"“ S18 ik

‘ comoving

2 frame
T "

,\ 4 KS™ 8k

Fermion number density



ECSK gravity

Torsion significant when U, ~ T}, (at Cartan density)

L0
m:c

G h?

pPC =

For fermionic matter p. > 10% kg m= >> nuclear density

Other existing fields do not generate torsion

* Gravitational effects of torsion are negligible even for neutron
stars (ECSK passes all tests of GR)

 Torsion vanishes in vacuum — ECSK reduces to GR

* Torsion is significant in very early Universe and black holes

Imposing symmetric connection is unnecessary
ECSK has less assumptions than GR



Cosmology with torsion

Spin corrections to energy-momentum act like a perfect fluid

) ) ; 9
E— —pD — —an- a4 = —K
/ 6

Friedman equations for a homogeneous and isotropic Universe:
g 1

€) 2
a<+ k= ?K(E = Ya”

a*de — 2aa’ndn + (e + p)d(u:‘) = ()

Statistical physics in early Universe (neglect k)

eT) = FeMT*  p(M) =52 n(l) =2, (DT
— S

hy h



COSH‘\O'OQY Wi'l'h o r‘Sion NP, Phys. Rev. D 85, 107502 (2012)

Scale factor vs. temperature

L 3otk p o 4 48 _ 0 2
T 2h, a

Solution

/ reference values
2
o . ol o
a = exp /b
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torsion correction i T/
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Singularity avoided ke (3(,/,;)



Cosmology with torsion

Temperature vs. time

iaf T Jehz\2 K % 5
T T ) = 3(11*?— — ahiT?)

I_ KII*JB —'i:Bcr B:T_l S T Tcr
R

Can be integrated parametrically

B= J ~PBr coshy Ner = arcoshy/2
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Cosmology with torsion

Temperature vs. time
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Nonsingular big bounce instead of big bang

Scale factor vs. time NP, Phys. Rev. D 85, 107502 (2012)
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Nonsingular big bounce instead of big bang

Scale factor vs. time
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Nonsingular big bounce

Scale factor vs. time
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Nonsingular big bounce

Singularity theorems?
Spinor-torsion coupling enhances strong energy condition

-~ ~ , 0
€+ 3p=2an”>()

Expansion scalar (decreasing with time) in Raychaudhuri equation

g = 24
a

is discontinuous at the bounce, preventing it from decreasing
to — o0 (reaching a singularity)



Torsion as alternative to inflation

For a closed Universe (k =1):

Velocity of the antipode relative to the origin
Uantl ') = mal(T)

At the bounce

A 32e\/2 h,
la(T,,)| = (—) —a,T,

243) h,
Density parameter Current values (WMAP)
IHT) =1+ —— 2 =1.002
a<(T)

ap = 2.9 x 1047 m

NP, Phys. Rev. D 85, 107502 (2012)



Torsion as alternative to inflation

Big bounce:
I.. = 0.78myp

dor = 5.9 X l()_4 [Tl <—— Minimum scale factor

Uant(ler) = 8.9 X 10°% N sy

ant

Horizon problem solved !
Number of causally

disconnected volumes

WT.,)~1+1.3X10"7

Flatness problem solved No free parameters

Cosmological perturbations —in progress



Theories of spacetime

General Relativity
Dynamical variables: matter fields + metric tensor

ECSK gravity
Dynamical variables: matter fields + metric tensor + torsion

Purely affine gravity
(A. Eddington 1922, A. Einstein 1923, E. Schrodinger 1950)
Dynamical variables: matter fields + affine connection

* Metric tensor is constructed from matter Lagrangian & curvature

* Field equations in vacuum generate cosmological constant

* Field equations with matter are more complicated and differ
from (physical) metric solutions



Affine gravity

Similar to gauge theories of other fundamental forces:

e Affine connection (dynamical variable in affine gravity)
generalizes an ordinary derivative to a coordinate-covariant
derivative

* Gauge potentials (dynamical variables in gauge theories)
generalize an ordinary derivative to gauge-invariant derivatives



Affine gravity
Dynamical Lagrangian must contain derivatives of connection

Simplest gravitational Lagrangian: linear in derivatives

— linear in Ricci tensor (like in GR and ECSK) and contracted with
an algebraic tensor constructed from connection (from torsion)

kuz/ — SPAH S? k*kyp = 0y, k= |det(kpy )|

det(k,,) # 0

pv

Other Lagrangians based on

3 T Y L ]
~g—RuV’" \/Z S Dy Mgy =088 AE

pv = pe

PHV.

NP, ArXiv:1203.0294 are unphysical



Affine gravity

Stationarity of action under 41" ” - field equations

u v

Variation can be splitinto 0T/ ) and 657,
For vacuum:
1 —
Or (e 1/) % F;t T {u l/}A ;w 3(5951/ —:_ O S t)
!

Christoffel symbols of tensor k

Gravitational Lagrangian becomes

1
£, = (R(“L“” +4 — —my, k" )\/Z

v 3

Ricci tensor of tensor k \

Cosmological-like term



Cosmological constant from torsion

Defining

q L 2 e X A setslength scale
v

A 15 of affine connection

gives the Einstein-Hilbert action with cosmological constant

Affine length scale A becomes cosmological constant
Only configurations with det(k,, ) < 0 are physical

¢, /A, G— fundamental constants of classical physics (set units)
Planck units set by h, ¢, G — their relation to A still unknown

NP, ArXiv:1203.0294



Cosmological constant from torsion

The metric in the matter Lagrangian must also be replaced by
2
Guv = K'lf‘m/

For ordinary matter (Dirac spinors, known gauge fields):
same gravitational Lagrangian

Total action
1
S = / (Rﬁf;} el B E §mm, k"“’) \/EdQ + o / £.,dS2
; : $ s
sets mass units
becomes the EH action with matter and A .

= ~ 87A



Cosmological constant from torsion

If fields depend on torsion only through k,,,, (spinors do not):

65‘/’“,, > S, =0,

 S—— a 0L
(k) (k) .pog. i
Ruy 2Rp0' l"pal“;tv z 0 91 o 7 7 S \/E(Skﬂu

1 a
R;ll/ = aRp((])’) qpag;lll = Aguv i KT/JU

Equations in the presence of spinors —in progress

Expected to reproduce or slightly modify ECSK with A

These modifications may contain AY2¢2 ~ ay,onp > dark matter



Summary

Torsion in the ECSK theory of gravity:

* Averts the big-bang singularity, replacing it by a nonsingular,
cusp-like big bounce

* Solves the flatness and horizon problems without inflation

Torsion in the simplest affine theory of gravity:

* Gives field equations with a cosmological constant

No free parameters



