Math for Data Science Copyright ©2022 — 2025 Omar Hijab. All Rights Reserved. Compiled 2025-01-03 15:54:08+03:00 Code boxes: 306 Exercises: 378 Figures: 178 Math boxes: 282 Pages: 583 Tables: 17 ਇਹ ਪੁਸਤਕ ਸਮਰਪਿਤ ਹੈ ਰਾਣੀ ਕੌਰ ਉਭੀ, ਜਿਸ ਦੇ ਅਟੁੱਟ ਸਮਰਥਨ ਨੇ ਇਸ ਨੂੰ ਅਸਲੀਅਤ ਬਣਾ ਦਿੱਤਾ। #### **Preface** This text is a presentation of the mathematics underlying Data Science. The text assumes the math background typical of an Electrical Engineering undergraduate. In particular, we assume the reader has some prior calculus exposure. By contrast, because we outsource computations to Python, and focus on conceptual understanding, Chapter 2, *Linear Geometry*, is developed in depth. Depending on the emphasis and supplementary material, the text is appropriate for a course in the following programs - Applied Mathematics, - Business Analytics, - Computer Science, - Data Science, - Engineering. The level and pace of the text varies from gentle, at the start, to advanced, at the end. Depending on the depth of coverage, the text is appropriate for a one-semester course, or a two-semester course. Chapters 1-3, together with some of the appendices, form the basis for a leisurely one-semester course, and Chapters 4-7 form the basis for an advanced one-semester course. The chapter ordering is chosen to allow for the two semesters being taught simultaneously. The text was written while being repeatedly taught as a two-semester course with the two semesters taught simultaneously. The culmination of the text is Chapter 7, *Machine Learning*. Much of the mathematics developed in prior chapters is used here. While only an introduction to the subject, the material in Chapter 7 is carefully built up from first principles. As a consequence, the presentation and some results are new: The proofs of heavy ball convergence and Nesterov convergence for accelerated gradient descent are simplifications of the proofs in [37], and the connection between hyperplane separability of a multi-class dataset and the existence of LR hyperplanes, while fundamental, is apparently not present in the literature. Important principles or results are displayed in these boxes. The ideas presented in the text are made concrete by interpreting them in Python code. The standard Python data science packages are used, and a Python index lists the functions used in the text. Because Python is used to highlight concepts, the supporting code snippets are, as pedagogical tools, sometimes longer than necessary. Python code is displayed in these boxes. Because SQL is usually part of a data scientist's toolkit, an introduction to using SQL, from within Python, is included in an appendix. Also, in case the instructor wishes to de-emphasize it, integration is presented separately in an appendix. Other appendices cover combinations and permutations, the binomial theorem, the exponential function, complex numbers, asymptotics, and minimizers, to be used according to the instructor's emphasis and preferences. The bibiliography at the end is a listing of the references accessed while writing the text. Throughout, we use *iff* to mean *if and only if*, and we use \approx for asymptotic equality (§A.7). To help navigate the text, in each section, to indicate a break, a new idea, or a change in direction, we use a ship's wheel Sections and figures are numbered sequentially within each chapter, and equations and exercises are numbered sequentially within each section, so §3.4 is the fourth section in the third chapter, Figure 4.14 is the fourteenth figure in the fourth chapter, (3.2.1) is the first equation in the second section of the third chapter, and Exercise 1.2.3 is the third exercise in the second section of the first chapter. Also, [1] cites the first entry in the references. I would like to express my sincere gratitude for the support of E. L. Grinberg, my friend and colleague, throughout this project. This endeavor began at *Rawa*, and we are truly thankful for the generous hospitality they provided during that time. Omar Hijab Spring 2025 ### Contents | Pr | eface | vii | |----|-------|------------------------------| | 1 | Dat | casets | | | 1.1 | Introduction | | | 1.2 | The MNIST Dataset | | | 1.3 | Averages and Vector Spaces | | | 1.4 | Mean and Variance | | | 1.5 | High Dimensions | | 2 | Lin | ear Geometry | | | 2.1 | Vectors and Matrices | | | 2.2 | Products | | | 2.3 | Matrix Inverse | | | 2.4 | Span and Linear Independence | | | 2.5 | Zero Variance Directions | | | 2.6 | Pseudo-Inverse | | | 2.7 | Projections | | | 2.8 | Basis | | | 2.9 | Rank | | 3 | Pri | ncipal Components | | | 3.1 | Geometry of Matrices | | | 3.2 | Eigenvalue Decomposition | | | 3.3 | Graphs | | | 3.4 | Singular Value Decomposition | | | 3.5 | Principal Component Analysis | | | 3.6 | Cluster Analysis | | 4 | Cal | culus | | | 4.1 | Single-Variable Calculus | | | 4.2 | Entropy and Information | | | 4.3 | Multi-Variable Calculus | | | 4.4 | Back Propagation | | | 4.5 | Convex Functions | | x Conten | ts | |----------|----| |----------|----| | 5 | Pro | bability | |-----|-------|-------------------------------| | | 5.1 | Probability | | | 5.2 | Binomial Probability | | | 5.3 | Random Variables | | | 5.4 | Normal Distribution | | | 5.5 | Chi-squared Distribution | | | 5.6 | Multinomial Probability | | 6 | Stat | istics | | | 6.1 | Estimation | | | 6.2 | Z-test | | | 6.3 | <i>T</i> -test | | | 6.4 | Chi-Squared Tests | | 7 | Mac | chine Learning | | | 7.1 | Overview | | | 7.2 | Neural Networks | | | 7.3 | Gradient Descent | | | 7.4 | Network Training | | | 7.5 | Linear Regression | | | 7.6 | Logistic Regression | | | 7.7 | Regression Examples | | | 7.8 | Strong Convexity | | | 7.9 | Accelerated Gradient Descent | | Ap | pend | ices | | - | A.1 | Permutations and Combinations | | | A.2 | The Binomial Theorem | | | A.3 | The Exponential Function | | | A.4 | Two Dimensions | | | A.5 | Complex Numbers | | | A.6 | Integration | | | A.7 | Asymptotics and Convergence | | | A.8 | Existence of Minimizers | | | A.9 | SQL 540 | | Ref | feren | ces | | Pyt | thon | Index | | Ind | lex | | ### List of Figures | 1.1 | Iris dataset 28 | | |------|---|---| | 1.2 | Images in the MNIST dataset | | | 1.3 | A portion of the MNIST dataset | | | 1.4 | Original and projections: $n = 784, 600, 350, 150, 50, 10, 1$ | | | 1.5 | The MNIST dataset (3d projection) | | | 1.6 | A crude copy of the image | | | 1.7 | HTML colors | 1 | | 1.8 | The vector v joining the points μ and x | 1 | | 1.9 | Datasets of points versus datasets of vectors | 1 | | 1.10 | A dataset with its mean | 1 | | 1.11 | | 1 | | 1.12 | MSD for the mean (green) versus MSD for a random point | | | | (red) | 1 | | 1.13 | Projecting a vector b onto the line through u | 2 | | | Unit variance ellipses (blue) and unit inverse variance ellipses | | | | (red) with $\mu = 0$ | 2 | | 1.15 | Variance ellipses (blue) and inverse variance ellipses (red) for | | | | a dataset | 3 | | 1.16 | Unit variance ellipse and unit inverse variance ellipse with | | | | standard Q | 3 | | 1.17 | Positively and negatively correlated datasets (unit inverse | | | | ellipses). | 3 | | 1.18 | Ellipsoid and axes in 3d | 3 | | | Disks inside the square | 3 | | | Balls inside the cube | 3 | | | Suspensions of interval $[a, b]$ and disk D | 4 | | | | | | 2.1 | Numpy column space array | 7 | | 2.2 | The points 0 , x , Ax , and b | 8 | | 2.3 | The points x , Ax , the points x^* , Ax^* , and the point x^+ | 8 | | 2.4 | Projecting onto a line | 9 | | | | | xii List of Figures | 2.5 | Projecting onto a plane, $Pb = ru + sv.$ | . 99 | |-------------------|--|-------| | 2.6 | Dataset, reduced dataset, and projected dataset, $n < d$ | . 103 | | 2.7 | Relations between vector classes | | | 2.8 | First defect for MNIST | . 110 | | 2.9 | The dimension staircase with defects | . 111 | | 2.10 | The dimension staircase for the MNIST dataset | . 111 | | 2.11 | A 5×3 matrix A is a linear transformation from \mathbf{R}^3 to \mathbf{R}^5 . | . 114 | | | | | | 3.1 | Image of unit circle. | | | 3.2 | SVD decomposition $A = USV$ | | | 3.3 | Relations between matrix classes | | | 3.4 | Inverse variance ellipse and centered dataset | | | 3.5 | $S = span(v_1)$ and $T = S^{\perp}$ | | | 3.6 | Three springs at rest and perturbed | | | 3.7 | Six springs at rest and perturbed | | | 3.8 | Two springs along a circle leading to $Q(2)$ | | | 3.9 | Five springs along a circle leading to $Q(5)$ | | | | Plot of eigenvalues of $Q(50)$ | | | | Density of eigenvalues of $Q(d)$ for d large | | | | Trace of pseudo-inverse ($\S 2.3$) of $Q(d)$ | | | | Directed and undirected graphs | | | | A weighed directed graph | | | | A double edge and a loop | . 152 | | 3.16 | The complete graph K_6 , the cycle graph C_6 , and the wheel | | | | graph W_6 | | | | The triangle $K_3 = C_3$ | . 153 | | 3.18 | An eighteenth-century map of Königsberg showing the seven | | | | bridges | | | | An Eulerian graph | | | | Non-isomorphic graphs with degree sequence $(3, 2, 2, 1, 1, 1)$. | | | | Complete bipartite graph $K_{5,3}$ | | | | A graph. | | | | MNIST eigenvalues as a percentage of the total variance | | | | MNIST eigenvalue percentage plot | | | | Original and projections: $n = 784, 600, 350, 150, 50, 10, 1$ | | | | The full MNIST dataset (2d projection) | | | 3.27 | The Iris dataset (2d projection) | . 182 | | 1.1 | f'(a) is the slope of the tangent line at a | 100 | | $4.1 \\ 4.2$ | f'(a) is the slope of the tangent line at a | | | 4.2 | Increasing or decreasing? | | | 4.3 | Increasing or decreasing? | | | $\frac{4.4}{4.5}$ | The logarithm function $\log x$. | | | 4.6 | Tangent parabolas $p_m(x)$ (green), $p_L(x)$ (red), $L > m > 0$ | | | $\frac{4.0}{4.7}$ | The sine function $p_m(x)$ (green), $p_L(x)$ (red), $L > m >
0$ | 206 | | | | | | T C T. | ••• | |-------------------|-------| | List of Figures | X111 | | 2100 01 1 1841 00 | 11111 | | 4.8 | The sine function with $\pi/2$ tick marks | 207 | |------|--|-----| | 4.9 | Angle θ in the plane, $P = (x, y)$ | 207 | | 4.10 | The absolute entropy function $H(p)$ | 211 | | 4.11 | The absolute information $I(p)$ | 213 | | 4.12 | The relative information $I(p,q)$ with $q=.7.$ | 215 | | 4.13 | Surface plot of $I(p,q)$ over the square $0 \le p \le 1, 0 \le q \le 1, \dots$ | 216 | | | Composition of multiple functions | | | 4.15 | Composition of three functions in a chain | 227 | | 4.16 | A network composition [33] | 230 | | 4.17 | The function $g = \max(y, z)$ | 231 | | 4.18 | Forward and backward propagation [33] | 232 | | 4.19 | Graph, directed graph, weighed directed graph, network | 235 | | 4.20 | A network with outgoing signals | 238 | | 4.21 | Another network | 239 | | 4.22 | Level sets and sublevel sets in two dimensions | 239 | | 4.23 | Level curves in two dimensions | 240 | | 4.24 | Line segment $[x_0, x_1]$ | 241 | | | Convex hull of $x_1, x_2, x_3, x_4, x_5, x_6, x_7, \dots$ | | | 4.26 | A convex hull with one facet highlighted | 243 | | 4.27 | A convex set has a unique nearest point to any x_0 | 244 | | | Hyperplanes in two and three dimensions | | | 4.29 | Separating hyperplane I | 246 | | 4.30 | Ellipsoids in three dimensions with supporting hyperplanes | 247 | | 4.31 | Separating hyperplane II | 248 | | 4.32 | y = 1/x is a convex function | 253 | | 5.1 | Uniform probability density function | 261 | | 5.2 | Joint distribution of boys and girls [30] | | | 5.3 | 100,000 sessions, with 5, 15, 50, and 500 tosses per session | | | 5.4 | The histogram of Iris petal lengths | | | 5.5 | Iris petal lengths sampled 100,000 times | | | 5.6 | Iris petal lengths batch means sampled 100,000 times, batch sizes 3, 5, 20 | | | 5.7 | Asymptotics of binomial coefficients | | | 5.8 | The posterior density of p given 7 heads in 10 tosses | | | 5.9 | The logistic function takes real numbers to probabilities | | | 5.10 | The logistic function | | | | Decision boundary in R. | | | 5.12 | Decision boundary in R ³ . | 286 | | | When we sample X , we get x . | | | | Probability mass function $p(x)$ of a Bernoulli random variable. | | | | Cumulative distribution function $F(x)$ of a Bernoulli random | 204 | | 5.10 | variable | 294 | | 5 16 | Confidence that X lies in interval $[a, b]$ | | | | Continuous cumulative distribution function | | | J. I | Continuous Camadanive distribution famouton | 300 | xiv List of Figures | 5.18 | Densities versus distributions | 306 | |------|--|-------| | 5.19 | When we sample X_1, X_2, \ldots, X_n , we get x_1, x_2, \ldots, x_n | . 309 | | | The pdf of the standard normal distribution | | | | The binomial cdf and its CLT normal approximation | | | | z = Z.ppf(p) and $p = Z.cdf(z)$ | | | | Confidence (green) or significance (red) (lower-tail, two-tail, | | | | upper-tail) | 320 | | 5.24 | Cutoffs, confidence levels, p-values | | | | 68%, 95%, 99% confidence cutoffs for standard normal | | | | <i>p</i> -values at 5% and at 1% | | | 5.27 | 68%, 95%, 99% cutoffs for non-standard normal | 323 | | 5.28 | (X,Y) inside the square and inside the disk | 329 | | | Chi-squared distribution with different degrees | | | | With degree $d \geq 2$, the chi-squared density peaks at $d-2$ | | | | Normal probability density on \mathbb{R}^2 | | | | The softmax function takes vectors to probability vectors | | | | The third row is the sum of the first and second rows, and | | | | the H column is the negative of the I column | . 352 | | | , and the second | | | 6.1 | Statistics flowchart: p -value p and significance α | . 356 | | 6.2 | Histogram of sampling $n = 25$ students, repeated $N = 1000$ | | | | times | | | 6.3 | The error matrix. | | | 6.4 | Student distribution, against normal (dashed) | | | 6.5 | $2 \times 3 = d \times N$ contingency table [30] | | | 6.6 | Earthquake counts | | | 6.7 | Sunset and rain counts | 386 | | 6.8 | Phone and accident counts | 386 | | - 1 | | 200 | | 7.1 | A perceptron: weights, incoming signals, and outgoing signals. | | | 7.2 | A perceptron with bias: weights and outgoing signals | | | 7.3 | Perceptrons in parallel (R in the figure is the retina) [22] | | | 7.4 | Neural network: weights. | | | 7.5 | Neural network: incoming signals | | | 7.6 | Neural network: outgoing signals | | | 7.7 | Incoming and Outgoing signals | | | 7.8 | Downstream, local, and upstream derivatives at node i | | | 7.9 | Neural network: downstream derivatives | | | | A shallow dense layer with a bias input | | | | Layered neural network [11] | | | | Neural network with biases | | | | A network with six neurons, two outputs, and one input | | | | Downstream, local, and upstream derivatives at termination | | | | Double well newton descent. | | | 7.16 | Double well function and sublevel sets at w_0 and at w_1, \ldots | . 414 | List of Figures xv | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |--| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 7.21 Linear regression neural network with bias.4317.22 Logistic regression neural network with bias.4357.23 Longley Economic Data [20].4467.24 Population versus employed: linear regression.4467.25 Polynomial regression: Degrees 2, 4, 6, 8, 10, 12.4497.26 Hours studied and outcomes.4517.27 Exam dataset: x .4517.28 Exam dataset: (x, p) [35].4527.29 Exam dataset: (x, x_0) .4537.30 Hours studied and one-hot encoded outcomes.4537.31 Neural network for student exam outcomes.4547.32 Equivalent neural network for student exam outcomes.4547.33 Exam dataset: (x, x_0, p) .4547.34 Convex hulls of Iris classes in \mathbb{R}^2 .4557.35 Convex hulls of MNIST classes in \mathbb{R}^2 .456A.1 $6 = 3!$ arrangements of 3 balls.472A.2 Pascal's triangle.480A.3 The exponential function exp x .488A.4 Convexity of the exponential function.492A.5 A vector v .494 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 7.23 Longley Economic Data [20]. 446 7.24 Population versus employed: linear regression. 446 7.25 Polynomial regression: Degrees 2, 4, 6, 8, 10, 12. 449 7.26 Hours studied and outcomes. 451 7.27 Exam dataset: x . 451 7.28 Exam dataset: (x, p) [35]. 452 7.29 Exam dataset: (x, x_0) . 453 7.30 Hours studied and one-hot encoded outcomes. 453 7.31 Neural network for student exam outcomes. 454 7.32 Equivalent neural network for student exam outcomes. 454 7.33 Exam dataset: (x, x_0, p) . 454 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . 455 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . 456 A.1 $6 = 3!$ arrangements of 3 balls. 472 A.2 Pascal's triangle. 480 A.3 The exponential function exp x . 488 A.4 Convexity of the exponential
function. 492 A.5 A vector v . 494 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 7.25 Polynomial regression: Degrees 2, 4, 6, 8, 10, 12. 449 7.26 Hours studied and outcomes. 451 7.27 Exam dataset: x . 451 7.28 Exam dataset: (x, p) [35]. 452 7.29 Exam dataset: (x, x_0) . 453 7.30 Hours studied and one-hot encoded outcomes. 453 7.31 Neural network for student exam outcomes. 454 7.32 Equivalent neural network for student exam outcomes. 454 7.33 Exam dataset: (x, x_0, p) . 454 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . 455 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . 456 A.1 $6 = 3!$ arrangements of 3 balls. 472 A.2 Pascal's triangle. 480 A.3 The exponential function exp x . 488 A.4 Convexity of the exponential function. 492 A.5 A vector v . 494 | | 7.26 Hours studied and outcomes.4517.27 Exam dataset: x .4517.28 Exam dataset: (x,p) [35].4527.29 Exam dataset: (x,x_0) .4537.30 Hours studied and one-hot encoded outcomes.4537.31 Neural network for student exam outcomes.4547.32 Equivalent neural network for student exam outcomes.4547.33 Exam dataset: (x,x_0,p) .4547.34 Convex hulls of Iris classes in \mathbb{R}^2 .4557.35 Convex hulls of MNIST classes in \mathbb{R}^2 .456A.1 $6 = 3!$ arrangements of 3 balls.472A.2 Pascal's triangle.480A.3 The exponential function exp x .488A.4 Convexity of the exponential function.492A.5 A vector v .494 | | 7.27 Exam dataset: x . 451 7.28 Exam dataset: (x, p) [35]. 452 7.29 Exam dataset: (x, x_0) . 453 7.30 Hours studied and one-hot encoded outcomes. 453 7.31 Neural network for student exam outcomes. 454 7.32 Equivalent neural network for student exam outcomes. 454 7.33 Exam dataset: (x, x_0, p) . 454 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . 455 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . 456 A.1 $6 = 3!$ arrangements of 3 balls. 472 A.2 Pascal's triangle. 480 A.3 The exponential function exp x . 488 A.4 Convexity of the exponential function. 492 A.5 A vector v . 494 | | 7.28 Exam dataset: (x, p) [35]. 452 7.29 Exam dataset: (x, x_0) . 453 7.30 Hours studied and one-hot encoded outcomes. 453 7.31 Neural network for student exam outcomes. 454 7.32 Equivalent neural network for student exam outcomes. 454 7.33 Exam dataset: (x, x_0, p) . 454 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . 455 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . 456 A.1 $6 = 3!$ arrangements of 3 balls. 472 A.2 Pascal's triangle. 480 A.3 The exponential function exp x . 488 A.4 Convexity of the exponential function. 492 A.5 A vector v . 494 | | 7.29 Exam dataset: (x, x_0) .4537.30 Hours studied and one-hot encoded outcomes.4537.31 Neural network for student exam outcomes.4547.32 Equivalent neural network for student exam outcomes.4547.33 Exam dataset: (x, x_0, p) .4547.34 Convex hulls of Iris classes in \mathbb{R}^2 .4557.35 Convex hulls of MNIST classes in \mathbb{R}^2 .456A.1 $6 = 3!$ arrangements of 3 balls.472A.2 Pascal's triangle.480A.3 The exponential function exp x .488A.4 Convexity of the exponential function.492A.5 A vector v .494 | | 7.30 Hours studied and one-hot encoded outcomes.4537.31 Neural network for student exam outcomes.4547.32 Equivalent neural network for student exam outcomes.4547.33 Exam dataset: (x, x_0, p) .4547.34 Convex hulls of Iris classes in \mathbb{R}^2 .4557.35 Convex hulls of MNIST classes in \mathbb{R}^2 .456A.1 $6 = 3!$ arrangements of 3 balls.472A.2 Pascal's triangle.480A.3 The exponential function $\exp x$.488A.4 Convexity of the exponential function.492A.5 A vector v .494 | | 7.31 Neural network for student exam outcomes. 454 7.32 Equivalent neural network for student exam outcomes. 454 7.33 Exam dataset: (x, x_0, p) . 454 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . 455 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . 456 A.1 $6 = 3!$ arrangements of 3 balls. 472 A.2 Pascal's triangle. 480 A.3 The exponential function $\exp x$. 488 A.4 Convexity of the exponential function. 492 A.5 A vector v . 494 | | 7.32 Equivalent neural network for student exam outcomes. 454 7.33 Exam dataset: (x, x_0, p) . 454 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . 455 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . 456 A.1 $6 = 3!$ arrangements of 3 balls. 472 A.2 Pascal's triangle. 480 A.3 The exponential function $\exp x$. 488 A.4 Convexity of the exponential function. 492 A.5 A vector v . 494 | | 7.33 Exam dataset: (x, x_0, p) . 454 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . 455 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . 456 A.1 6 = 3! arrangements of 3 balls. 472 A.2 Pascal's triangle. 480 A.3 The exponential function $\exp x$. 488 A.4 Convexity of the exponential function. 492 A.5 A vector v . 494 | | 7.34 Convex hulls of Iris classes in \mathbb{R}^2 .4557.35 Convex hulls of MNIST classes in \mathbb{R}^2 .456A.1 $6 = 3!$ arrangements of 3 balls.472A.2 Pascal's triangle.480A.3 The exponential function $\exp x$.488A.4 Convexity of the exponential function.492A.5 A vector v .494 | | 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 .456A.1 6 = 3! arrangements of 3 balls.472A.2 Pascal's triangle.480A.3 The exponential function $\exp x$.488A.4 Convexity of the exponential function.492A.5 A vector v .494 | | A.1 $6 = 3!$ arrangements of 3 balls.472A.2 Pascal's triangle.480A.3 The exponential function $\exp x$.488A.4 Convexity of the exponential function.492A.5 A vector v .494 | | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | | A.4 Convexity of the exponential function | | A.5 A vector v | | | | $T_{i,0}$ vectors of and or and onen shadows in the mane | | A.7 Adding v_1 and v_2 | | A.8 Scaling with $t = 2$ and $t = -2/3$ | | A.9 The polar representation of $v = (x, y)$ | | A.10 v and its antipode $-v$ | | A.11 Two vectors v_1 and v_2 | | A.12 Pythagoras for general triangles | | A.13 Proof of Pythagoras for general triangles | | A.14 P and P^{\perp} and v and v^{\perp} | | A.15 Multiplying and dividing points on the unit circle | | A.16 Complex numbers | | A.17 The second, third, and fourth roots of unity | | A.18 The fifth, sixth, and fifteenth roots of unity | | A.19 Complex conjugate roots ρ_{\pm} | | A.20 Areas under the graph | | A.21 Area under the parabola | | A.22 The graph and area under $\sin x$ | | A.23 Integral of $\sin x/x$ | | A.24 Dataframe from list-of-dicts | | A.25 Menu dataframe and SQL table | | • | T · · · C T · | |-----|-----------------| | XV1 | List of Figures | | List of Figures | | |--|--| | A.26 Rawa restaurant. 546 A.27 OrdersIn dataframe and SQL table. 547 A.28 OrdersOut dataframe and SQL table. 548 | | # Chapter 1 Datasets In this chapter we explore examples of datasets and some simple Python code. We introduce the mean and variance of a dataset, then present a first taste of what higher dimensions might look like. #### 1.1 Introduction Geometrically, a dataset is a sample of N points x_1, x_2, \ldots, x_N in d-dimensional space \mathbf{R}^d . When manipulating datasets as vectors, they are usually arranged into $d \times N$ arrays. When displaying datasets, as in spreadsheets or SQL tables, they are usually arranged into $N \times d$ arrays. Practically speaking, as we shall see, the following are all representations of datasets ``` matrix = CSV \ file = spreadsheet = SQL \ table = array = dataframe ``` Each point $x = (t_1, t_2, ..., t_d)$ in the dataset is a *sample*, an *example*, or an *observation*. The components $t_1, t_2, ..., t_d$ of a sample point x are its features or attributes. Often one or several of the features are separated out as the *label* or *target*. In this case, the dataset is a *labeled* or *targeted* dataset. The Iris dataset contains N=150 examples of d=4 features of Iris flowers, and there are three classes of Irises, Setosa, Versicolor, and Virginica, with 50 samples from each class. For each example, the class is the label corresponding to that example, so the Iris dataset is labeled. The four features are sepal length and width, and petal length and width. In Figure 1.1, the dataset is displayed as an $N \times d$ array. **Fig. 1.1** Iris dataset [28]. The Iris dataset is loaded using the code ``` from sklearn import datasets iris = datasets.load_iris() iris["feature_names"] ``` This returns ``` ['sepal length', 'sepal width', 'petal length', 'petal width']. ``` To return the data and the classes, the code is ``` dataset = iris["data"] labels = iris["target"] dataset, labels ``` The above code returns dataset as an $N \times d$ array. To return a $d \times N$ array, take the transpose dataset = iris["data"].T. The MNIST dataset consists of images of hand-written digits (Figure 1.2). There are 10 classes of images, corresponding to each digit $0, 1, \ldots, 9$. We 1.1. INTRODUCTION 3 seek to compress the images while preserving as much as possible of the images' characteristics. Each image is a grayscale 28x28 pixel image. Since $28^2 = 784$, each image is a point in d = 784 dimensions. Here there are N = 60000 samples and d = 784 features. Fig. 1.2 Images in the MNIST dataset. This subsection is included just to give a flavor. All unfamiliar words are explained in detail in Chapter 2. If preferred, just skip to the next subsection. Suppose we have a dataset of N points $$x_1, x_2, \ldots, x_N$$ in d-dimensional sample space. We seek to find a lower-dimensional space $U \subset \mathbf{R}^d$ so that the projections of these points onto U retain as much information as possible about the data. In other words, we are looking for an n-dimensional subspace U for some n < d. Among all n-dimensional subspaces,
which one should we pick? The answer is to select the subspace U among all n-dimensional subspaces that retains as much information about the dataset as possible. Another issue is the choice of n, which is an integer satisfying $0 \le n \le d$. On the one hand, we want n to be as small as possible, to maximize data compression. On the other hand, we want n to be big enough to capture most of the features of the data. At one extreme, if we pick n = d, then we have no compression and complete information. At the other extreme, if we pick n = 0, then we have full compression and no information. Projecting the data from \mathbf{R}^d to a lower-dimensional space U is dimensional reduction. The best alignment, the best fit, or the best choice of U is principal component analysis. These issues will be taken up in §3.5. If this is your first exposure to data science, there will be a learning curve, because here there are three kinds of thinking: Data science (datasets, PCA, descent, networks), math (linear algebra, probability, statistics, calculus), and Python (numpy, pandas, scipy, sympy, matplotlib). It may help to read the code examples, and the important math principles first, then dive into details as needed. To illustrate and make concrete concepts as they are introduced, we use Python code throughout. We run Python code in a jupyter notebook. jupyter is an IDE, an integrated development environment. jupyter supports many languages, including Python, Sage, Julia, and R. A useful jupyter feature is the ability to measure the amount of execution time of a jupyter cell by including at the start of the cell ``` %%time ``` It's simplest to first install Python, then jupyter. To minimize overhead, it's best to install Python using a package built for your laptop's OS, and avoid extra packages or frameworks. If Python is installed from ``` https://www.python.org/downloads/, ``` then the Python package installer pip is also installed. From within a shell, check the latest version of pip is installed using the command ``` pip --version, ``` The versions of Python and pip used in this edition of the text are 3.12.* and 24.*. The first step is to ensure updated versions of Python and pip are installed on your laptop. After this, from within a shell, use pip to install your first package: ``` pip install jupyter ``` After installing jupyter, all other packages are installed from within jupyter. For this text, from within a jupyter cell, we ran ``` pip install numpy pip install sympy pip install scipy pip install scikit-learn pip install pandas pip install matplotlib pip install ipympl pip install sqlalchemy pip install pymysql ``` After installing these packages, restart jupyter to activate the packages. The above is a complete listing of the packages used in this text. Because one often has to repeatedly install different versions of Python, it's best to isolate your installations from whatever Python your laptop's ¹ Powershell in Windows or Terminal in macOS. OS uses. This is achieved by carrying out the above steps within a **venv**, a *virtual environment*. Then several **venvs** may be set up side-by-side, and, at any time, any **venv** may be deleted without impacting any others, or the OS. #### **Exercises** Exercise 1.1.1 What is dataset.shape and labels.shape? Exercise 1.1.2 What does sum(dataset[0]) return and why? Exercise 1.1.3 What does sum(dataset) return and why? Exercise 1.1.4 Let a be a list. What does list(enumerate(a)) return? What does the code below return? ``` def uniq(a): return [x for i, x in enumerate(a) if x not in a[:i]] ``` #### 1.2 The MNIST Dataset Fig. 1.3 A portion of the MNIST dataset. The MNIST² dataset consists of 60,000 training images. Since this dataset is for demonstration purposes, these images are coarse. Each image consists of $28 \times 28 = 784$ pixels, and each pixel shading is a byte, an integer between 0 and 255 inclusive. Therefore each image is a point x in $\mathbf{R}^d = \mathbf{R}^{784}$. Attached to each image is its label, a digit $0, 1, \ldots, 9$. We assume the dataset is loaded onto your laptop as a CSV file mnist.csv, with each row in the file consisting of the pixels for a single image, together with the image label: Each row starts with the image's label, followed by 784 bytes. The code ``` from pandas import * from numpy import * mnist = read_csv("mnist.csv").to_numpy() # separate rows into data and labels # first column is the labels labels = mnist[:,0] # all other columns are the pixels dataset = mnist[:,1:] mnist.shape, dataset.shape, labels.shape ``` returns ``` (60000, 785), (60000, 784), (60000,) ``` Here the dataset is arranged into an $N \times d$ array. **Fig. 1.4** Original and projections: n = 784, 600, 350, 150, 50, 10, 1. $^{^2}$ The National Institute of Standards and Technology (NIST) is a physical sciences laboratory and non-regulatory agency of the United States Department of Commerce. To compress the image means to reduce the number of dimensions in the point x while keeping maximum information. We can think of a single image as a dataset itself, and compress the image, or we can design a compression algorithm based on a collection of images. It is then reasonable to expect that the procedure applies well to any image that is similar to the images in the collection. For the second image in Figure 1.2, reducing dimension from d = 784 to n equal 600, 350, 150, 50, 10, and 1, we have the images in Figure 1.4. Compressing each image to a point in n=3 dimensions and plotting all N=60000 points yields Figure 1.5. All this is discussed in §3.5. Fig. 1.5 The MNIST dataset (3d projection). Here is an exercise. The top left image in Figure 1.4 is given by a 784-dimensional point which is imported as an array pixels. ``` pixels = dataset[1].reshape((28,28)) ``` Then pixels is an array of shape (28,28). 1. In Jupyter, return a two-dimensional plot of the point (2,3) at size 50 using the code ``` from matplotlib.pyplot import * grid() scatter(2,3,s = 50) show() ``` 2. Do for loops over i and j in range(28) and use scatter to plot points at location (i,j) with size given by pixels[i,j], then show. Fig. 1.6 A crude copy of the image. Here is one possible code, returning Figure 1.6. ``` from matplotlib.pyplot import * from numpy import * pixels = dataset[1].reshape((28,28)) for i in range(28): for j in range(28): scatter(i,j, s = pixels[i,j]) grid() show() ``` The top left image in Figure 1.4 is returned by the code ``` from matplotlib.pyplot import * imshow(pixels, cmap = "gray_r") ``` In recent versions of numpy, floats are displayed as follows ``` np.float64(5.84333333333333) ``` To display floats without their type, as follows, ``` 5.84333333333335 ``` insert this code ``` from numpy import * set_printoptions(legacy = "1.25") ``` at the top of your jupyter notebook or in your jupyter configuration file We end the section by discussing the Python import command. The code snippet above can be rewritten ``` import matplotlib.pyplot as plt plt.imshow(pixels, cmap = "gray_r") ``` or as ``` from matplotlib.pyplot import imshow imshow(pixels, cmap = "gray_r") ``` So we have three versions of this code snippet. In the second version, it is explicit that imshow is imported from the module pyplot of the package matplotlib. Moreoever, the module matplotlib.pyplot is referenced by a short nickname plt. In the first version import from *, many commands, maybe not all, are imported from the module matplotlib.pyplot. In the third version, only the command imshow is imported. Which import style is used depends on the situation. In this text, we usually use the first style, as it is visually lightest. To help with online searches, in the Python index, Python commands are listed under their full package path. #### Exercises Exercise 1.2.1 Run the code in this section on your laptop (all code is run within jupyter). Exercise 1.2.2 The first image in the MNIST dataset is an image of the digit 5. What is the 43,120th image? Exercise 1.2.3 Figure 1.6 is not oriented the same way as the top-left image in Figure 1.4. Modify the code returning Figure 1.6 to match the top-left image in Figure 1.4. #### 1.3 Averages and Vector Spaces Suppose we have a population of things (people, tables, numbers, vectors, images, etc.) and we have a sample of size N from this population: ``` L = [x_1, x_2, \dots, x_N]. ``` The total population is the *population* or the *sample space*. For example, the sample space consists of all real numbers and we take N=5 samples from this population ``` L_1 = [3.95, 3.20, 3.10, 5.55, 6.93]. ``` Or, the sample space consists of all integers and we take ${\cal N}=5$ samples from this population ``` L_2 = [35, -32, -8, 45, -8]. ``` Or, the sample space consists of all rational numbers and we take N=5 samples from this population ``` L_3 = [13/31, 8/9, 7/8, 41/22, 32/27]. ``` Or, the sample space consists of all Python strings and we take N=5 samples from this population ``` L_4 = ['a2e?','#%T','7y5,','kkk>><</','[[)*+'] ``` Or, the sample space consists of all HTML colors and we take ${\cal N}=5$ samples from this population Fig. 1.7 HTML colors. Here's the code generating the colors ``` # HTML color codes are #rrggbb (6 hexes) from matplotlib.pyplot import * from random import choice def hexcolor(): chars = '0123456789abcdef' return "#" + ''.join([choice(chars) for _ in range(6)]) for i in range(5): scatter(i,0, c = hexcolor()) show() ``` Let L be a list as above. The goal is to compute the sample average or mean of the list, which is $$\mu = \frac{x_1 + x_2 + \dots + x_N}{N}.\tag{1.3.1}$$ In the first example, for real numbers, the average is $$\frac{3.95 + 3.20 + 3.10 + 5.55 + 6.93}{5} = 4.546.$$ In the second case, for integers, the average is 32/5. In the third case, the average is 385373/73656. In the fourth case, while we can add strings, we can't divide them by 5, so the average is undefined. Similarly for colors: the average is undefined. This
leads to an important definition. A sample space or population V is called a *vector space* if, roughly speaking, one can compute means or averages in V. In this case, we call the members of the population "vectors", even though the members may be anything, as long as they satisfy the basic rules of a vector space. In a vector space V, the rules are: - 1. vectors v, w can be added, yielding sum v + w, - 2. vector addition is commutative, v + w = w + v, - 3. vector addition is associative, u + (v + w) = (u + v) + w, - 4. there is a zero vector 0, - 5. vectors v have negatives -v, v + (-v) = 0, - 6. vectors v can be scaled to rv by real numbers r, - 7. double-scaling is the same as multiplying scalars, r(sv) = (rs)v, - 8. scaling is distributive over addition both ways, $$(r+s)v = rv + sv,$$ $r(u+v) = ru + rv,$ 9. scaling v by 1 and 0 returns the vector v and the zero vector, 1v = v and 0v = 0. Let x_1, x_2, \ldots, x_N be a dataset. Is the dataset a collection of points, or is the dataset a collection of vectors? In other words, what geometric picture of datasets should we have in our heads? Here's how it works. A *vector* is an arrow joining two points (Figure 1.8). Given two points $\mu = (a, b)$ and x = (c, d), the vector joining them is $$v = x - \mu = (c - a, d - b).$$ Then μ is the *tail* of v, and x is the *head* of v. For example, the vector joining $\mu = (1, 2)$ to x = (3, 4) is v = (2, 2). **Fig. 1.8** The vector v joining the points μ and x. Given a point x, we would like to associate to it a vector v in a uniform manner. However, this cannot be done without a second point, a reference point. Given a dataset of points x_1, x_2, \ldots, x_N , the most convenient choice for the reference point is the mean μ of the dataset. This results in a dataset of vectors v_1, v_2, \ldots, v_N , where $v_k = x_k - \mu, k = 1, 2, \ldots, N$. The dataset v_1, v_2, \ldots, v_N is *centered*, its mean is zero, $$\frac{v_1 + v_2 + \dots + v_N}{N} = 0.$$ So datasets can be points x_1, x_2, \ldots, x_N with mean μ , or vectors v_1, v_2, \ldots, v_N with mean zero (Figure 1.9). #### Centered Versus Non-Centered If x_1, x_2, \ldots, x_N is a dataset of points with mean μ and $$v_1 = x_1 - \mu, v_2 = x_2 - \mu, \dots, v_N = x_N - \mu,$$ then v_1, v_2, \ldots, v_N is a centered dataset of vectors. Fig. 1.9 Datasets of points versus datasets of vectors. Let us go back to vector spaces. When we work with vector spaces, numbers are referred to as scalars, because 2v, 3v, -v, ... are scaled versions of v. When we multiply a vector v by a scalar r to get the scaled vector rv, we call this vector scaling. This is to distinguish this multiplication from the inner and outer products we see below. For example, the samples in the list L_1 form a vector space, the set of all real numbers \mathbf{R} . Even though one can add integers, the set \mathbf{Z} of all integers does not form a vector space because multiplying an integer by 1/2 does not result in an integer. The set \mathbf{Q} of all rational numbers (fractions) is a vector space, so L_3 is a sampling from a vector space. The set of strings is not a vector space because even though one can add strings, addition is not commutative: ``` 'alpha' + 'romeo' == 'romeo' + 'alpha' ``` returns False. For the scalar dataset $$x_1 = 1.23, x_2 = 4.29, x_3 = -3.3, x_4 = 555,$$ the average is $$\mu = \frac{1.23 + 4.29 - 3.3 + 555}{4} = 139.305.$$ In Python, averages are computed using numpy.mean. For a scalar dataset, the code ``` from numpy import * dataset = array([1.23,4.29,-3.3,555]) mu = mean(dataset) mu ``` returns the average. For the two-dimensional dataset $$x_1 = (1, 2), x_2 = (3, 4), x_3 = (-2, 11), x_4 = (0, 66),$$ the average is $$\mu = \frac{(1,2) + (3,4) + (-2,11) + (0,66)}{4} = (0.5,20.75).$$ Note the features are summed separately: the x-components are summed, and the y-components are summed, leading to a two-dimensional mean. (This is $vector\ addition$, taken up in §A.4.) In Python, a dataset of four points in \mathbb{R}^2 may be presented as a 2×4 array or as a 4×2 array. As a 2×4 array, the code is ``` from numpy import * dataset = array([[1,3,-2,0],[2,4,11,66]]) mu = mean(dataset, axis = 1) ``` returning the mean (0.5, 20.75). Here the option axis = 1 indicates we sum over the column index. This means summing the entries of the first row, then summing the entries of the second row, resulting in a mean with two components. The default is to consider the row index i as index zero, and to consider the column index j as index one. With this understood, presenting the dataset as a 4×2 array, the code is ``` from numpy import * dataset = array([[1,2],[3,4],[-2,11],[0,66]]) mu = mean(dataset, axis = 0) ``` returns the same mean. To transpose a numpy array is to switch rows with columns, so the transpose dataset.T of a 2×4 array dataset is a 4×2 array. Fig. 1.10 A dataset with its mean. Here is a more involved example of a dataset of random points and their mean: ``` from numpy import * from matplotlib.pyplot import scatter, grid, show from numpy.random import default_rng samples = default_rng().random N = 20 # 2xN array dataset = samples((2,N)) mu = mean(dataset,axis = 1) scatter(*mu) scatter(*dataset) ``` grid() show() This returns Figure 1.10. In this code, scatter(x,y) expects two positional arguments, the x and the y features, arranged as two scalars, for a single point, or two arrays of x and y components separately, for several points. Similarly, plot(x,y) expects the x and y features as two separate arrays. The unpacking operator * unpacks mu and dataset from one pair each into their separate x and y features *mu and *dataset. So while mu is one Python object, a tuple, *mu are two Python objects, two floats. For this to work, dataset must be $2 \times N$. When dataset is $N \times 2$, we unpack its transpose *dataset.T. default_rng is the default random number generator in numpy. It is used throughout the text. The code random(tuple) returns a random array with shape tuple, so samples((2,N)) above returns a random $2 \times N$ array. Sometimes, a population is not a vector space, so we can't take sample means from it. Instead, we take the sample mean of a scalar or vector computed from the samples. This computed quantity is a *statistic* associated to the population. A statistic is an assignment of a scalar or vector f(x) to each sample x from the population, and the sample mean is then $$\frac{f(x_1) + f(x_2) + \dots + f(x_N)}{N}.$$ (1.3.2) Since scalars and vectors do form vector spaces, this mean is well-defined. For example, a population of cats is not a vector space (they can't be added), but their heights is a vector space (heights can be added). This process is *vectorization* of the samples. Vectorization is frequently used to count proportions: Samples are drawn from finitely many categories, and we wish to count the *proportion* of samples belonging to a particular category. If we toss a coin N times, we obtain a list of heads and tails, $$H, H, T, T, T, H, T, \dots$$ To count the proportion of heads, we define $$f(x) = \begin{cases} (1,0), & \text{if } x \text{ is heads,} \\ (0,1), & \text{if } x \text{ is tails.} \end{cases}$$ If we add the vectorized samples f(x) using vector addition in the plane (§A.4), the first component of the mean (1.3.2) is an average of ones and zeroes, with ones matching heads, resulting in the proportion \hat{p} of heads. Similarly, the second component is the proportion of tails. Hence (1.3.2) is the pair $(\hat{p}, 1 - \hat{p})$, where \hat{p} is the proportion of heads in N tosses. More generally, if the label of a sample falls into d categories, we may let f(x) be a vector with d components consisting of zeros and ones, according to the category of the sample. This is *one-hot encoding* (see §2.4 and §7.6). For example, suppose we take a sampling of size N from the Iris dataset, and we look at the classes of the resulting samples. Since there are three classes, in this case, we can define f(x) to equal according to which class x belongs to. Then the mean (1.3.2) is a triple $\hat{p} = (\hat{p}_1, \hat{p}_2, \hat{p}_3)$ of proportions of each class in the sampling. Of course, $\hat{p}_1 + \hat{p}_2 + \hat{p}_3 = 1$, so \hat{p} is a probability vector (§5.6). Fig. 1.11 Vectorization of samples. When there are only two possibilities, two classes, it's simpler to encode the classes as follows, $$f(x) = \begin{cases} 1, & \text{if } x \text{ is heads,} \\ 0, & \text{if } x \text{ is tails.} \end{cases}$$ Then the mean (1.3.2) is the proportion \hat{p} of heads. Even when the samples are already scalars or vectors, we may still want to vectorize them. For example, suppose x_1, x_2, \ldots, x_N are the prices of a sample of printers from across the country. Then the average price (1.3.1) is well-defined. Nevertheless, we may set $$f(x) = \begin{cases} 1, & \text{if } x \text{ is greater than } \$100, \\ 0, & \text{if } x \text{ is } \le \$100. \end{cases}$$ Then the mean (1.3.2) is the sample proportion \hat{p} of printers that cost more then \$100. In §6.4, we use vectorization to derive the chi-squared tests. #### Exercises Exercise 1.3.1 For the dataset = array([[1,3,-2,0],[2,4,11,66]]), the commands mean(dataset,axis = 1) and mean(dataset,axis = 0) return means in \mathbb{R}^2 and in \mathbb{R}^4 . What does mean(dataset) return and why? Exercise 1.3.2 What is the average petal length in the Iris dataset? Exercise 1.3.3 What is the average shading of the pixels in the first image in the MNIST dataset? Exercise 1.3.4 What's the difference between plot and scatter in ``` from numpy import * from matplotlib.pyplot import scatter, plot def f(x): return x**2 x = arange(0,1,.2) plot(x,f(x)) scatter(x,f(x)) ``` #### 1.4 Mean and Variance Let x_1, x_2, \ldots, x_N be a dataset in \mathbf{R}^d , and let x be any
point in \mathbf{R}^d . The mean-square distance of x to D is $$MSD(x) = \frac{1}{N} \sum_{k=1}^{N} |x_k - x|^2.$$ Above |x| stands for the length of the vector x, or the distance of the point x to the origin. When d=2 and we are in two dimensions, this was defined in §A.4. For general d, this is defined in §2.1. In this section we continue to focus on two dimensions d=2. Fig. 1.12 MSD for the mean (green) versus MSD for a random point (red). The mean or sample mean is $$\mu = \frac{1}{N} \sum_{k=1}^{N} x_k = \frac{x_1 + x_2 + \dots + x_N}{N}.$$ (1.4.1) The mean μ is a point in \mathbf{R}^d . The first result is #### Point of Best-fit The mean is the point of best-fit: The mean minimizes the mean-square distance to the dataset (Figure 1.12). Using (A.4.6), $$|a+b|^2 = |a|^2 + 2a \cdot b + |b|^2$$ for vectors a and b, it is easy to derive the above result. Insert $a = x_k - \mu$ and $b = \mu - x$, then sum over $k = 1, 2, \dots, N$, to get $$MSD(x) = MSD(\mu) + \frac{2}{N} \sum_{k=1}^{N} (x_k - \mu) \cdot (\mu - x) + |\mu - x|^2.$$ Now the middle term vanishes $$\frac{2}{N} \sum_{k=1}^{N} (x_k - \mu) \cdot (\mu - x) = \frac{2}{N} \left(\left(\sum_{k=1}^{N} x_k \right) - N\mu \right) \cdot (\mu - x)$$ $$= 2(\mu - \mu) \cdot (\mu - x) = 0,$$ so we have $$MSD(x) = MSD(\mu) + |x - \mu|^2.$$ Since $|x - \mu|^2 \ge 0$, the result follows. This result and its proof remain valid in any dimension. Here is the code for Figure 1.12. ``` from matplotlib.pyplot import * from numpy import * from numpy.random import default_rng samples = default_rng().random d, N = 2, 20 # d x N array dataset = samples((d,N)) mu = mean(dataset,axis=1) p = samples((2,)) for v in dataset.T: points = array([mu,v]) plot(*points.T,c = 'green') points = array([p,v]) plot(*points.T,c = 'red') scatter(*mu) scatter(*dataset) grid() show() ``` The variance of a dataset is defined in any dimension d. When d=1, the dataset consists of scalars x_1, x_2, \ldots, x_N . If the dataset has mean μ , we can center the dataset, $$v_1 = x_1 - \mu, v_2 = x_2 - \mu, \dots, v_N = x_N - \mu.$$ Then the variance q is the scalar $$q = \frac{v_1^2 + v_2^2 + \dots + v_N^2}{N} = \frac{1}{N} \sum_{k=1}^N v_k^2.$$ (1.4.2) Since the variance is nonnegative, we may take its square root: The square root of the variance is the *standard deviation* $\sigma = \sqrt{q}$. If a scalar dataset has mean zero and variance one, it is standard. If the variance q of scalar dataset is not zero, it may be standardized by centering and dividing by the standard deviation, $$x'_{k} = \frac{x_{k} - \mu}{\sigma}, \qquad k = 1, 2, \dots, N.$$ (1.4.3) The resulting dataset x'_1, x'_2, \ldots, x'_N is then standard, $$\mu' = \frac{1}{N} \sum_{k=1}^{N} x'_k = 0, \qquad q' = \frac{1}{N} \sum_{k=1}^{N} {x'_k}^2 = 1.$$ Now suppose the dataset consists of points x_1, x_2, \ldots, x_N in \mathbf{R}^d . If the dataset has mean μ , we can center the dataset, $$v_1 = x_1 - \mu, v_2 = x_2 - \mu, \dots, v_N = x_N - \mu.$$ Then the *variance* is the matrix (see §A.4 for tensor product) $$Q = \frac{v_1 \otimes v_1 + v_2 \otimes v_2 + \dots + v_N \otimes v_N}{N} = \frac{1}{N} \sum_{k=1}^{N} v_k \otimes v_k.$$ (1.4.4) Since $v \otimes v$ is a symmetric matrix, Q is a symmetric matrix. Below we see Q is also nonnegative, in the sense $v \cdot Qv \geq 0$ for all vectors v. Let us unpack the variance Q in two dimensions. When d=2, each sample x_k has two features, so we may write $v_k=(s_k,t_k), k=1,2,\ldots,N$. Since $$v_k \otimes v_k = \begin{pmatrix} s_k^2 & s_k t_k \\ s_k t_k & t_k^2 \end{pmatrix},$$ the variance is $$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \tag{1.4.5}$$ where $$a = \frac{1}{N} \sum_{k=1}^{N} s_k^2, \quad b = \frac{1}{N} \sum_{k=1}^{N} s_k t_k, \quad c = \frac{1}{N} \sum_{k=1}^{N} t_k^2.$$ (1.4.6) From this, a is the variance of the first feature, c is the variance of the second feature, and b measures the interaction between the two features. In particular, both a and c are nonnegative. If a dataset is centered and each feature has variance one, it is *standard*. When this happens, the variance has the form $$Q' = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}, \tag{1.4.7}$$ for some scalar ρ . In Exercise 1.4.12, it shown that Q' can only be a variance when $|\rho| \leq 1$. Let Σ be the diagonal matrix consisting of the standard deviations of the features, $$\Sigma = \begin{pmatrix} \sqrt{a} & 0 \\ 0 & \sqrt{c} \end{pmatrix}.$$ Then, as in the scalar case, if a > 0 and c > 0, we may set $$x'_k = \Sigma^{-1} v_k = \Sigma^{-1} (x_k - \mu), \qquad k = 1, 2, \dots, N.$$ (1.4.8) We claim x'_1, x'_2, \ldots, x'_N is standard. To see this, the key step is to use a tensor product identity (A.4.24) and write $$x'_k \otimes x'_k = (\Sigma^{-1}v_k) \otimes (\Sigma^{-1}v_k) = \Sigma^{-1}(v_k \otimes v_k)\Sigma^{-1}, \qquad k = 1, 2, \dots, N.$$ Summing over k = 1, 2, ..., N, we have $$Q' = \frac{1}{N} \sum_{k=1}^N x_k' \otimes x_k' = \Sigma^{-1} \left(\frac{1}{N} \sum_{k=1}^N v_k \otimes v_k \right) \Sigma^{-1} = \Sigma^{-1} Q \Sigma^{-1}.$$ Multiplying out these three matrices, we conclude $$Q' = \begin{pmatrix} 1/\sqrt{a} & 0 \\ 0 & 1/\sqrt{c} \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} 1/\sqrt{a} & 0 \\ 0 & 1/\sqrt{c} \end{pmatrix} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$$ with $$\rho = \frac{b}{\sqrt{ac}}. (1.4.9)$$ This shows x'_1, x'_2, \ldots, x'_N is standard. For example, $$Q = \begin{pmatrix} 9 \ 2 \\ 2 \ 4 \end{pmatrix} \quad \Longrightarrow \quad \rho = \frac{1}{3} \quad \Longrightarrow \quad Q' = \begin{pmatrix} 1 & 1/3 \\ 1/3 & 1 \end{pmatrix}.$$ The scalar ρ is the *correlation coefficient* ("rho") of the dataset, and the variance Q' of the standardized dataset x'_1, x'_2, \ldots, x'_N is the *correlation matrix* of the original dataset x_1, x_2, \ldots, x_N . When $\rho > 0$, we say the features are positively correlated. When $\rho < 0$, we say the features are negatively correlated. Summarizing the above, #### Variance and Correlation Matrices in Two Dimensions - If Q in (1.4.5) is the variance of a dataset, then $a \ge 0$, $c \ge 0$, and $b^2 < ac$. - If Q' in (1.4.7) is the variance of a standard dataset, then $|\rho| \leq 1$. - If Q' is the correlation matrix of a dataset with variance Q, then $\rho = b/\sqrt{ac}$. When the correlation coefficient is $\rho = \pm 1$, the dataset lies on a line passing through the mean. When $\rho = 1$, the line has slope 1, and when $\rho = -1$, the line has slope -1. Here is a worked example. Suppose N=5 and $$x_1 = (1, 2), \quad x_2 = (3, 4), \quad x_3 = (5, 6), \quad x_4 = (7, 8), \quad x_5 = (9, 10).$$ $$(1.4.10)$$ Then $\mu = (5,6)$ and $$v_1 = x_1 - \mu = (-4, -4), \quad v_2 = x_2 - \mu = (-2, -2), \quad v_3 = x_3 - \mu = (0, 0),$$ $v_4 = x_4 - \mu = (2, 2), \quad v_5 = x_5 - \mu = (4, 4).$ Since $$\begin{aligned} (\pm 4, \pm 4) \otimes (\pm 4, \pm 4) &= \begin{pmatrix} 16 & 16 \\ 16 & 16 \end{pmatrix}, \\ (\pm 2, \pm 2) \otimes (\pm 2, \pm 2) &= \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}, \\ (0, 0) \otimes (0, 0) &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \end{aligned}$$ summing and dividing by N leads to the variance $$Q = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}.$$ For this dataset, $$\varSigma = \begin{pmatrix} 2\sqrt{2} & 0\\ 0 & 2\sqrt{2} \end{pmatrix},$$ and $$\begin{split} x_1' &= (-\sqrt{2}, -\sqrt{2}), \qquad x_2' = (-1/\sqrt{2}, -1/\sqrt{2}), \qquad x_3' = (0, 0), \\ x_4' &= (1/\sqrt{2}, 1/\sqrt{2}), \qquad x_5' = (\sqrt{2}, \sqrt{2}) \end{split}$$ is the standardized dataset. Here is code from scratch for the variance of a dataset. ``` from numpy import * from numpy.random import default_rng samples = default_rng().random def tensor(u,v): return array([[a*b for b in v] for a in u]) N, d = 20, 2 # N x d array dataset = samples((N,d)) mu = mean(dataset,axis = 0) # center dataset vectors = dataset - mu Q = mean([tensor(v,v) for v in vectors],axis = 0) ``` In numpy, variance is returned by ``` from numpy import * from numpy.random import default_rng samples = default_rng().random N, d = 20, 2 # d x N array dataset = samples((d,N)) Q = cov(dataset,bias = True) Q ``` This returns the same result as the previous code for Q. Here there is no need to compute the mean, this is taken care of automatically. The variance matrix in (1.4.4) is the *biased* variance matrix. If instead the denominator is N-1, the matrix is the *unbiased* variance matrix. For datasets with large N, it doesn't matter, since N and N-1 are almost equal. For simplicity, here we divide by N, and we only consider the biased variance matrix. In practice, datasets are *standardized* before computing their variance. The variance of standard datasets — the correlation matrix — is the same whether one starts with bias or not. In the numpy code above, the option bias = True indicates division by N, returning the biased variance. To return the unbiased variance and divide by N-1, change the option to bias = False, or remove it, since that is the default. In numpy, the correlation matrix Q' is returned by ``` from numpy import * # dataset is d x N array corrcoef(dataset) ``` Since $\operatorname{trace}(v \otimes v) = |v|^2$, if Q is the variance matrix (1.4.4), $$\operatorname{trace}(Q) = \frac{1}{N} \sum_{k=1}^{N} |v_k|^2 = \frac{1}{N} \sum_{k=1}^{N} |x_k - \mu|^2 = MSD(\mu).$$ (1.4.11) We call trace(Q) the *total variance* or *explained variance* of the dataset. In Python, ``` from numpy import * # dataset is d x N array Q = cov(dataset, bias = True) Q.trace() ``` Let let v_1, v_2, \ldots, v_N be a centered dataset in the plane. Let u be a unit vector (a vector of length one, |u| = 1). We wish to project this dataset onto the line through u, resulting in a scalar dataset. According to Figure 1.13, when a vector b is projected onto the line through u, the length of the projected vector Pb equals $|b|\cos\theta$, where θ is
the angle between the vectors b and u. Since |u|=1, this length equals the dot product $b \cdot u$. Since Pb is a multiple of u, $$Pb = (b \cdot u)u.$$ Repeating this with b replaced by each vector v_1, v_2, \ldots, v_N , we conclude: the projected dataset onto the line through u is $$(v_1 \cdot u)u, (v_2 \cdot u)u, \dots, (v_N \cdot u)u.$$ These vectors are all multiples of u, as they should be. The projected dataset is two-dimensional. **Fig. 1.13** Projecting a vector b onto the line through u. Alternately, discarding u and retaining the scalar coefficients, we have the scalar dataset $$v_1 \cdot u, v_2 \cdot u, \dots, v_N \cdot u.$$ This is the *reduced dataset*. The reduced dataset is one-dimensional. Since the vector u is fixed, the reduced dataset and the projected dataset contain the same information. The formulas for the projected and reduced datasets are correct only when u is a unit vector. For a non-unit vector u, replace u by u/|u|. The reduced dataset is centered, since $$\frac{v_1 \cdot u + v_2 \cdot u + \dots + v_N \cdot u}{N} = \left(\frac{v_1 + v_2 + \dots + v_N}{N}\right) \cdot u = 0 \cdot u = 0,$$ and the mean of the projected dataset is also 0. The variance of the reduced dataset $$q = \frac{1}{N} \sum_{k=1}^{N} (v_k \cdot u)^2$$ is a scalar that is positive or zero. According to (A.4.22), this equals $$q = \frac{1}{N} \sum_{k=1}^{N} u \cdot (v_k \otimes v_k) u = u \cdot Qu.$$ Thus we conclude # Variance of Reduced Dataset Let Q be the variance matrix of a dataset and let u be a unit vector. Then the variance of the dataset reduced onto the line through u equals $u \cdot Qu$. A matrix Q is *positive* if it is symmetric and $u \cdot Qu > 0$ for any nonzero vector u. A matrix Q is *nonnegative* if it is symmetric and $u \cdot Qu \geq 0$ for any vector u. A matrix Q is a variance matrix if Q is the variance matrix of some dataset. As a consequence of the above, since $q = u \cdot Qu$ is the variance of the reduced dataset, we have #### Variance Matrix is Nonnegative Every variance matrix is nonnegative: $u \cdot Qu$ is nonnegative for every vector u. Later (§3.2), we see every nonnegative matrix is a variance matrix. Here is code for computing the variance of the projected dataset. ``` from numpy import * # dataset is d x N array Q = cov(dataset, bias = True) # project along unit vector u q = dot(u, dot(Q, u)) ``` Going back to the dataset (1.4.10), $x_k - \mu$, k = 1, 2, 3, 4, 5, are all multiples of (1, 1). If we select u = (1, -1), then $(x_k - \mu) \cdot u = 0$, so the variance Q satisfies $u \cdot Qu = 0$. This can also be seen by $$Qu = 8((1,1) \otimes (1,1))u = 8(1,1) \cdot u(1,1) = 0.$$ This shows that the dataset lies on the line passing through μ and perpendicular to (1,-1). We describe the variance ellipses associated to a dataset. Let Q be a variance matrix and μ a point in \mathbb{R}^2 . The contour of all points x satisfying $$(x - \mu) \cdot Q(x - \mu) = k$$ is the variance ellipse corresponding to level k. When k=1, the ellipse is the unit variance ellipse. The contour of all points x satisfying $$(x - \mu) \cdot Q^{-1}(x - \mu) = k$$ is the inverse variance ellipse corresponding to level k. When k=1, the ellipse is the unit inverse variance ellipse. In two dimensions, a variance matrix has the form $$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$ If $v = x - \mu$ has features (s, t), the variance ellipse equation centered at $\mu = 0$ is $$v \cdot Qv = as^2 + 2bst + ct^2 = k.$$ The inverse variance ellipse centered at $\mu = 0$ is given by the same equation with Q replaced by Q^{-1} . Fig. 1.14 Unit variance ellipses (blue) and unit inverse variance ellipses (red) with $\mu = 0$. The code for rendering ellipses is ``` from matplotlib.pyplot import * from numpy import * from scipy.linalg import inv def ellipse(Q,mu,padding = .5,levels = [1],render = "var"): scatter(*mu,c = "red",s = 5) a, b, c = Q[0,0],Q[0,1],Q[1,1] d,e = mu delta = .01 x = arange(d-padding,d+padding,delta) y = arange(e-padding,e+padding,delta) ``` ``` x, y = meshgrid(x, y) if render == "var" or render == "both": # matrix_text(Q,mu,padding,'blue') eq = a*(x-d)**2 + 2*b*(x-d)*(y-e) + c*(y-e)**2 contour(x,y,eq,levels = levels,colors = "blue",linewidths = .5) if render == "inv" or render == "both": draw_major_minor_axes(Q,mu) Q = inv(Q) # matrix_text(Q,mu,padding,'red') A, B, C = Q[0,0],Q[0,1],Q[1,1] eq = A*(x-d)**2 + 2*B*(x-d)*(y-e) + C*(y-e)**2 contour(x,y,eq,levels = levels,colors = "red",linewidths = .5) ``` With this code, ellipse(Q,mu) returns the unit variance ellipse in the unit square centered at μ . The codes for the functions draw_major_minor_axes and matrix_text are below. Depending on whether render is var, inv, or both, the code renders the variance ellipse (blue), the inverse variance ellipse (red), or both. The code renders several ellipses, one for each level in the list levels. The default is levels = [1], so the unit ellipse is returned. Also padding can be adjusted to enlarge the plot. The code for Figure 1.14 is ``` mu = array([0,0]) Q = array([[9,0],[0,4]]) ellipse(Q,mu,padding = 4,render = "both") grid() show() Q = array([[9,2],[2,4]]) ellipse(Q,mu,padding = 4,render = "both") grid() show() ``` To use T_EX to display the matrices in Figure 1.14, insert the function ``` rcParams['text.usetex'] = True rcParams['text.latex.preamble'] = r'\usepackage{amsmath}' def matrix_text(Q,mu,padding,color): a, b, c = Q[0,0],Q[0,1],Q[1,1] d,e = mu valign = e + 3*padding/4 if color == 'blue': halign = d - padding/2; tex = "$Q=" else: halign = d; tex = "$Q^{-1}=" # r"..." means raw string ``` ``` tex += r"\begin{pmatrix}" + str(round(a,2)) + "&" + str(round(b,2)) tex += r"\\" + str(round(b,2)) + "&" + str(round(c,2)) tex += r"\end{pmatrix}$" return text(halign,valign,tex,fontsize = 15,color = color) ``` A minimal TEX installation is included in matplotlib.pyplot. To display matrices, this is not enough, and access to your laptop's TEX installation is needed. The rcParams lines enable this access. If TEX is installed on your laptop, uncomment matrix_text in ellipse. Fig. 1.15 Variance ellipses (blue) and inverse variance ellipses (red) for a dataset. Figure 1.15 shows variance ellipses with levels = [.005,.01,.02], and inverse variance ellipses with levels = [.5,1,2], corresponding to a random dataset. The code for this is ``` from numpy.random import default_rng samples = default_rng().random N = 50 # N x d array dataset = samples((N,2)) Q = cov(dataset.T,bias = True) mu = mean(dataset,axis = 0) scatter(*dataset.T,s = 5) ellipse(Q,mu,render = "var",padding = .5,levels = [.005,.01,.02]) grid() show() scatter(*dataset.T,s = 5) ellipse(Q,mu,render = "inv",padding = .5,levels = [.5,1,2]) grid() show() ``` When Q is diagonal, the lengths of the major and minor axes of the unit inverse variance ellipse equal $2\sqrt{a}$ and $2\sqrt{c}$, and the lengths of the major and minor axes of the unit variance ellipse equal $2/\sqrt{a}$ and $2/\sqrt{c}$. When the dataset is standard, the ellipses are particularly simple (Figure 1.16). Fig. 1.16 Unit variance ellipse and unit inverse variance ellipse with standard Q. We say a unit vector u is best-aligned or best-fit with the dataset if u maximizes the variance $v \cdot Qv$ over all unit vectors v, $$u \cdot Qu = \max_{|v|=1} v \cdot Qv.$$ We calculate the best-aligned unit vector. When the dataset is standard, this is particularly straightforward. The variance of a dataset projected onto a unit vector $v = (\cos \theta, \sin \theta)$ equals $$v \cdot Qv = a\cos^2\theta + 2b\sin\theta\cos\theta + c\sin^2\theta.$$ When the dataset is standard, by the double-angle formula, $$v \cdot Qv = \cos^2 \theta + \sin^2 \theta + 2\rho \sin \theta \cos \theta = 1 + \rho \sin(2\theta).$$ Since the sine function varies between +1 and -1, we conclude the projected variance varies between $$1 - \rho \le v \cdot Qv \le 1 + \rho$$, and $$\theta = \frac{\pi}{4}, \quad v_+ = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \Longrightarrow v_+ \cdot Qv_+ = 1 + \rho,$$ $$\theta = \frac{3\pi}{4}, \quad v_{-} = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad \Longrightarrow \qquad v_{-} \cdot Qv_{-} = 1 - \rho.$$ Thus the best-aligned vector v_+ is at 45°, and the worst-aligned vector is at 135° (Figure 1.16). Actually, the above is correct only if $\rho > 0$. When $\rho < 0$, it's the other way. The correct answer is $$1 - |\rho| \le v \cdot Qv \le 1 + |\rho|,$$ and v_{\pm} must be switched when $\rho < 0$. We study best-aligned vectors in \mathbf{R}^d in §3.2. Fig. 1.17 Positively and negatively correlated datasets (unit inverse ellipses). Here are two randomly generated datasets. The dataset on the left in Figure 1.17 is positively correlated. Its mean and variance are $$\begin{pmatrix} 0.53626891, 0.54147513 \end{pmatrix} \qquad \begin{pmatrix} 0.08016526 \ 0.01359483 \\ 0.01359483 \ 0.08589097 \end{pmatrix}.$$ The dataset on the right in Figure 1.17 is negatively correlated. Its the mean and variance are $$\begin{pmatrix} 0.46979642, 0.48347168) & \begin{pmatrix} 0.08684941 & -0.00972569 \\ -0.00972569 & 0.09409118 \end{pmatrix}.$$ In general, for non-standard datasets, the projected variance $v\cdot Qv$ varies between two extremes $\lambda_{\pm},$ $$\lambda_{-} \le v \cdot Qv \le \lambda_{+}, \qquad |v| = 1.$$ where λ_{\pm} are given by $$\lambda_{\pm} = \frac{a+c}{2} \pm \sqrt{\left(\frac{a-c}{2}\right)^2 + b^2}.$$ (1.4.12) When the dataset is standard, as we saw above, $\lambda_{\pm} = 1 \pm |\rho|$. The major axis of the inverse variance ellipse $v \cdot Q^{-1}v = 1$ has length $2\sqrt{\lambda_+}$, and the minor axis has length $2\sqrt{\lambda_-}$. These are the *principal axes* of the dataset. When the dataset is not standard, let $$v_{\pm} = (-b, a - \lambda_{\pm}), \quad \text{and} \quad w_{\pm} = (\lambda_{\pm} - c, b), \quad (1.4.13)$$ If the inverse variance ellipse is not a circle, then Q is not a multiple of the
identity, and either v_+ or w_+ is nonzero. If $v_+ \neq 0$, v_+ is the best-aligned vector. If $v_+ = 0$, w_+ is the best-aligned vector. If the inverse variance ellipse is not a circle, then Q is not a multiple of the identity, and either v_- or w_- is nonzero. If $v_- \neq 0$, v_- is the worst-aligned vector. If $v_- = 0$, w_- is the worst-aligned vector. If Q is a multiple of the identity, then any vector is best-aligned and worst-aligned. All this follows from solutions of homogeneous 2×2 systems (A.4.10). The general $d \times d$ case is in §3.2. For the 2×2 case discussed here, see Exercise 3.2.3. The code for rendering the major and minor axes of the inverse variance ellipse uses (1.4.12) and (1.4.13), ``` def draw_major_minor_axes(Q,mu): a, b, c = Q[0,0],Q[0,1],Q[1,1] d, e = mu label = { 1:"major", -1:"minor" } for pm in [1,-1]: lamda = (a+c)/2 + pm * sqrt(b**2 + (a-c)**2/4) sigma = sqrt(lamda) lenv = sqrt(b**2 + (a-lamda)**2) lenw = sqrt(b**2 + (c-lamda)**2) if lenv: deltaX, deltaY = b/lenv, (a-lamda)/lenv elif lenw: deltaX, deltaY = (lamda-c)/lenw, b/lenw elif pm == 1: deltaX, deltaY = 1, 0 else: deltaX, deltaY = 0, 1 axesX = [d+sigma*deltaX,d-sigma*deltaX] axesY = [e-sigma*deltaY,e+sigma*deltaY] plot(axesX,axesY,linewidth = .5,label = label[pm]) ``` Fig. 1.18 Ellipsoid and axes in 3d. In three dimensions, when d=3, the ellipses are replaced by ellipsoids (Figure 1.18). #### Exercises #### Exercise 1.4.1 The dataset is Compute the mean and variance, and plot the dataset and the mean. Exercise 1.4.2 Let the dataset be the petal lengths against the petal widths in the Iris dataset. Compute the mean and variance, and plot the dataset and the mean. **Exercise 1.4.3** Project the dataset in Exercise 1.4.1 onto the line through the vector (1, 2). What is the projected dataset? What is the reduced dataset? **Exercise 1.4.4** Project the dataset in Exercise 1.4.2 onto the line through the vector (1, 2). What is the projected dataset? What is the reduced dataset? Exercise 1.4.5 Plot the variance ellipse and inverse variance ellipses of the dataset in Exercise 1.4.1. Exercise 1.4.6 Plot the variance ellipse and inverse variance ellipses of the dataset in Exercise 1.4.2. Exercise 1.4.7 Plot the dataset in Exercise 1.4.1 together with its mean and the line through the vector of best fit. Exercise 1.4.8 Plot the dataset in Exercise 1.4.2 together with its mean and the line through the vector of best fit. Exercise 1.4.9 Standardize the dataset in Exercise 1.4.1. Plot the standardized dataset. What is the correlation matrix? Exercise 1.4.10 Standardize the dataset in Exercise 1.4.2. Plot the standardized dataset. What is the correlation matrix? **Exercise 1.4.11** Let $Q = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$. Show Q is nonnegative when $a \geq |b|$. (Compute $v \cdot Qv$ with $v = (\cos \theta, \sin \theta)$ as in the text.) **Exercise 1.4.12** With Q as in (1.4.5), let $u = (x,1)/\sqrt{1+x^2}$. Calculate the projected variance $u \cdot Qu$ and use it to show the parabola $q(x) = ax^2 + bx + c$ is nonnegative. Compute the bottom of q(x) to conclude $b^2 \le ac$. In particular, for Q' as in (1.4.9), $|\rho| \le 1$. **Exercise 1.4.13** Let ρ be a number satisfying $-1 \le \rho \le 1$. Compute the variance of the centered dataset in \mathbb{R}^2 $$x_1 = (1, \rho),$$ $x_2 = -x_1,$ $x_3 = (0, \sqrt{1 - \rho^2}),$ $x_4 = -x_3.$ # 1.5 High Dimensions Although not used in later material, this section is here to boost intuition about high dimensions. Draw four disks inside a square, and a fifth disk in the center. In Figure 1.19, the edge-length of the square is 4, and the radius of each blue disk is 1. Draw the diagonal of the square. Then the diagonal passes through two blue disks Since the length of the diagonal of the square is $4\sqrt{2}$, and the diameters of the two blue disks add up 4, the portions of the diagonal outside the blue disks add up to $4\sqrt{2}-4$. Hence the radius of the red disk is $$\frac{1}{4}(4\sqrt{2}-4) = \sqrt{2}-1.$$ In three dimensions, draw eight balls inside a cube, as in Figure 1.20, and one ball in the center. Since the edge-length of the cube is 4, the radius of each blue ball is 1. Since the length of the diagonal of the cube is $4\sqrt{3}$, the radius of the red ball is $$\frac{1}{4}(4\sqrt{3}-4) = \sqrt{3}-1.$$. Fig. 1.19 Disks inside the square. Fig. 1.20 Balls inside the cube. Now we repeat in d dimensions. Here the edge-length of the cube remains 4, the radius of each blue ball remains 1, and there are 2^d blue balls. Since the length of the diagonal of the cube is $4\sqrt{d}$, the same calculation results in the radius of the red ball equal to $r = \sqrt{d} - 1$. In two dimensions, when a region is scaled by a factor t, its area increases by the factor t^2 . In three dimensions, when a region is scaled by a factor t, its volume increases by the factor t^3 . The general result is # Scaling Principle: Dependence on Dimension In d dimensions, when a region is scaled by a factor t, its volume scales by the factor t^d . The radius of the red ball is $r = \sqrt{d} - 1$. By the scaling principle, in d dimensions, the volume of the red ball equals r^d times the volume of the blue ball. We conclude the following: - Since $r = \sqrt{d} 1 = 1$ exactly when d = 4, we have: In four dimensions, the red ball and the blue balls are the same size. - Since there are 2^d blue balls, the ratio of the volume of the red ball over the total volume of all the blue balls is $r^d/2^d$. - Since $r^d = 2^d$ exactly when r = 2, and since $r = \sqrt{d} 1 = 2$ exactly when d = 9, we have: In nine dimensions, the volume of the red ball equals the sum total of the volumes of all blue balls. - Since $r = \sqrt{d} 1 > 2$ exactly when d > 9, we have: In ten or more dimensions, the red ball sticks out of the cube. - Since the length of the cube's diagonal is $4\sqrt{d}$, for any dimension d, the radius of the red ball $r = \sqrt{d} 1$ is less than 1/4 the length of the diagonal. As the dimension grows without bound, the proportion of the cube's diagonal covered by the red ball converges to 1/4. The following code returns Figure 1.19. ``` from matplotlib.pyplot import * from matplotlib.patches import Circle, Rectangle from numpy import * from itertools import product # initialize figure ax = axes() square = Rectangle((0,0), 4, 4,color = 'lightblue') ax.add_patch(square) xcent = ycent = [1,3] # blue disks ``` ``` for center in product(xcent,ycent): circle = Circle(center, radius = 1, color = 'blue') ax.add_patch(circle) # red disk circle = Circle((2, 2), radius = sqrt(2)-1, color = 'red') ax.add_patch(circle) ax.set_axis_off() ax.axis('equal') show() ``` The code for Figure 1.20 is as follows. ``` %matplotlib ipympl from matplotlib.pyplot import * from numpy import * from itertools import product # build sphere mesh N = 40 theta = linspace(0,2*pi,N) phi = linspace(0,pi,N) theta,phi = meshgrid(theta,phi) # spherical coordinates theta, phi x = cos(theta)*sin(phi) y = sin(theta)*sin(phi) z = cos(phi) # initialize figure ax = axes(projection = "3d") # render ball def ball(a,b,c,r,color): return ax.plot_surface(a + r*x,b + r*y, c + r*z,color = color) xcent = ycent = zcent = [1,3] # blue balls for center in product(xcent,ycent,zcent): ball(*center,1,"blue") # red ball ball(2,2,2,sqrt(3)-1,"red") # cube grid cube = ones((4,4,4),dtype = bool) ax.voxels(cube, edgecolors = 'black', lw = .5, alpha = 0) ax.set_aspect("equal") ax.set_axis_off() show() ``` If theta and phi have shapes (m,) and (n,) then returns arrays theta and phi having shapes (m,n), with Here this is used to build a 2d mesh of 3d points lying on a sphere. The cube grid is rendered using a *voxel grid*. Voxels are the 3d counterparts of 2d pixels. In jupyter, a magic command starts with a %. A magic command is sent to jupyter, not to Python. The magic command %matplotlib ipympl allows for rotating the figure. Another phenomenon that happens in high dimensions, discussed in §6.1, is that the angle between two randomly chosen vectors in a high-dimensional space is not arbitrary, it is pre-determined. This is a consequence of the law of large numbers. Scaling and dimensionality work together in *suspensions*. (Figure 1.21). Let [a,b] be an interval and let V be a point not in the interval. To suspend the interval from V, draw line segments between V and all points in the interval. You end up with a triangle with vertex V. Therefore the suspension of an interval is a triangle. Here the dimension of the interval is one, and the dimension of the triangle is two. Let D be a disk and let V be a point not in the disk. To suspend the disk from V, draw line segments between V and all points in the disk. You end up with a cone with vertex V. Therefore the suspension of a disk is a cone. Here the dimension of the disk is two, and the dimension of the cone is three. In general, the suspension \hat{G} of G is obtaining by drawing line segments from a point V not in G to every point x in G, $$\hat{G} = \{(tx, 1-t) : 0 \le t \le 1, x \text{ in } G\}.$$ When t = 1, the suspension's base is the original region G, and when t = 0, we have the vertex at the top. For each 0 < t < 1, the cross-section at level t of the suspension is tG, which is G scaled by the factor t. **Fig. 1.21** Suspensions of interval [a, b] and disk D. We assume the point V is in a dimension orthogonal to the dimensions of G. Then the dimension of \hat{G} is one more than the dimension of G: If G is d-dimensional, then \hat{G} is (d+1)-dimensional, and the cross-sections at distinct levels do not intersect. The volume of \hat{G} is obtained by integrating over cross-sections, $$\operatorname{Vol}(\hat{G}) = \int_0^1 \operatorname{Vol}(tG) dt.$$ By the scaling principle and (A.6.3), $$\operatorname{Vol}(\hat{G}) = \int_0^1 t^d \operatorname{Vol}(G) \, dt = \operatorname{Vol}(G) \left. \frac{t^{d+1}}{d+1} \right|_{t=0}^{t=1}
= \frac{\operatorname{Vol}(G)}{d+1}.$$ Thus $$\operatorname{Vol}(\hat{G}) = \frac{\operatorname{Vol}(G)}{d+1}.$$ # Exercises **Exercise 1.5.1** Why is the diagonal length of the square $4\sqrt{2}$? **Exercise 1.5.2** Why is the diagonal length of the cube $4\sqrt{3}$? **Exercise 1.5.3** Why does dividing by 4 yield the red disk radius and the red ball radius? **Exercise 1.5.4** Suspend the unit circle $G: x^2 + y^2 = 1$ from its center. What is the suspension \hat{G} ? Conclude area(unit disk) = length(unit circle)/2. **Exercise 1.5.5** Suspend the unit sphere $G: x^2 + y^2 + z^2 = 1$ from its center. What is the suspension \hat{G} ? Conclude volume(unit ball) = area(unit sphere)/3. # Chapter 2 Linear Geometry In the present chapter, we study linear geometry in any dimension d. Readers with no prior exposure to linear geometry may wish to start with geometry in two dimensions $\S A.4$. The material in this chapter is usually referred to as *Linear Algebra*. We prefer the term *Linear Geometry*, to emphasize that the material is, like much of data science, geometric. Even though parts of this chapter are heavy-going, all included material is necessary for later chapters. In particular, the derivations of chi-squared distribution ($\S5.5$) and the chi-squared tests ($\S6.4$) are clarified by the appropriate use of vectors and matrices. #### 2.1 Vectors and Matrices A *vector* is a list of scalars $$v = (t_1, t_2, \dots, t_d).$$ The scalars are the *components* or the *features* of v. If there are d features, we say the *dimension* of v is d. We call v a d-dimensional vector. A point x is also a list of scalars, $x = (t_1, t_2, ..., t_d)$. The relation between points x and vectors v is discussed in §1.3. The set of all d-dimensional vectors or points is d-dimensional space \mathbf{R}^d . In Python, we use numpy or sympy for vectors and matrices. In Python, if L is a list, then numpy.array(L) or sympy.Matrix(L) return a vector or matrix. from numpy import * ``` v = array([1,2,3]) v.shape from sympy import * v = Matrix([1,2,3]) v.shape ``` The first v.shape returns (3,), and the second v.shape returns (3,1). In either case, v is a 3-dimensional vector. Vectors are added and scaled component by component: With $$v = (t_1, t_2, \dots)$$ and $v = (t'_1, t'_2, \dots),$ we have $$v + v' = (t_1 + t'_1, t_2 + t'_2, \dots),$$ and $sv = (st_1, st_2, \dots).$ Addition v + v' only works when v and v' have the same shape. The zero vector is the vector 0 = (0, 0, 0, ...). The zero vector is the only vector satisfying 0 + v = v = v + 0 for every vector v. Even though the zero scalar and the zero vector are distinct objects, we use 0 to denote both. A vector v is nonzero if v is not the zero vector. In \mathbb{R}^4 , the vectors $$e_1 = (1, 0, 0, 0),$$ $e_2 = (0, 1, 0, 0),$ $e_3 = (0, 0, 1, 0),$ $e_4 = (0, 0, 0, 1)$ together are the *standard basis*. Similarly, in \mathbf{R}^d , we have the *standard basis* e_1, e_2, \ldots, e_d . A matrix is a listing arranged in a rectangle of rows and columns. Specifically, an $d \times N$ matrix A has d rows and N columns, $$A = \begin{pmatrix} a_{11} \ a_{12} \dots a_{1N} \\ a_{21} \ a_{22} \dots a_{2N} \\ \dots \dots \\ a_{d1} \ a_{d2} \dots a_{dN} \end{pmatrix}.$$ In Python, if L is a list of lists, then both array(L) and Matrix(L) return a matrix. The code ``` from numpy import * # numpy vectors ``` ``` u = array([1,2,3,4,5]) v = array([6,7,8,9,10]) w = array([11,12,13,14,15]) A = column_stack([u,v,w]) A.shape from sympy import * # column vectors u = Matrix([1,2,3,4,5]) v = Matrix([6,7,8,9,10]) w = Matrix([11,12,13,14,15]) A = Matrix.hstack(u,v,w) A.shape ``` returns (5,3), so A is a 5×3 matrix, $$A = \begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix}.$$ The transpose of a matrix A is the matrix $B = A^t$ resulting from turning A on its side, so $$B = A^t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix}.$$ In numpy, the default is to arrange vectors as rows, so we may write ``` B = array([u,v,w]) ``` The transpose interchanges rows and columns: the rows of A^t are the columns of A. In both number of sympy, the transpose of A is A.T. A vector v may be written as a $1 \times N$ matrix $$v = (t_1 \ t_2 \dots t_N).$$ In this case, we call v a row vector. A vector v may be written as a $d \times 1$ matrix $$v = \begin{pmatrix} t_1 \\ t_2 \\ \dots \\ t_d \end{pmatrix}.$$ In this case, we call v a column vector. We will be considering matrices with different properties, and we use the following notation - A, B: any matrix - \bullet U, V: orthonormal rows or orthonormal columns - Q: symmetric matrix - P: projection or permutation matrix Vectors v_1, v_2, \ldots, v_N in \mathbf{R}^d may be horizontally stacked as columns of a $d \times N$ matrix, $$A = (v_1 \ v_2 \dots v_N).$$ Similarly, vectors v_1, v_2, \ldots, v_N in \mathbf{R}^d may be vertically stacked as rows of an $N \times d$ matrix, $$A = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_N \end{pmatrix}.$$ By default, sympy creates column vectors. Because of this, it is easiest to build matrices as columns, ``` from sympy import * # 5x3 matrix A = Matrix.hstack(u,v,w) # column vector b = Matrix([1,1,1,1,1]) # 5x4 matrix M = Matrix.hstack(A,b) ``` In general, for any sympy matrix A, column vectors can be hstacked and row vectors can be vstacked. For any matrix A, the code ``` from sympy import * A == Matrix.hstack(*[A.col(j) for j in range(A.cols)]) ``` returns **True**. Note we use the unpacking operator * to unpack the list, before applying hstack. In numpy, there is column_stack and row_stack, so the code ``` from numpy import * A == row_stack([row for row in A]) A == column_stack([col for col in A.T]) ``` returns True. In numpy, the input is a list, there is no unpacking. In numpy, a matrix A is a list of rows, so ``` A == array([row for row in A]) A.T == array([col for col in A.T]) ``` both return True. Here col is a row of A^t , hence is a column of A. In numpy, the number of rows is len(A), and the number of columns is len(A.T). To access row i, use A[i]. To access column j, access row j of the transpose, A.T[j]. To access the j-th entry in row i, use A[i,j] or A[i][j]. In sympy, the number of rows in a matrix A is A.rows, and the number of columns is A.cols, so ``` A.shape == (A.rows, A.cols) ``` returns True. To access row i, use A.row(i). Similarly, to access column j, use A.col(j). So, ``` A == Matrix([A.row(i) for i in range(A.rows)]) A.T == Matrix([A.col(j) for j in range(A.cols)]) ``` both return True. A matrix is square if the number of rows equals the number of columns, N=d. A matrix is diagonal if it looks like one of these $$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}, \quad \text{or} \quad \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix}, \quad \text{or} \quad \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix},$$ where some of the numbers on the diagonal a, b, c, d may be zero. Matrices are added and scaled as follows. With $$A = \begin{pmatrix} a_{11} \ a_{12} \dots a_{1N} \\ a_{21} \ a_{22} \dots a_{2N} \\ \dots \dots \dots \\ a_{d1} \ a_{d2} \dots a_{dN} \end{pmatrix} \quad \text{and} \quad A' = \begin{pmatrix} a'_{11} \ a'_{12} \dots a'_{1N} \\ a'_{21} \ a'_{22} \dots a'_{2N} \\ \dots \dots \dots \\ a'_{d1} \ a'_{d2} \dots a'_{dN} \end{pmatrix},$$ we have matrix addition $$A + A' = \begin{pmatrix} a_{11} + a'_{11} & a_{12} + a'_{12} & \dots & a_{1n} + a'_{1N} \\ a_{21} + a'_{21} & a_{22} + a'_{22} & \dots & a_{2n} + a'_{2N} \\ \dots & \dots & \dots & \dots \\ a_{d1} + a'_{d1} & a_{d2} + a'_{d2} & \dots & a_{dN} + a'_{dN} \end{pmatrix}$$ and matrix scaling $$tA = \begin{pmatrix} ta_{11} \ ta_{12} \dots ta_{1N} \\ ta_{21} \ ta_{22} \dots ta_{2N} \\ \dots & \dots \\ ta_{d1} \ ta_{d2} \dots ta_{dN} \end{pmatrix}.$$ Matrices may be added only if they have the same shape. In Python, matrix scaling and matrix addition are ${\tt t*A}$ and ${\tt A}$ + ${\tt B}.$ The code ``` from sympy import * A = zeros(2,3) B = ones(2,2) C = Matrix([[1,2],[3,4]]) D = B + C E = 5 * C F = eye(4) A, B, C, D, E, F ``` and the code ``` from numpy import * A = zeros((2,3)) B = ones((2,2)) C = array([[1,2],[3,4]]) D = B + C E = 5 * C F = eye(4) A, B, C, D, E, F ``` both return $$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}, \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$ Diagonal matrices are constructed using diag. The code ``` from sympy import * A = diag(1,2,3,4) B = diag(-1, ones(2, 2), Matrix([5, 7, 5])) A, B from numpy import * from scipy.linalg import block_diag A = diag([1,2,3,4]) B = block_diag(-1, ones((2, 2)), array([[5], [7], [5]])) A, B ``` returns $$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 \end{pmatrix}.$$ It is straightforward to convert back and forth between numpy and sympy. In the code ``` from sympy import * A = diag(1,2,3,4) from numpy import * B = array(A) C = Matrix(B) ``` In Data Science, numpy is the default, but sympy is easier to digest. # **Exercises** **Exercise 2.1.1** A vector is *one-hot encoded* if all features are zero, except for one feature which is one. For example, in \mathbb{R}^3 there are three one-hot encoded vectors A matrix is a *permutation matrix* if it is square and all rows and all columns are distinct and one-hot encoded. How many 3×3 permutation matrices are there? What about $d \times d$? For more on permutations, see §A.1. # 2.2
Products Let t be a scalar, u, v, w be vectors, and let A, B be matrices. We already know how to compute tu, tv, and tA, tB. In this section, we study the dot product $u \cdot v$, the matrix-vector product Av, the matrix-matrix product AB, and the tensor product $u \otimes v$. In the appendix §A.4, this is worked out for 2×2 matrices and vectors in \mathbb{R}^2 . Suppose u, v are vectors in \mathbf{R}^d . Then their dot product $u \cdot v$ is the scalar obtained by multiplying corresponding features and then summing the products. In other words, if $u = (s_1, s_2, \dots, s_d)$ and $v = (t_1, t_2, \dots, t_d)$, then $$u \cdot v = s_1 t_1 + s_2 t_2 + \dots + s_d t_d. \tag{2.2.1}$$ It's best to think of this as "row-times-column" multiplication, $$u \cdot v = (s_1 \ s_2 \ s_3) \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} = s_1 t_1 + s_2 t_2 + s_3 t_3.$$ As in §A.4, it's always rows on the left, and columns on the right. In Python, ``` from numpy import * u = array([1,2,3]) v = array([4, 5, 6]) dot(u,v) == 1*4 + 2*5 + 3*6 from sympy import * u = Matrix([1,2,3]) v = Matrix([4, 5, 6]) u.T * v == 1*4 + 2*5 + 3*6 ``` both return True. 2.2. PRODUCTS 49 For clarity, sometimes we write (u.T)*v; the parentheses don't change anything. In sympy, we take the transpose, since vectors are by default column vectors, and it's always $row \times column$. As in two dimensions, the *length* or *norm* or *magnitude* of a vector $v = (t_1, t_2, ..., t_d)$ is the square root of the dot product $v \cdot v$, $$|v| = \sqrt{v \cdot v} = \sqrt{t_1^2 + t_2^2 + \dots + t_d^2}.$$ In Python, the length of a vector v is ``` from numpy import * sqrt(dot(v,v)) from sympy import * sqrt(v.T * v) ``` In numpy, this returns a scalar; in sympy, a 1×1 matrix. A vector is a *unit vector* if its length equals 1. When |v| = 0, all the features of v equal zero. It follows the zero vector is the only vector with zero length. All nonzero vectors have positive length. Let v be any nonzero vector. By dividing v by its length |v|, we obtain a unit vector u = v/|v|. As in §A.4, the dot product may be expressed geometrically. # **Dot Product Identity** The dot product $u \cdot v$ (2.2.1) satisfies $$u \cdot v = |u| |v| \cos \theta, \tag{2.2.2}$$ where θ is the angle between u and v. In two dimensions, this was equation (A.4.5) in §A.4. Since any two vectors lie in a two-dimensional plane, this remains true in any dimension. More exactly, we take (2.2.2) as the definition of $\cos \theta$. Based on this, we can compute the angle θ , $$\cos \theta = \frac{u \cdot v}{\sqrt{|u| |v|}} = \frac{u \cdot v}{\sqrt{(u \cdot u)(v \cdot v)}}.$$ Since $|\cos \theta| \le 1$, we have the #### Cauchy-Schwarz Inequality The dot product of two vectors is absolutely less or equal to the product of their lengths, $$|u \cdot v| \le |u| |v|$$ or $(u \cdot v)^2 \le (u \cdot u)(v \cdot v)$. (2.2.3) Strictly speaking, the Cauchy-Schwarz inequality must be verified independently of the geometric definition, because it is used to $define \cos \theta$. But this is easy: The parabola $$p(t) = |u + tv|^2 = (u + tv) \cdot (u + tv) = |u|^2 + 2tu \cdot v + t^2|v|^2 = a + 2tb + ct^2$$ is nonnegative, hence its bottom is nonnegative. By completing the square, the bottom is $a-b^2/c$. Since the bottom is nonnegative, we conclude $b^2 \leq ac$, which is (2.2.3). Vectors u and v are said to be *perpendicular* or *orthogonal* if $u \cdot v = 0$. In this case we often write $u \perp v$. A collection of vectors is *orthogonal* if any pair of vectors in the collection are orthogonal. With this understood, the zero vector is orthogonal to every vector: $0 \cdot v = 0$ for every v. The converse is true as well: If $u \cdot v = 0$ for every v, then, by choosing v = u, $u \cdot u = 0$, which implies u = 0. Vectors v_1, \ldots, v_N are said to be *orthonormal* if they are both unit vectors and orthogonal. Orthogonal nonzero vectors can be made orthonormal by dividing each vector by its length. An important application of the Cauchy-Schwarz inequality is the $\it triangle$ $\it inequality$ $$|a+b| \le |a| + |b|. \tag{2.2.4}$$ To see this, let u be any unit vector. Then $$(a + b) \cdot u = a \cdot u + b \cdot u \le |a||u| + |b||u| = |a| + |b|.$$ If we select u = (a+b)/|a+b|, then u is a unit vector and $$(a+b) \cdot u = (a+b) \cdot \frac{(a+b)}{|a+b|} = \frac{|a+b|^2}{|a+b|} = |a+b|,$$ hence 2.2. PRODUCTS 51 $$|a+b| = (a+b) \cdot u \le |a| + |b|.$$ Suppose v is a vector and A is a matrix. If the rows of A have the same dimension as that of v, we can take the dot product of each row of A with v, obtaining the matrix-vector product Av: Av is the vector whose features are the dot products of the rows of A with v. In other words, ``` from numpy import * dot(A,v) == array([dot(row,v) for row in A]) from sympy import * A*v == Matrix([A.row(i) * v for i in range(A.rows)]) ``` both return True. If u and v are vectors, we can think of u as a row vector, or a matrix consisting of a single row. With this interpretation, the matrix-vector product uv equals the dot product $u \cdot v$. If u and v are vectors, we can think of u as a column vector, or a matrix consisting of a single column. With this interpretation, u^t is a single row, and the matrix-vector product $u^t v$ equals the dot product $u \cdot v$. Let A and B be two matrices. If the rows of A are a_1, a_2, \ldots, a_N , and the columns of B are b_1, b_2, \ldots, b_d , $$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_N \end{pmatrix}, \qquad B = (b_1 \ b_2 \dots b_d),$$ then the matrix-matrix product AB is the $N \times d$ matrix whose (i, j)-th entry is the dot product $$(AB)_{ij} = a_i \cdot b_j.$$ Note the dot product is defined only if the rows of A and the columns of B have the same dimension. Alternatively, using the definition of matrix-vector product, AB is the matrix with columns Ab_1, Ab_2, \ldots, Ab_d , $$AB = (Ab_1 \ Ab_2 \dots Ab_d).$$ Unpacking the dot product, and using summation notation, if $A = (a_{ij})$ and $B = (b_{ij})$, then $$(AB)_{ij} = \sum_{k=1}^{d} a_{ik} b_{kj}, \qquad 1 \le i \le N, 1 \le j \le d.$$ (2.2.5) In Python, both return True, and, with $$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix},$$ the code A,B,dot(A,B) A,B,A*B returns $$AB = \begin{pmatrix} 70 & 80 & 90 \\ 158 & 184 & 210 \end{pmatrix}.$$ The trace of a square matrix $$A = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$ is the sum of its diagonal elements, 2.2. PRODUCTS 53 $$\operatorname{trace}(A) = \operatorname{trace}\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = a + d + f.$$ In general, the trace of a $d \times d$ matrix is $$\operatorname{trace}(A) = \sum_{i=1}^{d} a_{ii}.$$ (2.2.6) Even though in general $AB \neq BA$, it is always true that $$trace(AB) = trace(BA), (2.2.7)$$ This can be verified by switching the i and the k in the sums trace(AB) = $$\sum_{i=1}^{d} (AB)_{ii} = \sum_{i=1}^{d} \sum_{k=1}^{d} a_{ik} b_{kj}$$. A matrix Q is *symmetric* if $Q = Q^t$. For any matrix A, $Q = AA^t$ and $Q = A^tA$ are symmetric. A symmetric matrix Q satisfying $v \cdot Qv \geq 0$ for every vector v is non-negative. When Q is nonnegative, we write $Q \geq 0$. A symmetric matrix Q satisfying $v \cdot Qv > 0$ for every nonzero vector v is positive. When Q is positive, we write Q > 0. Since any vector may be rescaled into a unit vector, the vectors v in these definitions may be assumed to be unit vectors. For any $d \times N$ matrix A, A^tA is a symmetric $N \times N$ matrix, and AA^t is a symmetric $d \times d$ matrix. As we saw in §1.4, the variance matrix of a dataset is nonnegative. In fact, when a dataset in \mathbf{R}^d fills up all d dimensions, the variance matrix is positive (see §2.5). As in $\S A.4$, we have #### **Dot Product Transpose Identity** For any vectors u, v, and matrices A, we have $$(Au) \cdot v = u \cdot (A^t v)$$ and $(A^t u) \cdot v = u \cdot Av$, (2.2.8) whenever the shapes of u, v, A are compatible. The is established by the same proof as in §A.4. In Python, ``` dot(dot(A,u),v) == dot(u,dot(A.T,v)) dot(dot(A.T,u),v) == dot(u,dot(A,v)) (A*u).T * v == u.T * (A.T*v) (A.T*u).T * v == u.T * (A*v) ``` all return True. As a consequence, we have, as in $\S A.4$, $$(AB)^t = B^t A^t.$$ In Python, ``` dot(A,B).T == dot(B.T,A.T) (A * B).T == B.T * A.T ``` both return True. Let A be a matrix. We compute useful expressions for AA^t and A^tA . Assume the columns of A are v_1, v_2, \ldots, v_N , so A is $d \times N$. Since the transpose interchanges rows and columns, v_1, v_2, \ldots, v_N are the rows of A^t . Since matrix-matrix multiplication is $row \times column$, we have $$A^{t}A = \begin{pmatrix} v_{1} \cdot v_{1} & v_{1} \cdot v_{2} & \dots & v_{1} \cdot v_{N} \\ v_{2} \cdot v_{1} & v_{2} \cdot v_{2} & \dots & v_{2} \cdot v_{N} \\ \dots & \dots & \dots & \dots \\ v_{N} \cdot v_{1} & v_{N} \cdot v_{2} & \dots & v_{N} \cdot v_{N} \end{pmatrix}.$$ (2.2.9) As a consequence,¹ # Orthonormal Rows and Columns Let U be a matrix. - U has orthonormal columns iff $U^tU = I$. - U has orthonormal rows iff $UU^t = I$. The second statement follows from the first by substituting U^t for U. ¹ Iff is short for if and only if. 2.2. PRODUCTS 55 To compute AA^t , we bring in the tensor product (see §A.4 for vectors in the plane). If u and v are vectors, the tensor product $u \otimes v$ is the matrix $$(u \otimes v)_{ij} = u_i v_j$$. If u is in \mathbf{R}^N and v is in \mathbf{R}^d , then $u \otimes v$ is an $N \times d$ matrix. From the definition, $$(u \otimes v)^t = v \otimes u$$ and $$\operatorname{trace}(u \otimes v) = u \cdot v, \tag{2.2.10}$$ the latter valid when $u \otimes v$ is square. The basic tensor identities in §A.4, and the proofs presented there, remain valid in any dimension. Here they are again. #### Tensor Product
Identities The following identities hold, as long as the shapes of the matrices and the vectors are compatible. 1. If u, v, w are vectors, $$(u \otimes v)w = (v \cdot w)u. \tag{2.2.11}$$ 2. If a, b, c, d are vectors, $$a \cdot (b \otimes c)d = (a \cdot b)(c \cdot d). \tag{2.2.12}$$ 3. If $Q = v \otimes v$, $$u \cdot Qu = u \cdot (v \otimes v)u = (u \cdot v)^2. \tag{2.2.13}$$ 4. If A has columns v_1, v_2, \ldots, v_N , $$AA^t = v_1 \otimes v_1 + v_2 \otimes v_2 + \dots + v_N \otimes v_N. \tag{2.2.14}$$ 5. For matrices A, B, and vectors u, v, $$A(u \otimes v)B^t = (Au) \otimes (Bv). \tag{2.2.15}$$ If $A = (a_{ij})$ is any matrix, then the norm squared of A is $$||A||^2 = \sum_{i,j} a_{ij}^2.$$ This equals $\operatorname{trace}(A^t A)$ which equals $\operatorname{trace}(AA^t)$. By taking the trace in (2.2.14), # Norm Squared of Matrix Let A be a matrix with columns v_1, v_2, \ldots, v_N . Then $$||A||^2 = |v_1|^2 + |v_2|^2 + \dots + |v_N|^2,$$ (2.2.16) and $$||A||^2 = \operatorname{trace}(A^t A) = \operatorname{trace}(AA^t).$$ (2.2.17) By replacing A by A^t , the same results hold for rows. If x_1, x_2, \ldots, x_N is a dataset of points, and v_1, v_2, \ldots, v_N is the corresponding centered dataset, then the variance matrix $Q = (q_{ij})$ is the average of tensor products (§1.4), $$Q = \frac{v_1 \otimes v_1 + v_2 \otimes v_2 + \dots + v_N \otimes v_N}{N}.$$ (2.2.18) Let A be the matrix with columns v_1, v_2, \ldots, v_N , $$A = (v_1 \ v_2 \dots v_N). \tag{2.2.19}$$ By (2.2.14), $$Q = \frac{1}{N} A A^t. \tag{2.2.20}$$ Let A be the centered dataset matrix (2.2.19). By (2.2.20), each q_{ij} is the dot product of the i-th row and the j-th row of A. In particular, q_{ii} and q_{jj} are the lengths squared of the i-th and j-th rows of A. Hence, by the Cauchy-Schwarz inequality, $q_{ij}^2 \leq q_{ii}q_{jj}$. Let dataset be the Iris dataset. If centered is the corresponding centered dataset, code for the variance is ``` from numpy import * from sklearn import datasets iris = datasets.load_iris() dataset = iris["data"] ``` 2.2. PRODUCTS 57 ``` mu = mean(dataset, axis = 0) centered = dataset - mu N = len(dataset) dot(centered.T,centered) / N ``` Of course, it is simpler to avoid centering and just do directly ``` Q = cov(dataset.T,bias=True) ``` The mean, variance, and total variance of the Iris dataset are ``` mu, Q, trace(Q) array([5.84, 3.06, 3.76, 1.2]), array([[0.68, -0.04, 1.27, 0.51], [-0.04, 0.19, -0.33, -0.12], [1.27, -0.33, 3.1, 1.29], [0.51, -0.12, 1.29, 0.58]]), 4.54 ``` If a dataset is centered and each feature has variance one, it is *standard*. When this happens, the variance $Q'=(q'_{ij})$ satisfies $q'_{ii}=1$, and, by the Cauchy-Schwarz inequality, $|q'_{ij}| \leq 1$. In §1.4, we standardized datasets in \mathbf{R}^2 . To do this in \mathbf{R}^d , let $Q = (q_{ij})$ be the variance of a dataset x_1, x_2, \ldots, x_N in \mathbf{R}^d , and set $$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \sigma_d \end{pmatrix} = \begin{pmatrix} \sqrt{q_{11}} & 0 & 0 & \dots & 0 \\ 0 & \sqrt{q_{22}} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \sqrt{q_{dd}} \end{pmatrix}.$$ Then the inverse Σ^{-1} is (inverse is studied in §2.3), $$\Sigma^{-1} = \begin{pmatrix} 1/\sigma_1 & 0 & 0 & \dots & 0 \\ 0 & 1/\sigma_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1/\sigma_d \end{pmatrix}.$$ and, by the same calculation as in §1.4, $$x'_{k} = \Sigma^{-1}(x_{k} - \mu), \qquad k = 1, 2, \dots, N,$$ is a standard dataset, with variance given by $$Q' = \Sigma^{-1} Q \Sigma^{-1}.$$ Multiplying these three matrices, $Q' = (q'_{ij})$ has entries $$q'_{ij} = \frac{q_{ij}}{\sqrt{q_{ii}q_{jj}}}, \qquad i, j = 1, 2, \dots, d.$$ Since $q'_{ii}=1$, this shows $x'_1,\,x'_2,\,\ldots,\,x'_N$ is standard. The variance matrix of the standardized dataset equals the *correlation* matrix of the original dataset, and the correlation q'_{ij} between feature i and feature j satisfies $|q'_{ij}| \leq 1$. As in $\S1.4$, we say feature i and feature j are positively correlated or negatively correlated if $q'_{ij} > 0$ or $q'_{ij} < 0$ respectively. Summarizing the above, #### Variance and Correlation Matrices - If $Q=(q_{ij})$ is the variance of a dataset, then $q_{ii}\geq 0$ and $q_{ij}^2\leq$ - If $Q' = (q'_{ij})$ is the variance of a standard dataset, then $|q'_{ij}| \leq 1$. - If Q' is the correlation matrix of a dataset with variance Q, then $q'_{ij} = q_{ij} / \sqrt{q_{ii}q_{jj}}.$ In Python, ``` from numpy import * from scipy.linalg import inv from sklearn.preprocessing import StandardScaler # standardize dataset standardized = StandardScaler().fit_transform(dataset) Qcorr = corrcoef(dataset.T) Qcov = cov(standardized.T,bias=True) Sigma = sqrt(diag(diagonal(Q))) Qprime = dot(inv(Sigma),dot(Q,inv(Sigma))) Sigma, Qcov, Qcorr, Qprime ``` returns ``` array([[[0.83, 0. , 0. , 0.], [0. , 0.43, 0. , 0.], [0. , 0. , 1.76, 0.], [0. , 0. , 0. , 0.76]], ``` 2.2. PRODUCTS 59 ``` [[1. , -0.12, 0.87, 0.82], [-0.12, 1. , -0.43, -0.37], [0.87, -0.43, 1. , 0.96], [0.82, -0.37, 0.96, 1.]], [[1. , -0.12, 0.87, 0.82], [-0.12, 1. , -0.43, -0.37], [0.87, -0.43, 1. , 0.96], [0.82, -0.37, 0.96, 1.]], [[1. , -0.12, 0.87, 0.82], [-0.12, 1. , -0.43, -0.37], [0.87, -0.43, 1. , 0.96], [0.82, -0.37, 0.96, 1.]], ``` ## **Exercises** Exercise 2.2.1 In the Iris dataset, are the sepal length and sepal width positively or negatively correlated? What about sepal length and petal length? **Exercise 2.2.2** For $n = 1, 2, 3, \ldots$, let v be the vector $$v = (1, 2, 3, \dots, n).$$ Let $|v| = \sqrt{v \cdot v}$ be the length of v. Then, for example, when n = 1, |v| = 1 and, when n = 2, $|v| = \sqrt{5}$. There is one other n for which |v| is a whole number. Use Python to find it. **Exercise 2.2.3** If μ is a unit vector and $Q = I - \mu \otimes \mu$, then $Q^2 = Q$. **Exercise 2.2.4** Give an example of a 3×3 matrix A satisfying $A^2 = 0$ but $A \neq 0$. **Exercise 2.2.5** If $Q^2 = 0$ and $Q^t = Q$, then Q = 0. **Exercise 2.2.6** Matrices A and B commute if AB = BA. For what condition on a and b do these matrices commute? $$A = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & b & 1 \end{pmatrix}.$$ **Exercise 2.2.7** Use (2.2.10) and (2.2.15) to show $$Au \cdot v = \operatorname{trace}(A(u \otimes v)).$$ (2.2.21) **Exercise 2.2.8** Let Q and Q' be symmetric $d \times d$ matrices. Show that Q = Q' iff $$x \cdot Qx = x \cdot Q'x$$, for all x . (Replace x by u+v and expand, then insert u and v standard basis vectors.) **Exercise 2.2.9** Compute the means and variances μ_1 , μ_2 , μ_3 and Q_1 , Q_2 , Q_3 of the classes of the Iris dataset. Exercise 2.2.10 With ``` from sympy import * def row(i,d): return [(-1)**(i+j) for j in range(d)] def R(d): return Matrix([row(i,d) for i in range(d)]) ``` print R(d) for d = 1, 2, 3, ... **Exercise 2.2.11** With R(d) as in Exercise **2.2.10**, $$R(d)^3 = c(d) \times R(d)$$ for some scalar c(d). Use Python to find c(d). Here $d = 1, 2, 3, \ldots$ **Exercise 2.2.12** Suppose A and B are matrices with rows and columns $$A = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_N \end{pmatrix} \quad \text{and} \quad B = (v_1, v_2, \dots, v_d),$$ all with the same dimension. Show that $$AB = \begin{pmatrix} u_1 \cdot v_1 & u_1 \cdot v_2 & \dots & u_1 \cdot v_d \\ u_2 \cdot v_1 & u_2 \cdot v_2 & \dots & u_2 \cdot v_d \\ \dots & \dots & \dots & \dots \\ u_N \cdot v_1 & u_N \cdot v_2 & \dots & u_N \cdot v_d \end{pmatrix}.$$ This generalizes (2.2.9). **Exercise 2.2.13** Suppose A and B are matrices with columns and rows $$A = (u_1, u_2, \dots, u_d)$$ and $B = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_d \end{pmatrix}$. Use (2.2.5) to show $$AB = u_1 \otimes v_1 + u_2 \otimes v_2 + \dots + u_d \otimes v_d.$$ This generalizes (2.2.14). **Exercise 2.2.14** Let P and Q be $d \times d$ permutation matrices (Exercise **2.1.1**). Show that PQ is a permutation matrix. **Exercise 2.2.15** Let P be a 3×3 permutation matrix (Exercise **2.1.1**). Show that $P^6 = I$. Check this for every 3×3 permutation matrix. What about $d \times d$? **Exercise 2.2.16** The matrix exponential of a square matrix A is $$e^A = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots$$ Let $$N = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$ Compute the matrix exponential of N and I+N (for N the series terminates after finitely many terms). ## 2.3 Matrix Inverse Let A be any matrix and b a vector. The goal is to solve the linear system $$Ax = b. (2.3.1)$$ In this section, we use the inverse A^{-1} and the pseudo-inverse A^{+} to solve (2.3.1). Of course, the system (2.3.1) doesn't even make sense unless In what follows, we assume this equality is true and dimensions are appropriately compatible. Even then, it's very easy to construct matrices A and vectors b for which the linear system (2.3.1) has no solutions at all! For example, take A the zero matrix and b any non-zero vector. Because of this, we must take some care when solving (2.3.1). Given a square matrix A, the *inverse matrix* is the matrix B satisfying $$AB = I = BA. (2.3.2)$$ Here I is the identity matrix. Since I is a square matrix, A must also be a square matrix. Only square matrices may have inverses. Moreover, not every square matrix has an inverse. For example, the zero matrix does not have an inverse. When A has an inverse, we say A is *invertible*. If a matrix is $d \times d$, then the inverse is also $d \times d$. We write $B = A^{-1}$ for the inverse matrix of A. For example, it is easy to check $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \Longrightarrow \qquad A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a
\end{pmatrix}.$$ Since we can't divide by zero, a 2×2 matrix is invertible only if $ad - bc \neq 0$. Since $$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I,$$ we have $$(AB)^{-1} = B^{-1}A^{-1}$$. When A is invertible, the inverse A^{-1} provides a conceptual framework for solving the linear system Ax = b. Of course, a framework is not the same as a computational procedure. Many issues arise in the numerical construction of the inverse. These we sweep under the rug and ignore by accessing the inverse code inv in numpy and sympy. ## Solution of Ax = b when A invertible If A is invertible, then $$Ax = b \qquad \Longrightarrow \qquad x = A^{-1}b. \tag{2.3.3}$$ This is easy to check, since $$Ax = A(A^{-1}b) = (AA^{-1})b = Ib = b.$$ ``` from sympy import * # solving Ax=b x = A.inv() * b from numpy import * from scipy.linalg import inv ``` ``` # solving Ax=b x = dot(inv(A) , b) ``` In general, a matrix A is not invertible, and Ax = b is solved using the pseudo-inverse $x = A^+b$. The definition and framework of the pseudo-inverse is in §2.6. The upshot is: every (square or non-square) matrix A has a pseudo-inverse A^+ . Here is the general result. ## Solution of Ax = b for General A If Ax = b is solvable, then $$x^+ = A^+b$$ \Longrightarrow $Ax^+ = b$. If Ax = b is not solvable, then x^+ minimizes the residual $|Ax - b|^2$. This says if Ax = b has *some* solution, then $x^+ = A^+b$ is also a solution. On the other hand, Ax = b may have no solution, in which case the error $|Ax - b|^2$ is minimized. From this point of view, it's best to think of x^+ as a candidate for a solution. It's a solution only after confirming equality of Ax^+ and b. All this is worked out in §2.6. To put this in context, there are three possibilities for a linear system (2.3.1). A linear system Ax = b can have - no solutions, or - exactly one solution, or - infinitely many solutions. As examples of these three possibilities, we have - A = 0 and $b \neq 0$, - A is invertible, - A = 0 and b = 0. The pseudo-inverse provides a conceptual framework for deciding among these three possibilities. Of course, a framework is not the same as a computational procedure. Many issues arise in the numerical construction of the pseudo-inverse. These we sweep under the rug and ignore by accessing the pseudo-inverse code pinv in numpy and sympy. In this section, we focus on using Python to solve Ax = b, and in §2.6, we explore the pseudo-inverse framework. How do we use the above result? Given A and b, using Python, we compute $x = A^+b$. Then we check, by multiplying in Python, equality of Ax and b. The rest of the section consists of examples of solving linear systems. The reader is encouraged to work out the examples below in Python. However, because some linear systems have more than one solution, and the implementations of Python on your laptop and on my laptop may differ, our solutions may differ. It can be shown that if the entries of A are integers, then the entries of A^+ are fractions. This fact is reflected in sympy, but not in numpy, as the default in numpy is to work with floats. Let $$u = (1, 2, 3, 4, 5), v = (6, 7, 8, 9, 10), w = (11, 12, 13, 14, 15),$$ and let A be the matrix with columns u, v, w, and rows a, b, c, d, e, $$A = \begin{pmatrix} u \ v \ w \end{pmatrix} = \begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix}. \tag{2.3.4}$$ ``` from numpy import * # vectors u = array([1,2,3,4,5]) v = array([6,7,8,9,10]) w = array([11,12,13,14,15]) # arrange as columns A = column_stack([u,v,w]) ``` For this A, the code ``` from scipy.linalg import pinv pinv(A) ``` returns $$A^{+} = \frac{1}{150} \begin{pmatrix} -37 - 20 - 3 & 14 & 31 \\ -10 & -5 & 0 & 5 & 10 \\ 17 & 10 & 3 & -4 - 11 \end{pmatrix}.$$ Alternatively, in sympy, from sympy import * # column vectors u = Matrix([1,2,3,4,5]) v = Matrix([6,7,8,9,10]) w = Matrix([11,12,13,14,15]) A = Matrix.hstack(u,v,w) A.pinv() returns the same result. Let A be as in (2.3.4) and let $$b_1 = (8, 9, 10, 11, 12),$$ $b_2 = (11, 6, 1, -4, -9).$ We solve $Ax = b_1$ and $Ax = b_2$ by computing the candidates $$x^+ = A^+ b_1 = \frac{1}{15}(2, 5, 8),$$ and $$x^{+} = A^{+}b_{2} = \frac{1}{30}(-173, -50, 73).$$ Then we check that the candidates are actually solutions, which they are, by comparing Ax^+ and b_1 , in the first case, and Ax^+ and b_2 , in the second case. For $$b_3 = (-9, -3, 3, 9, 10),$$ we have $$x^{+} = A^{+}b_{3} = \frac{1}{15}(82, 25, -32).$$ However, for this x^+ , we have $$Ax^+ = (-8, -3, 2, 7, 12).$$ which is not equal to b_3 . From this, not only do we conclude x^+ is not a solution of $Ax = b_3$, but also, by the general result above, the system $Ax = b_3$ is not solvable at all. Let B be the matrix with columns b_1 and b_2 , $$B = (b_1, b_2) = \begin{pmatrix} 8 & 11 \\ 9 & 6 \\ 10 & 1 \\ 11 & -4 \\ 12 & -9 \end{pmatrix}.$$ We solve $$Bx = u$$, $Bx = v$, $Bx = w$ by constructing the candidates $$B^+u$$, B^+v , B^+w , obtaining the solutions $$x^{+} = \frac{1}{51}(16, -7), \qquad x^{+} = \frac{1}{51}(41, -2), \qquad x^{+} = \frac{1}{51}(66, 3).$$ Let $$C = A^t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix}$$ and let f = (0, -5, -10). By Exercise **2.6.8**, $C^+ = (A^+)^t$, so $$C^{+} = (A^{+})^{t} = \frac{1}{150} \begin{pmatrix} -37 - 10 & 17 \\ -20 & -5 & 10 \\ -3 & 0 & 3 \\ 14 & 5 & -4 \\ 31 & 10 & -11 \end{pmatrix}$$ and $$x^{+} = C^{+}f = \frac{1}{50}(32, 35, 38, 41, 44).$$ Once we confirm equality of Cx^+ and f, which is the case, we obtain a solution x^+ of Cx = f. Let D be the matrix with columns a and f, $$D = (a, f) = \begin{pmatrix} 1 & 0 \\ 6 & -5 \\ 11 & -10 \end{pmatrix},$$ where a, b, c, d, e are the rows of A, or, equivalently, the columns of C. Then $$D^+ = \frac{1}{30} \begin{pmatrix} 25 \ 10 \ -5 \\ 28 \ 10 \ -8 \end{pmatrix}.$$ We solve $$Dx = a$$, $Dx = b$, $Dx = c$, $Dx = d$, $Dx = e$, by constructing the candidates $$D^+a, \quad D^+b, \quad D^+c, \quad D^+d, \quad D^+e,$$ obtaining the solutions $$x^{+} = (1,0), \quad x^{+} = (2,1), \qquad x^{+} = (3,2), \quad x^{+} = (4,3), \qquad x^{+} = (5,4).$$ #### Exercises Exercise 2.3.1 Verify the computations in this section using Python. **Exercise 2.3.2** With R(d) as in Exercise **2.2.10**, find the formula for the inverse and pseudo-inverse of R(d), whichever exists. Here $d = 1, 2, 3, \ldots$ Exercise 2.3.3 The sum matrix and difference matrix are $$S = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$ Compute SD and DS. What do you conclude? **Exercise 2.3.4** Let D = D(d) be the $d \times d$ difference matrix as in Exercise **2.3.3**. Compute DD^t and D^tD , and SS^t and S^tS . **Exercise 2.3.5** Let u and v be vectors in \mathbf{R}^d and let $A = I + u \otimes v$. Show that $$A^{-1} = I - \frac{u \otimes v}{1 + u \cdot v}.$$ **Exercise 2.3.6** Let P be a $d \times d$ permutation matrix (Exercise **2.1.1**). Show that P^t is the inverse of P. Exercise 2.3.7 Let a, b, c be three distinct (non-equal) numbers, and let $$V = \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}.$$ Let x = (r, s, t) and $p(z) = r + sz + tz^2$. Show Vx = (p(a), p(b), p(c)). Using Exercise **A.5.10**, conclude V is invertible. # 2.4 Span and Linear Independence Let u, v, w be three vectors. Then $$3u - \frac{1}{6}v + 9w$$, $5u + 0v - w$, $0u + 0v + 0w$ are linear combinations of u, v, w. In general, a linear combination of vectors v_1, v_2, \ldots, v_d is $$t_1 v_1 + t_2 v_2 + \dots + t_d v_d. \tag{2.4.1}$$ Here the coefficients t_1, t_2, \ldots, t_d are scalars. In short, a linear combination is a sum of scaled vectors. In terms of matrices, let $$u = (1, 2, 3, 4, 5), v = (6, 7, 8, 9, 10), w = (11, 12, 13, 14, 15),$$ and let A be the matrix with columns u, v, w, as in (2.3.4). Let x be the vector (r, s, t) = (1, 2, 3). Then an explicit calculation shows (do this calculation!) the matrix-vector product Ax equals ru + sv + tw, $$Ax = ru + sv + tw.$$ The code $$dot(A,x) == r*u + s*v + t*w$$ returns To repeat, the linear combination ru + sv + tw is the same as the matrix-vector product Ax. This is a general fact on which everything depends: ## Column Linear Combination Equals Matrix-Vector Product Let A be a matrix with columns v_1, v_2, \ldots, v_d , and let $$x = (t_1, t_2, \dots, t_d).$$ Then $$Ax = t_1 v_1 + t_2 v_2 + \dots + t_d v_d, \tag{2.4.2}$$ In other words, $$Ax = b$$ is the same as $b = t_1v_1 + t_2v_2 + \cdots + t_dv_d$. (2.4.3) The span of vectors v_1, v_2, \ldots, v_d consists of all linear combinations $$t_1v_1 + t_2v_2 + \cdots + t_dv_d$$ of the vectors. For example, span(b) of a single vector b is the line through b, and span(u, v, w) is the set of all linear combinations ru + sv + tw. ## Span Definition I The span of v_1, v_2, \ldots, v_d is the set S of all linear combinations of v_1, v_2, \ldots, v_d , and we write $$S = span(v_1, v_2, \dots, v_d).$$ When we don't want to specify the vectors $v_1, v_2, v_3, \ldots, v_d$, we simply say S is a span. From (2.4.2), we have #### Span Definition II Let A be the matrix with columns $v_1, v_2, v_3, \ldots, v_d$. Then $span(v_1, v_2, \ldots, v_d)$ is the set S of all vectors of the form Ax. If each vector v_k is a linear combination of vectors w_1, w_2, \ldots, w_N , then every vector v in $span(v_1, v_2, \ldots, v_d)$ is a linear combination of w_1, w_2, \ldots, w_N , so $span(v_1, v_2, \ldots, v_d)$ is contained in $span(w_1, w_2, \ldots, w_N)$. If also each vector w_k is a linear combination of vectors v_1, v_2, \ldots, v_d , then every vector w in $span(w_1, w_2, \ldots,
w_N)$ is a linear combination of v_1, v_2, \ldots, v_d , so $span(w_1, w_2, \ldots, w_N)$ is contained in $span(v_1, v_2, \ldots, v_d)$. When both conditions hold, it follows $$span(v_1, v_2, ..., v_d) = span(w_1, w_2, ..., w_N).$$ Thus there are many choices of spanning vectors for a given span. For example, let u, v, w be the columns of A in (2.3.4). Let \subset mean "is contained in". Then $$span(u, v) \subset span(u, v, w),$$ since adding a third vector can only increase the linear combination possibilities. On the other hand, since w = 2v - u, we also have $$span(u, v, w) \subset span(u, v).$$ It follows that $$span(u, v, w) = span(u, v).$$ Let A be a matrix. The *column space* of A is the span of its columns. For A as in (2.3.4), the column space of A is span(u, v, w). The code ``` from sympy import * # column vectors u = Matrix([1,2,3,4,5]) v = Matrix([6,7,8,9,10]) w = Matrix([11,12,13,14,15]) A = Matrix.hstack(u,v,w) # returns minimal spanning set for column space of A A.columnspace() ``` returns a $minimal\ list$ of vectors spanning the column space of A. The $column\ rank$ of A is the length of the list, i.e. the number of vectors returned. For example, for A as in (2.3.4), this code returns the list $$[u, v] = \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{pmatrix} \end{bmatrix}.$$ Why is this? Because w = 2v - u, so $$span(u, v, w) = span(u, v).$$ We conclude the column rank of A equals 2. If the columns of A are v_1, v_2, \ldots, v_d , and $x = (t_1, t_2, \ldots, t_d)$ is a vector, then by definition of matrix-vector multiplication, $$Ax = t_1v_1 + t_2v_2 + \dots + t_dv_d.$$ By (2.4.3), # Column Space and Ax = b The column space of a matrix A consists of all vectors of the form Ax. A vector b is in the column space of A when Ax = b has a solution. The corresponding code in numpy is ``` from numpy import * from scipy.linalg import orth # vectors u = array([1,2,3,4,5]) v = array([6,7,8,9,10]) w = array([11,12,13,14,15]) A = column_stack([u,v,w]) # returns minimal orthonormal spanning set # for column space of A orth(A) ``` This code returns the array in Figure 2.1. Fig. 2.1 Numpy column space array. To explain this, let $$b_1 = (8, 9, 10, 11, 12),$$ $b_2 = (11, 6, 1, -4, -9).$ Then $b_1 \cdot b_2 = 0$, $|b_1| = \sqrt{510}$, $|b_2| = \sqrt{255}$, and the columns of the array in Figure 2.1 are the two *orthonormal* vectors $-b_1/|b_1|$ and $b_2/|b_2|$. (Why $-b_1/|b_1|$ instead of $b_1/|b_1|$? Because numpy has to make an arbitrary choice among the unit vectors $\pm b_1/|b_1|$.) We conclude the column space of A can be described in at least three ways, $$span(b_1, b_2) = span(u, v, w) = span(u, v).$$ Explicitly, b_1 and b_2 are linear combinations of u, v, w, $$15b_1 = 2u + 5v + 8w, 30b_2 = -173u - 50v + 73w, (2.4.4)$$ and u, v, w are linear combinations of b_1 and b_2 , $$51u = 16b_1 - 7b_2$$, $51v = 41b_1 - 2b_2$, $w = 2v - u$. (2.4.5) By (2.4.3), to derive (2.4.4), we solve $Ax = b_1$ and $Ax = b_2$ for x. But this was done in §2.3. Similarly, let B be the matrix with columns b_1 and b_2 , and solve Bx = u, Bx = v, Bx = w, obtaining (2.4.5). This was also done in §2.3. As a general rule, sympy.columnspace returns lists of spanning vectors, and scipy.linalg.orth returns arrays of orthonormal spanning vectors. Let A be a matrix, and let b be a vector. How can we tell if b is in the column space of A? Given the above tools, here is an easy way to tell. Write the augmented matrix $\bar{A} = (A, b)$; \bar{A} obtained by adding b as an extra column next to the columns of A. If A is $d \times N$, then \bar{A} is $d \times (N + 1)$. Given A and $\bar{A} = (A, b)$, compute their column ranks. Let v_1, v_2, \ldots, v_N be the columns of A. If these ranks are equal, then $$span(v_1, v_2, ..., v_N) = span(v_1, v_2, ..., v_N, b),$$ so b is a linear combination of the columns, or b is in the column space of A. #### Column Space of Augmented Matrix Let \bar{A} be the matrix A augmented by a vector b. Then Ax = b is solvable iff b is in the column space of A iff $$\operatorname{column\ rank}(A) = \operatorname{column\ rank}(\bar{A}). \tag{2.4.6}$$ For example, let $b_3 = (-9, -3, 3, 9, 10)$ and let $\bar{A} = (A, b_3)$. Using Python, check the column rank of \bar{A} is 3. Since the column rank of A is 2, we conclude b_3 is not in the column space of A, so b_3 is not a linear combination of u, v, w. When (2.4.6) holds, b is a linear combination of the columns of A. However, (2.4.6) does not tell us which linear combination. According to (2.4.3), finding the specific linear combination is equivalent to solving Ax = b. \mathbf{R}^3 consists of all vectors (r,s,t) in three dimensions. If $$e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1),$$ then $$(r, s, t) = re_1 + se_2 + te_3.$$ This shows the vectors e_1 , e_2 , e_3 span \mathbb{R}^3 , or $$\mathbf{R}^3 = span(e_1, e_2, e_3).$$ As a consequence, \mathbb{R}^3 is a span. Similarly, in dimension d, we can write $$e_{1} = (1, 0, 0, \dots, 0, 0)$$ $$e_{2} = (0, 1, 0, \dots, 0, 0)$$ $$e_{3} = (0, 0, 1, \dots, 0, 0)$$ $$\dots = \dots$$ $$e_{d} = (0, 0, 0, \dots, 0, 1)$$ $$(2.4.7)$$ Then e_1, e_2, \ldots, e_d span \mathbf{R}^d , so # Standard Basis Spans \mathbf{R}^d is a span. Following machine-learning terminology, a vector $v = (v_1, v_2, \dots, v_d)$ is one-hot encoded at slot j if all components of v are zero except the j-th component. For example, when d = 3, the vectors $$(a,0,0), \qquad (0,a,0), \qquad (0,0,a)$$ are one-hot encoded. Sometimes one-hot encoded also means the nonzero slot must be a one. With this interpretation, when d = 3, the only one-hot encoded vectors We use both interpretations. The vectors e_1, e_2, \ldots, e_d are one-hot encoded. These vectors are the standard basis for \mathbf{R}^d , or the one-hot encoded basis for \mathbf{R}^d . The row space of a matrix is the span of its rows. ``` from sympy import * # returns minimal spanning set for row space of A A.rowspace() ``` The $row \ rank$ of a matrix is the number of vectors returned by rowspace(). This is the minimal number of vectors spanning the row space of A. For example, call the rows of A in (2.3.4) a, b, c, d, e. Let $$f = (0, -5, -10).$$ Then sympy.rowspace returns the vectors a and f, so $$span(a, b, c, d, e) = span(a, f).$$ Explicitly, the linear combination $$50f = 32a + 35b + 38c + 41d + 44e$$ is derived using $C = A^t$ and solving Cx = f. The linear combinations $$a = a + 0f$$, $b = 2a - 5f$, $c = 3a - 10f$, $d = 4a - 15f$, $e = 5a - 20f$ are derived using D = (a, f) and solving Dx = a, Dx = b, Dx = c, Dx = d, Dx = e. Again, these linear systems were solved in §2.3. Since the transpose interchanges rows and columns, the row space of A equals the column space of A^t . Using this, we compute the row space in numpy by ``` from numpy import * from scipy.linalg import orth # returns minimal spanning set for row space of A orth(A.T) ``` Numpy returns orthonormal vectors. Clearly, when Q is symmetric, the row space of Q equals the column space of Q. It turns out the column rank equals the row rank, for any matrix. Even though we won't establish this till (2.9.1), we state this result here, because it helps ground the concepts. ## Column Rank Equals Row Rank For any matrix, the row rank equals the column rank. Because of this, we refer to this common number as the rank of the matrix. A linear combination $t_1v_1 + t_2v_2 + \cdots + t_dv_d$ is trivial if all the coefficients are zero, $t_1 = t_2 = \cdots = t_d = 0$. Otherwise it is non-trivial, if at least one coefficient is not zero. A linear combination $t_1v_1 + t_2v_2 + \cdots + t_dv_d$ vanishes if it equals the zero vector, $$t_1v_1 + t_2v_2 + \dots + t_dv_d = 0.$$ For example, with u, v, w as above, we have w = 2v - u, so $$ru + sv + tw = 1u - 2v + 1w = 0 (2.4.8)$$ is a vanishing non-trivial linear combination of u, v, w. We say v_1, v_2, \ldots, v_d are linearly dependent if there is a vanishing non-trivial linear combination of v_1, v_2, \ldots, v_d . Otherwise, if there is no non-trivial vanishing linear combination, we say v_1, v_2, \ldots, v_d are linearly independent. For example, u, v, w above are linearly dependent. Suppose u, v, w are any three vectors, and suppose u, v, w are linearly dependent. Then we have ru + sv + tw = 0 for some scalars r, s, t, where at least one is not zero. If $r \neq 0$, then we may solve for u, obtaining $$u = -(s/r)v - (t/r)w.$$ If $s \neq 0$, then we may solve for v, obtaining $$v = -(r/s)u - (t/s)w.$$ If $t \neq 0$, then $$w = -(r/t)u - (s/t)v.$$ Hence linear dependence of u, v, w means one of the three vectors is a multiple of the other two vectors. In general, a vanishing non-trivial linear combination of v_1, v_2, \ldots, v_d , or linear dependence of v_1, v_2, \ldots, v_d , is the same as saying one of the vectors is a linear combination of the remaining vectors. In terms of matrices, # Homogeneous Linear Systems Let A be the matrix with columns v_1, v_2, \ldots, v_d . Then - v_1, v_2, \ldots, v_d are linearly dependent when Ax = 0 has a nonzero solution x, and - v_1, v_2, \ldots, v_d are linearly independent when Ax = 0 has only the zero solution x = 0. The set of vectors x satisfying Ax = 0, or the set of solutions x of Ax = 0, is the nullspace of the matrix A. With this terminology, v_1, v_2, \ldots, v_d are linearly dependent when there is a nonzero nullspace for the matrix A. For example, with A as in (2.3.4), the sympy code from sympy import * A.nullspace() returns a list with a single vector, $$\begin{bmatrix} \begin{pmatrix} r \\ s \\ t \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \end{bmatrix}.$$ This says the nullspace of A consists of all multiples of (1, -2, 1). Since the code [r,s,t] = A.nullspace()[0] r*u + s*v + t*w returns the column vector $\begin{pmatrix} 0 \\ 0 \\ 0 \\
0 \\ 0 \end{pmatrix},$ we have Ax = 0, in agreement with (2.4.8). The corresponding numpy code is from scipy.linalg import null_space null_space(A) This code returns the *unit* vector $$\frac{-1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix},$$ which is a multiple of (1, -2, 1). scipy.linalg.null_space always returns orthonormal vectors. Here is a simple result that is used frequently. #### A Versus A^tA Let A be any matrix. The nullspace of A equals the nullspace of A^tA . If x is in the nullspace of A, then Ax = 0. Multiplying by A^t leads to $A^tAx = 0$, so x is in the nullspace of A^tA . Conversely, if x is in the nullspace of A^tA , then $A^tAx = 0$. By the dot-product-transpose identity (2.2.8), $$|Ax|^2 = Ax \cdot Ax = x \cdot A^t Ax = 0,$$ so Ax = 0, which means x is in the nullspace of A. An important example of linearly independent vectors are orthonormal vectors. ## Orthonormal Implies Linearly Independent If v_1, v_2, \ldots, v_d are orthonormal, they are linearly independent. To see this, suppose we have a vanishing linear combination $$t_1 v_1 + t_2 v_2 + \dots + t_d v_d = 0.$$ Take the dot product of both sides with v_1 . Since the dot products of any two vectors is zero, and each vector has length one, we obtain $$t_1 = t_1 v_1 \cdot v_1 = t_1 v_1 \cdot v_1 + t_2 v_2 \cdot v_1 + \dots + t_d v_d \cdot v_1 = 0.$$ Similarly, all other coefficients t_k are zero. This shows v_1, v_2, \ldots, v_d are linearly independent. In general, nullspace() returns a minimal set of vectors spanning the nullspace of A. The nullity of A is the number of vectors returned by the method nullspace(). For example, to compute the nullspace of the matrix $$C = A^t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix},$$ we solve Cx = 0. Since the code ``` from sympy import * u = Matrix([1,2,3,4,5]) v = Matrix([6,7,8,9,10]) w = Matrix([11,12,13,14,15]) A = Matrix.hstack(u,v,w) C = A.T C.nullspace() ``` returns the list of three vectors $$\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$ here we can make three conclusions: (1) the nullspace of C is spanned by three vectors, (2) this is the least number of vectors that spans the nullspace of C, and (3) the nullity of C is 3. Let u be a nonzero vector, and let $$u^{\perp} = \{v : u \cdot v = 0\}. \tag{2.4.9}$$ Then u^{\perp} (pronounced "u-perp"), the orthogonal complement of u, is a span and consists of all vectors orthogonal to u. When u is in \mathbb{R}^2 , u^{\perp} is a line, and we previously defined u^{\perp} in §A.4 to be a vector spanning that line. Specifically, when u = (x, y), in §A.4 we defined $u^{\perp} = (-u, x)$. More generally, suppose S is any collection of vectors, not necessarily a span, and let $$S^{\perp} = \{v : u \cdot v = 0 \text{ for all } u \text{ in } S\}.$$ Then S^{\perp} (pronounced "S-perp"), the orthogonal complement of S, is a span (even if S isn't) and consists of all vectors orthogonal to all vectors in S. Suppose S consists of five vectors a, b, c, d, e. How do we compute S^{\perp} ? The answer is by using nullspace: Let A be the matrix with rows a, b, c, d, e. By matrix-vector multiplication, $$0 = Ax = \begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix} x = \begin{pmatrix} a \cdot x \\ b \cdot x \\ c \cdot x \\ d \cdot x \\ e \cdot x \end{pmatrix}.$$ This shows x is orthogonal to a, b, c, d, e exactly when x is in the nullspace of A. Thus S^{\perp} equals the nullspace of A. In general, if $S = span(v_1, v_2, \ldots, v_N)$, let A be the matrix with rows v_1, v_2, \ldots, v_N . Then S^{\perp} equals the nullspace of A. An important example of orthogonality is the relation between row space and the nullspace. Suppose A has rows v_1, v_2, \ldots, v_N , and x is a vector, all of the same dimension. Then, by definition, the matrix-vector product is $$Ax = (v_1 \cdot x, v_2 \cdot x, \dots, v_N \cdot x).$$ If x is in the nullspace, Ax = 0, then $$v_1 \cdot x = 0, v_2 \cdot x = 0, \dots, v_N \cdot x = 0,$$ so x is orthogonal to the rows of A. Conversely, if x is orthogonal to the rows of A, then Ax = 0. This shows the nullspace of A and the row space of A are orthogonal complements. Summarizing, we write ## Row Space and Null Space are Orthogonal Every vector in the row space is orthogonal to every vector in the nullspace, $rowspace^{\perp} = nullspace$ and $nullspace^{\perp} = rowspace$. (2.4.10) Actually, the above paragraph only established the first identity. For the second identity, we need to use (2.7.9), as follows $$rowspace = (rowspace^{\perp})^{\perp} = nullspace^{\perp}.$$ Since the row space is the orthogonal complement of the nullspace, and the nullspace of A equals the nullspace of A^tA , we conclude #### A Versus A^tA Let A be any matrix. Then the row space of A equals the row space of A^tA . Now replace A by A^t in this last result. Since the row space of A^t equals the column space of A, and AA^t is symmetric, we also have ## A Versus AA^t Let A be any matrix. Then the column space of A equals the column space of AA^t . Let A be a matrix and b a vector. So far we've met four spaces, - the nullspace: all x's satisfying Ax = 0, - the row space: the span of the rows of A, - the column space: the span of the columns of A, - the solution space: the solutions x of Ax = b. A set S of vectors is a *subspace* if $x_1 + x_2$ is in S whenever x_1 and x_2 are in S, and tx is in S whenever x is in S. When this happens, we say S is closed under addition and scalar multiplication: A subspace is a set of vectors closed under addition and scalar multiplication. Since a linear combination of linear combinations is a linear combination, every span is a subspace. In particular, \mathbf{R}^d is a subspace. It's important to realize the first three are subspaces, but the fourth is not. • If x_1 and x_2 are in the nullspace, and r_1 and r_2 are scalars, then so is $r_1x_1 + r_2x_2$, because $$A(r_1x_1 + r_2x_2) = r_1Ax_1 + r_2Ax_2 = r_10 + r_20 = 0.$$ This shows the null space is a subspace. In particular, S^{\perp} is a subspace for any S. - The row space is a span, so is a subspace. - The column space is a span, so is a subspace. - The solution space S of Ax = b is not a subspace, nor a span: If x is in S, then Ax = b, so A(5x) = 5Ax = 5b, so 5x is not in S. If x_1 and x_2 are solutions of Ax = b, then $A(x_1 + x_2) = 2b$, so the solution space is not a subspace. However $$A(x_1 - x_2) = b - b = 0, (2.4.11)$$ so the difference $x_1 - x_2$ of any two solutions x_1 and x_2 is in the nullspace of A, which is a span. Let A be an $N \times d$ matrix. Then matrix multiplication by A transforms a vector x to the vector b = Ax. Since A is $N \times d$, x is in \mathbf{R}^d , and Ax is in \mathbf{R}^N . From this point of view, the *source space* of A is \mathbf{R}^d , and the *target space* of A is \mathbf{R}^N . #### Locations of Column, Row, and Null Spaces Let A be any matrix. The nullspace of A and the row space of A are in the source space of A, and the column space of A is in the target space of A. Let A be a $d \times d$ invertible matrix. Then the source space is \mathbf{R}^d and the target space is \mathbf{R}^d . If Ax = 0, then $$x = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}0 = 0.$$ This shows the nullspace of an invertible matrix is zero, hence the nullity is zero. Since the row space is the orthogonal complement of the nullspace, we conclude the row space is all of \mathbf{R}^d . In §2.9, we see that the column rank and the row rank are equal. From this, we see also the column space is all of \mathbf{R}^d . In summary, ## **Null Space of Invertible Matrix** Let A be a $d \times d$ invertible matrix. Then the nullspace is zero, and the row space and column space are both \mathbf{R}^d . In particular, the nullity is 0, and the row rank rank and column rank are both d. #### Exercises **Exercise 2.4.1** For what condition on a, b, c do the vectors (1, a), (2, b), (3, c) lie on a line? Exercise 2.4.2 Let $$C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix}, \qquad x = \begin{pmatrix} 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{pmatrix}.$$ Compute Cx in two ways, first by row times column, then as a linear combination of the columns of C. **Exercise 2.4.3** Check that the array in Figure 2.1 matches with b_1 , b_2 as explained in the text, and the vectors b_1 and b_2 are orthogonal. **Exercise 2.4.4** [32] Let a = (1, 1, 0, 0), b = (0, 0, 1, 1), c = (1, 0, 1, 0), d = (0, 1, 0, 1). Check whether or not a, b, c, d are linearly independent by solving ra + sb + tc + ud = 0. Is ra + sb + tc + ud = (0, 0, 0, 1) solvable? Do a, b, c, d span \mathbf{R}^4 ? **Exercise 2.4.5** Let A = (u, v, w) be as in (2.3.4) and let b = (16, 17, 18, 19, 20). Is b in the column space of A? If yes, solve b = ru + sv + tw. **Exercise 2.4.6** Let A = (u, v, w) be as in (2.3.4) and let $Q = A^t A$. What are the source and target spaces for A and Q? Calculate column spaces, row spaces, and nullspaces of A and Q. How are they related? **Exercise 2.4.7** Let A = (u, v, w) be as in (2.3.4) and let $Q = AA^t$. What are the source and target spaces for A and Q? Calculate column spaces, row spaces, and nullspaces of A and Q. How are they related? Exercise 2.4.8 [32] Let A be a 64×17 matrix with rank 11. How many linearly independent vectors x solve Ax = 0? How many linearly independent vectors x solve $A^tx = 0$? **Exercise 2.4.9** Let A(N,d) be the matrix returned by the code ``` from sympy import * def col(N,j): return Matrix([1+i+j*N for i in range(N)]) def A(N,d): return Matrix.hstack(*[col(N,j) for j in range(d)]) ``` What are A(5,3) and A(3,5)? What are the source and target spaces for A(N,d)? **Exercise 2.4.10** Calculate the column rank of the matrix A(N,d)
for all $N \geq 2$ and all $d \geq 2$. (Column rank is the length of the list columnspace returns.) **Exercise 2.4.11** What is the nullity of the matrix A(N, d) for all $N \geq 2$ and all $d \geq 2$? Exercise 2.4.12 Show directly from the definition the vectors $$u = (2, *, *, *, *, *), v = (0, 7, *, *, *, *), w = (0, 0, 0, 1, *, *), x = (0, 0, 0, 0, 0, 3)$$ are linearly independent. **Exercise 2.4.13** Let a, b, c, d be the rows of the matrix $$E = \begin{pmatrix} 2 & 1 & 0 & 1 & 3 & 7 \\ \hline 0 & 7 & 7 & 2 & 0 & 5 \\ 0 & 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$ Show directly from the definition a, b, c, d are linearly independent. A matrix with this staircase pattern is in *echelon form*. **Exercise 2.4.14** Let E be the matrix in Exercise **2.4.4**. Solve Ex = 0 to obtain the nullspace of E and the nullity of E. **Exercise 2.4.15** [27] Let x, y, z be three nonzero vectors, and w = 2y - 2x + z. If z = x - y, find r and s with w = rx + sy. Which of the following must be true? - 1. span(x, y, z) = span(w, y, z), - 2. span(w, z) = span(y, z), - 3. span(x, z) = span(x, z, w), - 4. span(x, z) = span(w, x), - 5. span(w, x, y) = span(w, x, z). **Exercise 2.4.16** [27] Let a be a linear combination of x, y, z. Select the best statement. - 1. span(u, v, w) is contained or equal to span(u, v, w, a), - 2. span(u, v, w) is equal to span(u, v, w, a), - 3. There is no obvious relationship between span(u, v, w) and span(u, v, w, a), - 4. span(u, v, w) is not equal to span(u, v, w, a). # 2.5 Zero Variance Directions Let x_1, x_2, \ldots, x_N be a dataset in \mathbf{R}^d . Then x_1, x_2, \ldots, x_N are N points in \mathbf{R}^d , and each x has d features, $x = (t_1, t_2, \ldots, t_d)$. From §1.4, the mean is $$\mu = \frac{x_1 + x_2 + \dots + x_N}{N}.$$ Center the dataset (see $\S1.3$) $$v_1 = x_1 - \mu, v_2 = x_2 - \mu, \dots, v_N = x_N - \mu,$$ and let A be the dataset matrix with columns v_1, v_2, \ldots, v_N . By (2.2.14), the variance is $$Q = \frac{v_1 \otimes v_1 + v_2 \otimes v_2 + \dots + v_N \otimes v_N}{N} = \frac{1}{N} A A^t.$$ (2.5.1) If u is a unit vector, the projection of the centered dataset onto the line through u results in the reduced dataset $$v_1 \cdot u, v_2 \cdot u, \dots, v_N \cdot u.$$ This reduced dataset is centered, and, by (2.2.13), its variance is $$q = \frac{(v_1 \cdot u)^2 + (v_2 \cdot u)^2 + \dots + (v_N \cdot u)^2}{N} = \frac{1}{N} v^t A^t A u = u \cdot Q u. \quad (2.5.2)$$ We obtain this result, which was first stated in §1.4. ## Variance of Reduced Dataset Let Q be the variance matrix of a dataset and let u be a unit vector. Then the variance of the reduced dataset onto the line through the vector u equals the quadratic function $u \cdot Qu$. A vector u is a zero variance direction if the reduced variance is zero, $$u \cdot Qu = 0.$$ We investigate zero variance directions, but first we need a definition. Let b be a scalar and u a nonzero vector in \mathbf{R}^d . A hyperplane orthogonal to v is the set of points x satisfying the equation $$u \cdot x + b = 0.$$ In \mathbb{R}^3 , a hyperplane is a plane, in \mathbb{R}^2 , a hyperplane is a line, and in \mathbb{R} , a hyperplane is a point, a threshold. In general, in \mathbb{R}^d , a hyperplane is (d-1)-dimensional, one less than the ambient dimension. When b=0, the hyperplane orthogonal to u is u^{\perp} (2.4.9). The hyperplane passes through a point μ if $$u \cdot \mu + b = 0.$$ By subtracting the last two equations, the equation of a hyperplane orthogonal to u and passing through μ is $$u \cdot (x - \mu) = 0.$$ #### **Zero Variance Directions** Let μ and Q be the mean and variance of a dataset in \mathbf{R}^d . Then $u \cdot Qu = 0$ is equivalent to every point in the dataset being in the hyperplane passing through μ and orthogonal to u, $$u \cdot (x - \mu) = 0.$$ This is easy to see. Let the dataset be x_1, x_2, \ldots, x_N , and center it to v_1, v_2, \ldots, v_N . If $u \cdot Qu = 0$, then, by (2.5.2), $v_k \cdot u = 0$ for $k = 1, 2, \ldots, N$. Thus x_1, x_2, \ldots, x_N lie on the hyperplane $u \cdot (x - \mu) = 0$. Here are some examples. In two dimensions \mathbb{R}^2 , a line is determined by a point on the line and a vector orthogonal to the line. If u = (a, b) is the vector orthogonal to the line and (x_0, y_0) , (x, y) are points on the line, then $(x, y) - (x_0, y_0)$ is orthogonal to u, or $$(a,b)\cdot((x,y)-(x_0,y_0))=0.$$ Writing this out, the equation of the line is $$a(x - x_0) + b(y - y_0) = 0$$, or $ax + by = c$, where $c = ax_0 + by_0$. If the mean and variance of a dataset are $\mu = (2,3)$ and $$Q = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix},$$ and u = (1,1), then Qu = 0, so $u \cdot Qu = 0$. Since the line x + y = 5 passes through the mean, the dataset lies on this line. We conclude this dataset is one-dimensional. If $$Q = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix},$$ and u = (x, y), then $$u \cdot Qu = 3x^2 + y^2,$$ so $u \cdot Qu$ is never zero unless v = 0. In this case, we conclude the dataset is two-dimensional, because it does not lie on a line. In three dimensions \mathbf{R}^3 , a plane is determined by a point (x_0, y_0, z_0) and a vector u = (a, b, c). The point is in the plane, and the vector is orthogonal to the plane. If (x, y, z) is any point in the plane, then $(x, y, z) - (x_0, y_0, z_0)$ is orthogonal to u, so the equation of the plane is $$(a, b, c) \cdot ((x, y, z) - (x_0, y_0, z_0)) = 0,$$ or $ax + by + cz = d,$ where $d = ax_0 + by_0 + cz_0$. Suppose we have a dataset in \mathbb{R}^3 with mean $\mu = (3, 2, 1)$, and variance $$Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \tag{2.5.3}$$ Let u = (2, -1, -1). Then Qu = 0, so $u \cdot Qu = 0$. We conclude the dataset lies in the plane $$(2,-1,-1)\cdot((x,y,z)-(x_0,y_0,z_0))=0,$$ or $2x-y-z=3.$ In this case, the dataset is two-dimensional, it lies in a plane. If a dataset has variance the 3×3 identity matrix I, then $u \cdot Iu$ is never zero unless u = 0. Such a dataset is three-dimensional, it does not lie in a plane. Sometimes there may be several zero variance directions. For example, for the variance (2.5.3) and u = (2, -1, -1), v = (0, 1, -1), we have both $$u \cdot Qu = 0$$ and $v \cdot Qv = 0$. From this we see the dataset corresponding to this Q lies in two planes: the plane orthogonal to u, and the plane orthogonal v. Since the intersection of two planes is a line, the dataset lies in a line, it is one-dimensional. Which line does this dataset lie in? Well, the line has to pass through the mean, and is orthogonal to u and v. If we find a vector b satisfying $b \cdot u = 0$ and $b \cdot v = 0$, then the line will pass through the mean and will be parallel to b. But we know how to find such a vector. Let A be the matrix with rows u, v. Then b in the nullspace of A fulfills the requirements. We obtain b = (1, 1, 1). Let v_1, v_2, \ldots, v_N be a centered dataset of vectors in \mathbf{R}^d , and let Q be the variance matrix of the dataset. If u is in the nullspace of Q, then Qu = 0, so $u \cdot Qu = 0$. This shows every vector in the nullspace is a zero variance direction. What is less clear is that this works in the other direction. #### Zero Variance Directions and Nullspace I Let Q be a variance matrix. Then the null space of Q equals the zero variance directions of Q. To see this, we use the quadratic equation. If Q is symmetric, then $u \cdot Qv = v \cdot Qu$. For t scalar and u, v vectors, since $Q \geq 0$, the function $$(v+tu)\cdot Q(v+tu)$$ is nonnegative for all t scalar. Expanding this function into powers of t, we see $$t^2u \cdot Qu + 2tu \cdot Qv + v \cdot Qv = at^2 + 2bt + c$$ is nonnegative for all t scalar. Thus the bottom of the parabola $at^2 + 2bt + c$ is nonnegative. By completing the square, the bottom is $c - b^2/a$, so $b^2 \le ac$, which yields $$(u \cdot Qv)^2 \le (u \cdot Qu)(v \cdot Qv). \tag{2.5.4}$$ Now we can derive the result. If u is a zero variance direction, then $u \cdot Qu = 0$. By (2.5.4), this implies $u \cdot Qv = 0$ for all v, so Qu = 0, so u is in the nullspace of Q. This derivation is valid for any nonnegative matrix Q, not just variance matrices. Later (§3.2) we see every nonnegative matrix is the variance matrix of a dataset. Based on the above result, here is code that returns zero variance directions. from numpy import * from scipy.linalg import null_space from numpy.random import default_rng samples = default_rng().random ``` d, N = 2, 20 dataset = samples((d,N)) def zero_variance(dataset): Q = cov(dataset) return null_space(Q) zero_variance(dataset) ``` Let A be an $N \times d$ dataset matrix, and let Q be the variance of the dataset. If the dataset is centered, by (2.2.20), $Q = A^t A/N$. Then the nullspace of Q equals the nullspace of $A^t A$, which equals the nullspace of A. We conclude ## Zero Variance Directions and Nullspace II Let Q be a variance matrix of a centered dataset A. Then the nullspace of A equals the zero variance directions of Q. Suppose the dataset is $$(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15), (16, 17, 18, 19, 20).$$ This is four vectors in \mathbb{R}^5 . Since it is only four vectors, it is at most a four-dimensional dataset. The code zero_variance returns three vectors $$(1, -2, 1, 0, 0), (2, -3, 0, 1, 0), (3, -4, 0, 0, 1).$$ Thus this dataset is orthogonal to three directions, hence lies in the intersection of three hyperplanes. Each hyperplane is one condition, so each hyperplane cuts the dimension down by one, so the dimension of this dataset is 5-3=2. Dimension of a dataset is discussed further in §2.9. #### 2.6 Pseudo-Inverse What is the pseudo-inverse? In §2.3, we used both the inverse and the pseudo-inverse to solve Ax = b, but we didn't explain the framework behind them. It turns out the framework is best understood geometrically. Throughout this section, we refer to $$Ax = b$$ as the linear system.
Think of b and Ax as points, and measure the distance between them, and think of x and the origin 0 as points, and measure the distance between them (Figure 2.2). Fig. 2.2 The points 0, x, Ax, and b. If the linear system is solvable, then, among all solutions x^* , select the solution x^+ closest to 0. More generally, if the linear system is not solvable, select the points x^* so that Ax^* is closest to b, then, among all such x^* , select the point x^+ closest to the origin (this is "closest twice"). Even though the point x^+ may not solve the linear system, this procedure results in a uniquely determined x^+ : While there may be several points x^* , there is only one x^+ . Figure 2.3 summarizes the situation for a 2×2 matrix A with rank(A) = 1. **Fig. 2.3** The points x, Ax, the points x^* , Ax^* , and the point x^+ . Key concepts in this section are the residual $$|Ax - b|^2 \tag{2.6.1}$$ and the regression equation $$A^t A x = A^t b. (2.6.2)$$ Then ## Zero Residual x is a solution of the linear system iff the residual (2.6.1) is zero. The results in this section are as follows. Let A be any matrix. There is a unique matrix A^+ — the pseudo-inverse of A — with the following properties. - The linear system is solvable when $b = AA^+b$. - The regression equation is always solvable. - $x^+ = A^+ b$ is a solution of - 1. the linear system, if it is solvable. - 2. the regression equation, always. - In either case, - 1. there is exactly one solution x^* with minimum norm. - 2. Among all solutions, x^+ has minimum norm. - 3. Every other solution is $x^* = x^+ + v$ for some v in the nullspace of A. For A as in (2.3.4) and b = (-9, -3, 3, 9, 10), the linear system is $$x + 6y + 11z = -9$$ $$2x + 7y + 12z = -3$$ $$3x + 8y + 13z = 3$$ $$4x + 9y + 14z = 9$$ $$5x + 10y + 15z = 10$$ (2.6.3) and the regression equation is $$11x + 26y + 41z = 16$$ $$13x + 33y + 53z = 13$$ $$41x + 106y + 171z = 36.$$ (2.6.4) Let b be any vector, not necessarily in the column space of A. To see how close we can get to solving the linear system, we minimize the residual (2.6.1). We say x^* is a residual minimizer if $$|Ax^* - b|^2 = \min_{x} |Ax - b|^2.$$ (2.6.5) A residual minimizer always exists. #### Existence of Residual Minimizer There is a residual minimizer x^* in the row space of A. The derivation of this technical result is in $\S4.3$, see (4.3.10), (4.3.11). ## Regression Equation x^* is a residual minimizer iff x^* solves the regression equation. To see this, let v be any vector, and t a scalar. Insert $x=x^*+tv$ into the residual and expand in powers of t to obtain $$|Ax - b|^2 = |Ax^* - b|^2 + 2t(Ax^* - b) \cdot Av + t^2|Av|^2 = f(t).$$ If x^* is a residual minimizer, then f(t) is minimized when t=0. But a parabola $$f(t) = \alpha + 2\beta t + \gamma t^2$$ is minimized at t=0 only when $\beta=0$. Thus the linear coefficient vanishes, $\beta=(Ax^*-b)\cdot Av=0$. This implies $$A^t(Ax^* - b) \cdot v = (Ax^* - b) \cdot Av = 0.$$ Since v is any vector, this implies $$A^t(Ax^* - b) = 0,$$ which is the regression equation. Conversely, if the regression equation holds, then the linear coefficient in the parabola f(t) vanishes, so t=0 is a minimum, establishing that x^* is a residual minimizer. If x_1 and x_2 are solutions of the regression equation, then $$A^{t}A(x_{1}-x_{2}) = A^{t}Ax_{1} - A^{t}Ax_{2} = A^{t}b - A^{t}b = 0,$$ so $x_1 - x_2$ is in the nullspace of A^tA . But from §2.4, the nullspace of A^tA equals the nullspace of A. We conclude $x_1 - x_2$ is in the nullspace of A. This establishes ## **Multiple Solutions** Any two residual minimizers differ by a vector in the nullspace of A. We say x^+ is a $minimum\ norm$ residual minimizer if x^+ is a residual minimizer and $$|x^+|^2 \le |x^*|^2$$ for any residual minimizer x^* . Since any two residual minimizers differ by a vector in the nullspace of A, x^+ is a minimum norm residual minimizer if x^+ is a residual minimizer and $$|x^+|^2 \le |x^+ + v|^2$$ for any v in the nullspace of A. # Minimum Norm Residual Minimizer Let x^* be a residual minimizer. Then x^* is a minimum norm residual minimizer iff x^* is in the row space of A. Since we know from above there is a residual minimizer in the row space of A, we always have a minimum norm residual minimizer. Let v be in the nullspace of A, and write $$|x^* + v|^2 = |x^*|^2 + 2x^* \cdot v + |v|^2.$$ This shows x^* is a minimum norm solution of the regression equation iff $$2x^* \cdot v + |v|^2 \ge 0. \tag{2.6.6}$$ If x^* is in the row space of A, then $x^* \cdot v = 0$, so (2.6.6) is valid. Conversely, if (2.6.6) is valid for every v in the nullspace of A, replacing v by tv yields $$2tx^* \cdot v + t^2|v|^2 > 0.$$ Dividing by t and inserting t = 0 yields $$x^* \cdot v > 0.$$ Since both $\pm v$ are in the nullspace of A, this implies $\pm x^* \cdot v \geq 0$, hence $x^* \cdot v = 0$. Since the row space is the orthogonal complement of the nullspace, the result follows. Now we use this to show #### Uniqueness There is exactly one minimum norm residual minimizer x^+ . If x_1^+ and x_2^+ are minimum norm residual minimizers, then $v = x_1^+ - x_2^+$ is both in the row space and in the nullspace of A, so $x_1^+ - x_2^+ = 0$. Hence $x_1^+ = x_2^+$. Putting the above all together, each vector b leads to a unique x^+ . Defining A^+ by setting $$x^+ = A^+ b.$$ we obtain A^+ , the *pseudo-inverse* of A. Notice if A is, for example, 5×4 , then Ax = b implies x is a 4-vector and b is a 5-vector. Then from $x = A^+b$, it follows A^+ is 4×5 . Thus the shape of A^+ equals the shape of A^t . Summarizing what we have so far, ## Regression Equation is Always Solvable The regression equation is always solvable. The solution of minimum norm is $x^+ = A^+b$. Any other solution differs by a vector in the nullspace of A. For A as in (2.3.4) and b = (-9, -3, 3, 9, 10), $$x^{+} = A^{+}b = \frac{1}{15} \begin{pmatrix} 82\\25\\-32 \end{pmatrix}$$ is the minimum norm solution of the regression equation (2.6.4). Returning to the linear system Ax = b, we show #### Linear System Versus Regression Equation If the linear system is solvable, then every solution of the regression equation is a solution of the linear system, and vice-versa. We know any two solutions of the linear system differ by a vector in the nullspace of A (2.4.11), and any two solutions of the regression equation (2.6.2) differ by a vector in the nullspace of A (above). If x is a solution of the linear system, then, by multiplying the linear system by A^t , x is a solution of the regression equation (2.6.2). Since $x^+ = A^+b$ is a solution of the regression equation, $x^+ = x + v$ for some v in the nullspace of A, so $$Ax^{+} = A(x + v) = Ax + Av = b + 0 = b.$$ This shows x^+ is a solution of the linear system. Since all other solutions differ by a vector v in the nullspace of A, this establishes the result. Now we can state when the linear system is solvable, # Solvability of Ax = b The linear system is solvable iff $b = AA^+b$. When this happens, $x^+ = A^+b$ is the solution of minimum norm. If the linear system is solvable, then from above, x^+ is a solution, so $$AA^{+}b = A(A^{+}b) = Ax^{+} = b.$$ Conversely, if $AA^+b=b$, then clearly $x^+=A^+b$ is a solution of the linear system. When the linear system is solvable, the linear system and the regression equation have the same solutions, so x^+ is the minimum norm solution of the linear system. For example, let b = (-9, -3, 3, 9, 10), and let A be as in (2.3.4). Since $$AA^{+}b = \begin{pmatrix} -8\\ -3\\ 2\\ 7\\ 12 \end{pmatrix} \tag{2.6.7}$$ is not equal to b, the linear system Ax = b is not solvable. Suppose A is invertible. Then the linear system has only the solution $x = A^{-1}b$, so $A^{-1}b$ is the minimum norm residual minimizer. We conclude # Inverse Equals Pseudo-Inverse If A is invertible, then $A^+ = A^{-1}$. The key properties [25] of A^+ are (2.6.8) ## Properties of Pseudo-Inverse The pseudo-inverse of A is the unique matrix A^+ satisfying $$\mathbf{A}.\ AA^{+}A = A$$ **B**. $$A^+AA^+ = A^+$$ \mathbf{C} . AA^+ is symmetric **D**. A^+A is symmetric The verification of these properties is very enlightening, so we do it carefully. Let u be a vector and set b = Au. Then the residual $$|Ax - b|^2 = |Ax - Au|^2$$ is minimized at x = u. Since $A^+b = A^+Au$ is the minimum norm residual minimizer, u and A^+Au differ by a vector v in the nullspace of A, $$u = A^{+}Au + v. (2.6.9)$$ Since Av = 0, multiplying both sides by A leads to $$Au = AA^{+}Au$$. Since u was any vector, this yields \mathbf{A} . Now let w be a vector and set $u = A^+w$. Inserting into (2.6.9) yields $$A^+w = A^+AA^+w + v$$ for some v in the nullspace of A. But both A^+w and A^+AA^+w are in the row space of A, hence so is v. Since v is in both the nullspace and the row space, v is orthogonal to itself, so v = 0. This implies $A^+AA^+w = A^+w$. Since w was any vector, we obtain \mathbf{B} . Since A^+b solves the regression equation, $A^tAA^+b=A^tb$ for any vector b. Hence $A^tAA^+=A^t$. With $P=AA^+$, $$P^{t}P = (AA^{+})^{t}(AA^{+}) = (A^{+})^{t}A^{t}AA^{+} = (A^{+})^{t}A^{t} = P^{t}.$$ Since the left side is symmetric, so is P^t . Hence P is symmetric, obtaining \mathbf{C} . For any vector x, $$A(x - A^+Ax) = Ax - AA^+Ax = 0,$$ so $x - A^+Ax$ is in the nullspace of A. For any y, A^+Ay is in the row space of A. Since the row space and the nullspace are orthogonal, $$(x - A^+ Ax) \cdot A^+ Ay = 0.$$ Let $P = A^+A$. This implies $$x \cdot Py = Px \cdot Py = x \cdot P^t Py$$ Since this is true for any vectors x and y, $P = P^t P$. This shows $P = A^+ A$ is symmetric, obtaining **D**. Having arrived at A, B, C, D, the reasoning is reversible: It can be shown any matrix A^+ satisfying A, B, C, D must equal the pseudo-inverse (see Exercise 2.7.12). An immediate consequence of (2.6.8) is ####
Pseudo-Inverse of Pseudo-Inverse $(A^+)^+ = A$ for any matrix A. Also we have ## Pseudo-Inverse and Transpose If U has orthonormal columns or orthonormal rows, then $U^+ = U^t$. From (2.2.9), such a matrix U satisfies $UU^t = I$ or $U^tU = I$. In either case, A, B, C, D are immediate consequences. In general, $(AB)^+ = B^+A^+$ is not correct. However, in special cases, it is correct. # Exercises **Exercise 2.6.1** Let A be the 1×3 matrix (1,2,3). What is A^+ ? **Exercise 2.6.2** Let A(N,d) be as in Exercise **2.4.9**, and let A = A(6,4). Let b = (1,1,1,1,1,1). Write out Ax = b as a linear system. How many equations, how many unknowns? **Exercise 2.6.3** With A and b as in Exercise **2.6.2**, is Ax = b solvable? If so, provide a solution. 2.7. PROJECTIONS 97 **Exercise 2.6.4** Continuing with the same A and b, write out the corresponding regression equation. How many equations, how many unknowns? **Exercise 2.6.5** With A and b as in Exercise **2.6.2**, is the regression equation solvable? If so, provide a solution. **Exercise 2.6.6** With A and b as in Exercise **2.6.2**, what is the minimum norm residual minimizer x^+ ? **Exercise 2.6.7** Let μ be a unit vector, and let $Q = I - \mu \otimes \mu$. Use (2.6.8) and Exercise 2.2.3 to show $Q^+ = Q$. Exercise 2.6.8 Use (2.6.8) to show the transpose of the pseudo-inverse is the pseudo-inverse of the transpose, $$(A^t)^+ = (A^+)^t.$$ **Exercise 2.6.9** Let Q be symmetric. Show Q^+ is symmetric. **Exercise 2.6.10** Let Q be symmetric. Show Q and Q^+ commute, $$QQ^+ = Q^+Q.$$ **Exercise 2.6.11** Let A be any matrix. Then the nullspace of A equals the nullspace of A^+A . Use (2.6.8). **Exercise 2.6.12** Let A be any matrix. Then the row space of A equals the row space of A^+A . **Exercise 2.6.13** Let A be any matrix. Then the column space of A equals the column space of AA^+ . **Exercise 2.6.14** Let A be any matrix and $Q = A^t A$. Then $Q^+ = A^+ (A^+)^t$. **Exercise 2.6.15** Let A be a matrix with $Q = A^t A$ invertible. Show $A^+ = Q^{-1}A^t$ and $A^+A = I$. In this case, A^+ is called a *left inverse*. **Exercise 2.6.16** Let A be a matrix with $Q = AA^t$ invertible. Show $A^+ = A^tQ^{-1}$ and $AA^+ = I$. In this case, A^+ is called a *right inverse*. ## 2.7 Projections Let A be any matrix. In this section, we study projection matrices P, and we show - $P = AA^+$ is the projection matrix onto the column space of A, - $P = A^+A$ is the projection matrix onto the row space of A, • $P = I - A^{+}A$ is the projection matrix onto the null space of A, Let u be a unit vector, and let b be any vector. Let span(u) be the line through u (Figure 2.4). The projection of b onto span(u) is the vector v in span(u) that is closest to b. It turns out this closest vector v equals Pb for some matrix P, the projection matrix. Since span(u) is a line, the projected vector Pb is a multiple tu of u. From Figure 2.4, b - Pb is orthogonal to u, so $$0 = (b - Pb) \cdot u = b \cdot u - Pb \cdot u = b \cdot u - t u \cdot u = b \cdot u - t.$$ Solving for t, this implies $t = b \cdot u$. Thus $$Pb = (b \cdot u)u = (u \otimes u)b. \tag{2.7.1}$$ From here, we conclude $P = u \otimes u$. Equivalently, if U is the matrix with the single column u, we obtain $P = UU^t$. Notice Pb = b when b is already on the line through u. In other words, the projection of a vector onto a line equals the vector itself when the vector is already on the line. To summarize, the *projected vector* is the vector $(b \cdot u)u$, and the *reduced vector* is the scalar $b \cdot u$. If U is the matrix with the single column u, then the reduced vector is U^tb and the projected vector is UU^tb . Fig. 2.4 Projecting onto a line. Now we project onto a plane. Let u, v be an *orthonormal* pair of vectors, so $u \cdot v = 0$, $u \cdot u = 1 = v \cdot v$. We project a vector b onto span(u, v). As before, 2.7. PROJECTIONS 99 there is a matrix P, the projection matrix, such that the projection of b onto the plane equals Pb. Then b-Pb is orthogonal to the plane (Figure 2.5), which means b-Pb satisfies $$(b - Pb) \cdot u = 0$$ and $(b - Pb) \cdot v = 0$. Since Pb lies in the plane, Pb = ru + sv is a linear combination of u and v. Inserting Pb = ru + sv, we obtain $$r = b \cdot u, \qquad s = b \cdot v.$$ If U is the matrix with columns u, v, by (2.2.11) and (2.2.14), this yields, $$Pb = (b \cdot u)u + (b \cdot v)v = (u \otimes u + v \otimes v)b = UU^tb,$$ Hence the projection matrix is $P = UU^t$. Notice Pb = b when b is already in the plane. In other words, the projection of a vector onto a plane equals the vector itself when the vector is already in the plane. To summarize, here the *projected vector* is the vector UU^tb , and the *reduced vector* is the vector U^tb . The projected vector has the same dimension as the original vector, and the reduced vector is in \mathbb{R}^2 . Fig. 2.5 Projecting onto a plane, Pb = ru + sv. We define projection matrices in general. Let S be a span. A matrix P is the projection matrix onto S if - 1. Pv is in S for any vector v, - 2. Pv = v if v is in S, - 3. v Pv is orthogonal to S for any vector v. We say *the* projection matrix onto S because there is only one such matrix corresponding to a given S, see Exercise 2.7.10. Here is a characterization without mentioning S. A matrix P is a projection matrix if - 1. $P^2 = P$, - 2. $P^t = P$. What is the relation between these two versions? We show they are the same. #### Characterization of Projections If P is the projection matrix onto a span S, then P is a projection matrix. Conversely, if P is a projection matrix, then P is the projection matrix onto the column space S of P. To prove this, suppose P is the projection matrix onto some span S. For any v, by 1., Pv is in S. By 2., P(Pv) = Pv. Hence $P^2 = P$. Also, for any u and v, Pv is in S, and u - Pu is orthogonal to S. Hence $$(u - Pu) \cdot Pv = 0$$ which implies $$u \cdot Pv = (Pu) \cdot (Pv).$$ Switching u and v, $$v \cdot Pu = (Pv) \cdot (Pu),$$ Hence $$u \cdot (Pv) = (Pu) \cdot v,$$ which implies $P = P^t$. For the other direction, suppose P is a projection matrix, and let S be the column space of P. Then a vector x is in S iff x is of the form x = Pv. This establishes 1. above. Since $$Px = P(Pv) = P^2v = Pv = x,$$ this establishes 2. above. Similarly, $P^t = P$ implies 3. above. 2.7. PROJECTIONS 101 ## Projection Onto Column Space Let A be any matrix. Then the projection matrix onto the column space of A is $$P = AA^{+}. (2.7.2)$$ To see this, let $P = AA^+$. By (2.6.8), $$P^2 = AA^+AA^+ = (AA^+A)A^+ = AA^+ = P$$ and P is symmetric. Hence P is a projection matrix. By the previous result, P is the projection matrix onto the column space of $P = AA^+$. But by Exercise **2.6.13**, the column spaces of A and of P agree. Thus P is the projection matrix onto the column space of A. Now let $x = A^+b$. Then $Ax = AA^+b = Pb$ is the projection of b onto the column space of A. If the columns of A are v_1, v_2, \ldots, v_d , and $x = (t_1, t_2, \ldots, t_d)$, then by matrix-vector multiplication, $$Pb = t_1 v_1 + t_2 v_2 + \dots + t_d v_d.$$ Since the reduced vector x consists of the coefficients when writing Pb as a linear combination of the columns of A, this shows A^+b is the reduced vector. ``` from numpy import * from scipy.linalg import pinv # projection of column vector b # onto column space of A # assume len(b) == len(A.T) def project(A,b): Aplus = pinv(A) x = dot(Aplus,b) # reduced return dot(A,x) # projected ``` ## **Projected and Reduced Vectors** Let A be a matrix and b a vector, and project onto the column space of A. Then the projected vector is $Pb = AA^+b$ and the reduced vector is $x = A^+b$. For A as in (2.3.4) and b = (-9, -3, 3, 9, 10) the reduced vector onto the column space of A is $$x = A^+b = \frac{1}{15}(82, 25, -32),$$ and the projected vector onto the column space of A is $$Pb = Ax = AA^+b = (-8, -3, 2, 7, 12).$$ The projection matrix onto the column space of A is $$P = AA^{+} = \frac{1}{10} \begin{pmatrix} 6 & 4 & 2 & 0 & -2 \\ 4 & 3 & 2 & 1 & 0 \\ 2 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 3 & 4 \\ -2 & 0 & 2 & 4 & 6 \end{pmatrix}.$$ In the same way, one can show #### Projection Onto Row Space The projection matrix onto the row space of A is $$P = A^{+}A. (2.7.3)$$ For A as in (2.3.4), the projection matrix onto the row space is $$P = A^{+}A = \frac{1}{6} \begin{pmatrix} 5 & 2 - 1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$$ When the columns of a matrix U are orthonormal, in the previous section we saw $U^+ = U^t$, so we have ## Projection onto Orthonormal Vectors If the columns of U are orthonormal, the projection matrix onto the column space of U is $$P = UU^t (2.7.4)$$ Here the projected vector is UU^tb , and the reduced vector is U^tb . The code here is 2.7. PROJECTIONS 103 ``` from numpy import * # projection of column vector b # onto column space of U # with orthonormal columns # assume len(b) == len(U) def project_to_ortho(U,b): x = dot(U.T,b) # reduced return dot(U,x) # projected ``` Let v_1, v_2, \ldots, v_N be a dataset in \mathbf{R}^d , and let U be a $d \times n$ matrix with orthonormal columns. Then the projection matrix onto the column space of U is $P = UU^t$, and P is the projection onto an orthonormal span. In this case, the dataset $U^tv_1, U^tv_2, \ldots, U^tv_N$ is the reduced dataset, and $UU^tv_1, UU^tv_2, \ldots, UU^tv_N$ is the projected dataset. The projected dataset is in \mathbb{R}^d , and the reduced dataset is in \mathbb{R}^n . Table 2.6 summarizes the relationships. | dataset | v_k in \mathbf{R}^d , | $k = 1, 2, \dots, N$ | |-----------|-------------------------------|----------------------| | reduced | $U^t v_k$ in \mathbf{R}^n , | $k = 1, 2, \dots, N$ | | projected | UU^tv_k in \mathbf{R}^d , | $k = 1, 2, \dots, N$ | **Table 2.6** Dataset, reduced dataset, and projected dataset, n < d. ``` from numpy import * from scipy.linalg import pinv # projection of
dataset # onto column space of A # Aplus = A.T # orthonormal columns Aplus = pinv(A) # any matrix reduced = array([dot(Aplus,v) for v in dataset]) projected = array([dot(A,x) for x in reduced]) ``` Let S and T be spans. Let S+T consist of all sums of vectors u+v with u in S and v in T. Then a moment's thought shows S+T is itself a span. When the intersection of S and T is the zero vector, we write $S \oplus T$, and we say $S \oplus T$ is the *direct sum* of S and T. Let S be a span and let S^{\perp} consist of all vectors orthogonal to S. We call S^{\perp} the *orthogonal complement*. This is pronounced "S-perp". If v is in both S and in S^{\perp} , then v is orthogonal to itself, hence v = 0. From this, we see $S + S^{\perp}$ is a direct sum $S \oplus S^{\perp}$. ## Direct Sum and Orthogonal Complement I If S is a span in \mathbb{R}^d , then $$\mathbf{R}^d = S \oplus S^{\perp}.\tag{2.7.5}$$ This is an immediate consequence of what we already know. Let P be the projection matrix onto S. Since any vector v in \mathbf{R}^d may be written $$v = Pv + (v - Pv),$$ we see any vector is a sum of a vector in S and a vector in S^{\perp} . Let S be the span of a dataset $x_1, x_2, ..., x_N$. If S does not equal \mathbf{R}^d , then there is a nonzero vector in S^{\perp} . This shows ## Direct Sum and Orthogonal Complement II If a dataset spans \mathbf{R}^d and v is orthogonal to the dataset, then v = 0. If v is not zero and is orthogonal to the dataset, then the dataset does not span \mathbf{R}^d . Another way of saying the same thing: A vector v is orthogonal to the whole space iff v is zero. An important example of (2.7.5) is the relation between the row space and the nullspace of a matrix. In §2.4, we saw that, for any matrix A, the row space and the nullspace are orthogonal complements. Taking S = nullspace in (2.7.5), we have the important ## Null space plus Row Space Equals Source Space If A is an $N \times d$ matrix, $$nullspace \oplus rowspace = \mathbf{R}^d, \tag{2.7.6}$$ and the nullspace and row space are orthogonal to each other. 2.7. PROJECTIONS 105 From this, #### Projection Onto Null Space The projection matrix onto the nullspace of A is $$P = I - A^{+}A. (2.7.7)$$ For A as in (2.3.4), the projection matrix onto the nullspace is $$P = I - A^{+}A = \frac{1}{6} \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$ Here $P = u \otimes u$, where $u = (1, -2, 1)/\sqrt{6}$, in agreement with (2.7.1). The result (2.7.6) can be written as ## Row Rank plus Nullity equals Source Space Dimension For any matrix, the row rank plus the nullity equals the dimension of the source space. If the matrix is $N \times d$, r is the rank, and n is the nullity, then $$r + n = d$$. Let S be the column space of a matrix A, and let P be the projection matrix onto S. We end the section by establishing the claim made at the start of the section, that Pb is the point in S that is closest to b. Since every point in S is of the form Ax, we need to check $$|Pb - b|^2 = \min_{x} |Ax - b|^2.$$ But this was already done in §2.3, since $Pb = AA^+b = Ax^+$ where $x^+ = A^+b$ is a residual minimizer. #### Projection is the Nearest Point in the Span Let $Pb = AA^+b$ be the projection of b onto the column space of A, and let $x^+ = A^+b$ be the reduced vector. Then $$|Ax^{+} - b|^{2} = \min_{x} |Ax - b|^{2}.$$ (2.7.8) #### Exercises **Exercise 2.7.1** Let A be a 7×12 matrix. What is the greatest the rank of A can be? What is the least the rank of A can be? What if A is 12×7 ? **Exercise 2.7.2** Let A be a 7×12 matrix. What is the greatest the nullity of A can be? What is the least the nullity of A can be? What if A is 12×7 ? **Exercise 2.7.3** Let A be a matrix and let u_1, u_2, \ldots, u_r be an orthonormal basis for the column space of A. Show that the projection onto the column space of A is $$P = u_1 \otimes u_1 + u_2 \otimes u_2 + \dots + u_r \otimes u_r.$$ **Exercise 2.7.4** Let P be the projection matrix onto the column space of a matrix A. Use Exercise 2.7.3 to show trace(P) equals the rank of A. **Exercise 2.7.5** Let A be a 10×7 matrix and let $Q = A^t A$. Then Q is 7×7 . If the row rank of A is 5, what is the row rank of Q? **Exercise 2.7.6** Let A be the dataset matrix of the centered MNIST dataset, so the shape of A is 60000×784 . Using Exercise **2.7.4** and sympy, compute the rank of A. **Exercise 2.7.7** If μ is a unit vector, then $P = I - \mu \otimes \mu$ is a projection. **Exercise 2.7.8** If μ and ν are orthogonal unit vectors, then $P = I - \mu \otimes \mu - \nu \otimes \nu$ is a projection. **Exercise 2.7.9** Let S be a span, and let P be the projection matrix onto S. Use P to show $$\left(S^{\perp}\right)^{\perp} = S. \tag{2.7.9}$$ $(S \subset (S^{\perp})^{\perp}$ is easy. For $S \supset (S^{\perp})^{\perp}$, show $|v - Pv|^2 = 0$ when v in $(S^{\perp})^{\perp}$.) **Exercise 2.7.10** Let S be a span and suppose P and Q are both projection matrices onto S. Show $$P = Q$$. **Exercise 2.7.11** Let A be any matrix. Then the nullspace and row space of A equal the nullspace and row space of $(A^+)^t$. (Write out the projections onto the row spaces.) **Exercise 2.7.12** Suppose ABA = A, BAB = B, and BA, AB are symmetric. Show $B = A^+$ in four steps. Let b be any vector. Step 1: $(BA)(A^+A)$ is symmetric. Step 2: $A^+A = BA$. Step 3: x = Bb satisfies $A^tAx = A^tb$. Step 4: x = Bb is in the row space of A. 2.8. BASIS 107 #### 2.8 Basis Let S be the span of vectors v_1, v_2, \ldots, v_N . Then there are many other choices of spanning vectors for S. For example, $v_1 + v_2, v_2, v_3, \ldots, v_N$ also spans S. If S cannot be spanned by fewer than N vectors, then we say v_1, v_2, \ldots, v_N is a basis for S, and we call N is the dimension of S. In other words, when N is the smallest number of spanning vectors, we say N is the dimension dim S of S, and v_1, v_2, \ldots, v_N is a *minimal spanning* set for S. This definition is important enough to repeat, #### Basis and Dimension Definition A basis for a span S is a minimal spanning set of vectors. The dimension of S is the number of vectors in any basis for S. A span has many choices for minimal spanning sets, but a span's dimension, as the number of vectors in any minimal spanning set, is uniquely determined. Here are two immediate consequences of this terminology. # Span of N Vectors If $S = span(v_1, v_2, \dots, v_N)$, then dim $S \leq N$. # Larger Span has Larger Dimension If a span S_1 is contained in a span S_2 , then dim $S_1 \leq \dim S_2$. With this terminology, - rowspace() returns a basis of the row space, - columnspace() returns a basis of the column space, - nullspace() returns a basis for the nullspace, - row rank equals the dimension of the row space, - column rank equals the dimension of the column space, - nullity equals the dimension of the nullspace. Let S be the span of vectors v_1, v_2, \ldots, v_N . How can we check if these vectors constitute a basis for S? The answer is the main result of the section. # Spanning Plus Linearly Independent Equals Basis Let S be the span of vectors v_1, v_2, \ldots, v_N . Then the vectors are a basis for S iff they are linearly independent. Remember, to check for linear independence of given vectors, assemble the vectors as columns of a matrix A, and check whether A.nullspace() equals zero. If that is the case, the vectors are a basis for their span. If not, the vectors are not a basis for their span. The proof of the main result is at the end of the section. When a basis v_1, v_2, \ldots, v_N consists of orthogonal vectors, we say v_1, v_2, \ldots, v_N is an *orthogonal basis*. When v_1, v_2, \ldots, v_N are also unit vectors, we say v_1, v_2, \ldots, v_N is an *orthonormal basis*. As we saw in §2.4, orthonormal vectors v_1, v_2, \ldots, v_N are linearly independent, so, by the main result, v_1, v_2, \ldots, v_N are an orthonormal basis for their span. Fig. 2.7 Relations between vector classes. Here is an example. The columns of the 3×3 identity matrix I are $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. Since the nullspace of I is zero, e_1 , e_2 , e_3 2.8. BASIS 109 are linearly independent. Hence the standard basis e_1 , e_2 , e_3 is indeed a basis for \mathbb{R}^3 , i.e. a minimal spanning set of vectors for \mathbb{R}^3 . From this, we conclude $\dim \mathbb{R}^3 = 3$. The statement dim $\mathbf{R}^3 = 3$ may at first seem trivial or obvious. But, if we flesh this out following our terminology above, the statement is saying that any minimal spanning set of vectors in \mathbf{R}^3 must have exactly 3 vectors. Stated in this manner, the statement has content. Since we can do the same calculation with the standard basis $$e_1 = (1, 0, \dots, 0),$$ $e_2 = (0, 1, 0, \dots, 0),$ $\dots = \dots$ $e_d = (0, 0, \dots, 0, 1),$ in \mathbf{R}^d , we conclude e_1, e_2, \ldots, e_d are linearly independent, so # Dimension of Euclidean Space The dimension of \mathbf{R}^d is d. The MNIST dataset consists of vectors v_1, v_2, \ldots, v_N in \mathbf{R}^d , where N = 60000 and d = 784. For the MNIST dataset, the dimension is 712, as returned by the code ``` from numpy.linalg import matrix_rank # dataset is Nxd array mu = mean(dataset,axis=0) vectors = dataset - mu matrix_rank(vectors) ``` In particular, since 712 < 784, approximately 10% of pixels are never touched by any image. For example, a likely pixel to remain untouched is at the top left corner (0,0). For this dataset, there are 784 - 712 = 72 zero variance directions. We pose the following question: What is the least n for which the first n images are linearly dependent? Since the dimension of the sample space is 784, we must have $n \leq 784$. To answer the question, we compute the rank of the first n vectors for $n = 1, 2, 3, \ldots$, and continue until we have linear
dependence of v_1, v_2, \ldots, v_n . If we load MNIST as dataset, as in §1.2, and run the code below, we obtain n = 560 (Figure 2.8). matrix_rank is discussed in §2.9. ``` from numpy import * from numpy.linalg import matrix_rank # dataset is Nxd array def find_first_defect(dataset): d = len(dataset[0]) previous = 0 for n in range(len(dataset)): r = matrix_rank(dataset[:n+1,:]) print((r,n+1),end=",") if r == previous: break if r == d: break previous = r ``` 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 65, 65, 67, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 1446, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 31, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 237, 328, 239, 309, 331, 332, 333, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 391, 392, 393, 394, 394, 341, 342, 343, 344, 345, 346, 347, 348, 349, 340, 341, 342, 434, 344, 445, 446, 447, 448, 449, 459, 450, 451, 452, 453, 454, 455, 466, 467, 488, 489, 440 Fig. 2.8 First defect for MNIST. Let v_1, v_2, \ldots, v_N be a dataset. We want to compute the dimensions of the first n vectors, $n = 1, 2, 3, \ldots$, ``` d_1 = \dim(v_1), \qquad d_2 = \dim(v_1, v_2), \qquad d_3 = \dim(v_1, v_2, v_3), \qquad \text{and so on} ``` This we call the *dimension staircase*. For example, Figure 2.9 is the dimension staircase for $$v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (1, 1, 0), v_4 = (3, 4, 0), v_5 = (0, 0, 1).$$ In Figure 2.9, we call the points (3,2) and (4,2) defects. 2.8. BASIS 111 In the code, the staircase is drawn by stairs(X,Y), where the horizontal points X and the vertical values Y satisfy len(X) == len(Y) + 1. In Figure 2.9, X = [1,2,3,4,5,6], and Y = [1,2,2,2,3]. Fig. 2.9 The dimension staircase with defects. Fig. 2.10 The dimension staircase for the MNIST dataset. With the MNIST dataset loaded as vectors, here is code returning Figures 2.9 and 2.10. This code is not efficient, but it works. Ideally the code should be run in sympy using exact arithmetic. However, this takes too long, so we use numpy.linalg.matrix_rank. Because datasets consist of floats in numpy, the matrix_rank and dimensions are approximate not exact. For more on this, see approximate rank in §3.2. ``` from numpy import * from matplotlib.pyplot import * from numpy.linalg import matrix_rank # dataset is Nxd array def dimension_staircase(dataset): N = len(dataset) rmax = matrix_rank(dataset) dimensions = [] for n in range(N): r = matrix_rank(dataset[:n+1,:]) dimensions.append(r) if r == rmax: break title("number of vectors = " + str(n+1) + ", rank = " + str(rmax)) stairs(dimensions, range(1,n+3),linewidth=2,color='red') grid() show() ``` Proof of main result. Here we derive: Let S be the span of v_1, v_2, \ldots, v_N . Then v_1, v_2, \ldots, v_N is a basis for S iff v_1, v_2, \ldots, v_N are linearly independent. Suppose v_1, v_2, \ldots, v_N are not linearly independent. Then v_1, v_2, \ldots, v_N are linearly dependent, which means one of the vectors, say v_1 , is a linear combination of the other vectors v_2, v_3, \ldots, v_N . Then any linear combination of v_1, v_2, \ldots, v_N is necessarily a linear combination of v_2, v_3, \ldots, v_N , thus $$span(v_1, v_2, \dots, v_N) = span(v_2, v_3, \dots, v_N).$$ This shows v_1, v_2, \ldots, v_N is not a minimal spanning set, and completes the derivation in one direction. In the other direction, suppose v_1, v_2, \ldots, v_N are linearly independent, and suppose b_1, b_2, \ldots, b_d is a minimal spanning set. Since b_1, b_2, \ldots, b_d is minimal, we must have $d \leq N$. Once we establish d = N, it follows v_1, v_2, \ldots, v_N is minimal, and the proof will be complete. Since by assumption, $$span(v_1, v_2, ..., v_N) = span(b_1, b_2, ..., b_d),$$ v_1 is a linear combination of b_1, b_2, \ldots, b_d , $$v_1 = t_1b_1 + t_2b_2 + \dots + t_db_d.$$ 2.8. BASIS 113 Since $v_1 \neq 0$, at least one of the t coefficients is not zero. By rearranging the vectors, assume $t_1 \neq 0$. Then we can solve for b_1 , $$b_1 = \frac{1}{t_1}(v_1 - t_2b_2 - t_3b_3 - \dots - t_db_d).$$ This shows $$span(v_1, v_2, ..., v_N) = span(v_1, b_2, b_3, ..., b_d).$$ Repeating the same logic, v_2 is a linear combination of $v_1, b_2, b_3, \ldots, b_d$, $$v_2 = s_1 v_1 + t_2 b_2 + t_3 b_3 + \dots + t_d b_d.$$ If all the coefficients of b_2, b_3, \ldots, b_d are zero, then v_2 is a multiple of v_1 , contradicting linear independence of v_1, v_2, \ldots, v_N . Thus at least one of the t coefficients is not zero. By rearranging the vectors, assume $t_2 \neq 0$. Then we can solve for b_2 , obtaining $$b_2 = \frac{1}{t_2}(v_2 - s_1v_1 - t_3b_3 - \dots - t_db_d).$$ This shows $$span(v_1, v_2, \dots, v_N) = span(v_1, v_2, b_3, b_4, \dots, b_d).$$ Repeating the same logic, v_3 is a linear combination of $v_1, v_2, b_3, b_3, \ldots, b_d$, $$v_3 = s_1 v_1 + s_2 v_2 + t_3 b_3 + t_4 b_4 + \dots + t_d b_d.$$ If all the coefficients of b_3, b_4, \ldots, b_d are zero, then v_3 is a linear combination of v_1, v_2 , contradicting linear independence of v_1, v_2, \ldots, v_N . Thus at least one of the t coefficients is not zero. By rearranging the vectors, assume $t_3 \neq 0$. Then we can solve for b_3 , obtaining $$b_3 = \frac{1}{t_3}(v_3 - s_1v_1 - s_2v_2 - t_4b_4 - \dots - t_db_d).$$ This shows $$span(v_1, v_2, \dots, v_N) = span(v_1, v_2, v_3, b_4, b_5, \dots, b_d).$$ Continuing in this manner, we eventually arrive at $$span(v_1, v_2, ..., v_N) = \cdots = span(v_1, v_2, ..., v_d).$$ This shows v_N is a linear combination of v_1, v_2, \ldots, v_d . This shows N = d, because N > d contradicts linear independence. Since d is the minimal spanning number, this shows v_1, v_2, \ldots, v_N is a minimal spanning set for S. ## 2.9 Rank If A is an $N \times d$ matrix, then (Figure 2.11) $x \mapsto Ax$ is a linear transformation that sends a vector x in \mathbf{R}^d to the vector b = Ax in \mathbf{R}^N . When this happens, we call \mathbf{R}^d the source space and \mathbf{R}^N the target space. The transpose A^t goes in the reverse direction: The linear transformation $b \mapsto A^t b$ sends a vector b in the target space \mathbf{R}^N to the vector $A^t b$ in the source space \mathbf{R}^d . It follows that for an $N \times d$ matrix, the dimension of the source space is d, and the dimension of the target space is N, $\dim(\text{source space}) = d, \quad \dim(\text{target space}) = N.$ ``` from sympy import * d = A.cols # source space dimension N = A.rows # target space dimension ``` **Fig. 2.11** A 5×3 matrix A is a linear transformation from \mathbb{R}^3 to \mathbb{R}^5 . By (2.4.2), the column space is in the target space, and the row space is in the source space. Thus we always have $$0 \le \text{row rank} \le d$$ and $0 \le \text{column rank} \le N$. For $$A = \begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix},$$ the column rank is 2, the row rank is 2, and the nullity is 1. Thus the column space is a plane in \mathbb{R}^5 , the row space is a plane in \mathbb{R}^3 , and the nullspace is a line in \mathbb{R}^3 . 2.9. RANK 115 The main result in this section is ## Rank Theorem Let A be any matrix. Then $$row rank(A) = column rank(A). (2.9.1)$$ This is established at the end of the section. Because the row rank and the column rank are equal, below we just say rank of a matrix, and we write rank(A). In Python, ``` from sympy import * A.rank() from numpy.linalg import matrix_rank matrix_rank(A) ``` returns the rank of a matrix. The main result implies ## Rank of the Transpose For any matrix A, $rank(A) = rank(A^t)$. In particular, the rank of an $N \times d$ matrix is never greater than min(N, d). An $N \times d$ matrix A is full-rank if its rank is the highest it can be, $rank(A) = \min(N, d)$. Here are some consequences of the main result. - When $N \ge d$, full-rank is the same as rank(A) = d, which is the same as saying the columns are linearly independent and the rows span \mathbf{R}^d . - When $N \leq d$, full-rank is the same as rank(A) = N, which is the same as saying the rows are linearly independent and the columns span \mathbb{R}^N . - When N = d, full-rank is the same as saying the rows are a basis of \mathbf{R}^d , and the columns are a basis of \mathbf{R}^N . When A is a square matrix, we can say more: ## Full Rank Square Equals Invertible Let A be a square matrix.
Then A is full-rank iff A is invertible. Suppose A is $d \times d$. If A is invertible and B is its inverse, then AB = I. Since ABx = A(Bx) = Ay with y = Bx, the column space of AB is contained in the column space of A. Since the column space of AB = I is \mathbf{R}^d , we conclude the column space of A is \mathbf{R}^d , thus rank(A) = d. Conversely, suppose A is full-rank. This means the columns of A span \mathbb{R}^d . By (2.4.3), this implies $$Ax = b$$ is solvable for any b. Let e_1, e_2, \ldots, e_d be the standard basis. If we set successively $b = e_1, b = e_2, \ldots, b = e_d$, we then get solutions x_1, x_2, \ldots, x_d . If B is the matrix with columns x_1, x_2, \ldots, x_d , then $$AB = A(x_1, x_2, \dots, x_d) = (Ax_1, Ax_2, \dots, Ax_d) = (e_1, e_2, \dots, e_d) = I.$$ Thus we found a matrix B satisfying AB = I. Repeating the same argument with rows instead of columns, we find a matrix C satisfying CA = I. Then $$C = CI = CAB = IB = B$$, so B = C is the inverse of A. #### Orthonormal Rows and Columns Let U be a matrix. - U has orthonormal rows iff $UU^t = I$. - U has orthonormal columns iff $U^tU = I$. If U is square and either holds, then they both hold. The first two assertions are in §2.2. For the last assertion, assume $UU^t = I$. Then the rows are orthonormal, which implies U is full-rank. Since U is square, this implies U has an inverse U^{-1} . Multiplying $UU^t = I$ on the left by U^{-1} , $$U^{-1} = U^{-1}I = U^{-1}UU^t = U^t$$ Since $U^{-1}U = I = UU^{-1}$, we have both $UU^t = I$ and $U^tU = I$. Similarly, $U^tU = I$ implies both $UU^t = I$ and $U^tU = I$. A square matrix U satisfying $$UU^t = I = U^t U (2.9.2)$$ is an orthogonal matrix. Summarizing the above discussion, we can say 2.9. RANK 117 ## **Orthogonal Matrix** A square matrix U is orthogonal iff its rows are an orthonormal basis iff its columns are an orthonormal basis. Since $$Uu \cdot Uv = u \cdot U^t Uv = u \cdot v,$$ U preserves dot products. Since lengths squared are dot products, U also preserves lengths. Since angles are computed from dot products, U also preserves angles. Summarizing, # Angles, Lengths, and Dot Products Orthogonal matrices preserve angles, lengths, and dot products of vectors. As a consequence, # Orthogonal Matrix sends ON Vectors to ON Vectors Let U be an orthogonal matrix. If u_1, u_2, \ldots, u_d are orthonormal, and $v_1 = Uu_1, v_2 = Uu_2, \ldots, v_d = Uu_d$ are orthonormal, then v_1, v_2, \ldots, v_d are orthonormal. In two dimensions, d=2, an orthogonal matrix must have two orthonormal columns, so must be of the form $$U = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \text{or} \quad U = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta - \cos \theta \end{pmatrix}.$$ In the first case, U is a rotation, while in the second, U is a rotation followed by a reflection. If u_1, u_2, \ldots, u_d is an orthonormal basis of \mathbf{R}^d , and U has columns u_1, u_2, \ldots, u_d , then U is square and $UU^t = I = U^tU$. By (2.2.14), we have $$I = u_1 \otimes u_1 + u_2 \otimes u_2 + \dots + u_d \otimes u_d. \tag{2.9.3}$$ Multiplying both sides by u, we obtain ## **Orthonormal Basis Expansion** If u_1, u_2, \ldots, u_d is an orthonormal basis, and u is any vector, then $$u = (u \cdot u_1)u_1 + (u \cdot u_2)u_2 + \dots + (u \cdot u_d)u_d$$ (2.9.4) and $$|u|^2 = (u \cdot u_1)^2 + (u \cdot u_2)^2 + \dots + (u \cdot u_d)^2.$$ (2.9.5) Let $x_1, x_2, ..., x_N$ be a dataset, and let A be the dataset matrix with rows $x_1, x_2, ..., x_N$. The dataset is full-rank if A is full-rank. Since A is full-rank iff its rows span (we assume N >> d, which means there are more samples than features) we have #### Full-Rank Dataset A dataset x_1, x_2, \ldots, x_N is full-rank iff x_1, x_2, \ldots, x_N spans \mathbf{R}^d . The dimension or rank of the dataset is the rank of its $N \times d$ dataset matrix A. Hence the dimension of the dataset equals the rank of A^tA . Since scaling a matrix has no effect on the rank, we conclude the dimension or rank of a dataset equals the rank of its variance $Q = A^tA/N$, (see (2.5.1)). To derive the rank theorem, first we recall (2.7.6). Assume A has N rows and d columns. By (2.7.6), every vector x in the source space \mathbf{R}^d can be written as a sum x = u + v with u in the nullspace, and v in the row space. In other words, each vector x may be written as a sum x = u + v with Au = 0 and v in the row space. From this, we have $$Ax = A(u + v) = Au + Av = Av.$$ This shows the column space consists of vectors of the form Av with v in the row space. Let v_1, v_2, \ldots, v_r be a basis for the row space. From the previous paragraph, it follows Av_1, Av_2, \ldots, Av_r spans the column space of A. We claim Av_1, Av_2, \ldots, Av_r are linearly independent. To check this, we write $$0 = t_1 A v_1 + t_2 A v_2 + \dots + t_r A v_r = A(t_1 v_1 + t_2 v_2 + \dots + t_r v_r).$$ 2.9. RANK 119 If v is the vector $t_1v_1 + t_2v_2 + \cdots + t_rv_r$, this shows v is in the nullspace. But v is a linear combination of basis vectors of the row space, so v is also in the row space. Since the row space is the orthogonal complement of the nullspace, we must have v orthogonal to itself. Thus v = 0, or $t_1v_1 + t_2v_2 + \cdots + t_rv_r = 0$. But v_1, v_2, \ldots, v_r is a basis. By linear independence of v_1, v_2, \ldots, v_r , we conclude $t_1 = 0, \ldots, t_r = 0$. This establishes the claim, hence Av_1, Av_2, \ldots, Av_r is a basis for the column space. This shows r is the dimension of the column space, which is by definition the column rank. Since by construction, r is also the row rank, this establishes the rank theorem. #### Exercises **Exercise 2.9.1** Let u and v be nonzero vectors. Then the rank of $A = u \otimes v$ is one. **Exercise 2.9.2** Let μ be a unit vector in \mathbf{R}^d . Then the rank of $I - \mu \otimes \mu$ is d-1. **Exercise 2.9.3** Use (2.9.4) to derive (2.9.5). **Exercise 2.9.4** If u_1, u_2, \ldots, u_d and v_1, v_2, \ldots, v_d are orthonormal bases, there is exactly one orthogonal U satisfying $v_k = Uu_k, 1 \le k \le d$. **Exercise 2.9.5** Let v_1, v_2, \ldots, v_N be an orthonormal basis in \mathbb{R}^N , and let Q be an $N \times N$ matrix. Use (2.9.3) and Exercise 2.2.7 to show $$\operatorname{trace}(Q) = v_1 \cdot Qv_1 + v_2 \cdot Qv_2 + \dots + v_N \cdot Qv_N. \tag{2.9.6}$$ **Exercise 2.9.6** Let v_1, v_2, \ldots, v_N be an orthonormal basis in \mathbb{R}^N , and let A be an $d \times N$ matrix. Use Exercise 2.9.5 and $Q = A^t A$ and (2.2.17) to show $$||A||^2 = |Av_1|^2 + |Av_2|^2 + \dots + |Av_N|^2.$$ (2.9.7) **Exercise 2.9.7** Let v_1, v_2, \ldots, v_N be an orthonormal basis in \mathbf{R}^N , let u_1, u_2, \ldots, u_d be an orthonormal basis in \mathbf{R}^d , and let A be an $d \times N$ matrix. Use Exercise **2.9.6** and (2.9.5) to show $$||A||^2 = \sum_{i=1}^{d} \sum_{j=1}^{N} (u_i \cdot Av_j)^2.$$ (2.9.8) **Exercise 2.9.8** Let u_1, u_2, \ldots, u_r be linearly independent, and v_1, v_2, \ldots, v_r be linearly independent. Then the rank of $$A = u_1 \otimes v_1 + u_2 \otimes v_2 + \dots + u_r \otimes v_r$$ is r. (One way to do this is by writing out Ax = 0.) # Chapter 3 # **Principal Components** In this chapter, we look at the two fundamental methods of breaking or decomposing a matrix into elementary components, the eigenvalue decomposition and the singular value decomposition, then we apply this to principal component analysis. Principal component analysis rests on an important phenomenon, that the eigenvalues of a large matrix cluster near the top and bottom: For a wide class of $d \times d$ variance matrices Q, when d is large, the eigenvalues of Q cluster near the top eigenvalue, or near the bottom eigenvalue. Because the bottom eigenvalue is usually zero, the eigenvalues near the bottom don't add up to anything substantial. On the other hand, because of this clustering, the eigenvalues of Q near the top provide the largest contribution to the explained variance $\operatorname{trace}(Q)$. We illustrate this for a specific class of matrices arising from mass-spring systems (§3.2). We begin by looking at the geometry of a matrix as a linear transformation. #### 3.1 Geometry of Matrices Matrix multiplication by an $N \times d$ matrix A sends a point x in the source space \mathbf{R}^d to a point b = Ax in the target space \mathbf{R}^N (Figure 2.11). Equivalently, since points in \mathbf{R}^d are essentially the same as vectors in \mathbf{R}^d (see §1.3), an $N \times d$ matrix A sends a vector v in \mathbf{R}^d to a vector Av in \mathbf{R}^N . Looked at this way, a matrix A induces a linear transformation: Matrix multiplication by A satisfies $$A(v_1 + v_2) = Av_1 + Av_2,$$ $A(tv) = tAv.$ One way to understand what the transformation does is to see how it distorts distances between vectors. If v_1 and v_2 are in \mathbf{R}^d , then the distance between them is $d = |v_1 - v_2|$. How does this compare with the distance $|Av_1 - Av_2|$ between Av_1 and Av_2 ? If we let $$u = \frac{v_1 - v_2}{|v_1 - v_2|},$$ then u is a unit vector, and, by linearity of A, $$|Au| = \frac{|Av_1 - Av_2|}{|v_1 - v_2|}.$$ This ratio is a scaling factor of the linear transformation that depends on the given vectors v_1 , v_2 . From this, it is enough to measure |Au| for unit vectors u. Since |Au| = 0 for u in the nullspace of A, we measure |Au| for u in the row space of A. To this end, let σ_1 and σ_2 be the maximum and minimum of |Au| over all unit vectors u in the row space of A, so $$\sigma_2 \le |Au| \le \sigma_1.$$ Then σ_1 is the furthest distance of the image Au from the origin, and σ_2 is the nearest distance of the image Au to the origin. In this sense, σ_1 and σ_2 constrain |Au| over unit vectors u in the row space of A. Let A^+ be the pseudo-inverse of A. Related
bounds on distortion are $$\frac{1}{\sigma_1} \le \left| (A^+)^t u \right| \le \frac{1}{\sigma_2},$$ (Exercise 3.4.4) and $$1 \le |Au| \times \left| (A^+)^t u \right| \le \frac{1}{2} \left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right)$$ (Exercises 3.4.5 and 4.5.8). To keep things simple, assume both the source space and the target space are \mathbb{R}^2 and A is an invertible 2×2 matrix. The image of the unit circle (in red in Figure 3.1) is the set of vectors of the form Au with |u| = 1. The annulus is the set (the region between the dashed circles in Figure 3.1) of vectors b satisfying $${b: \sigma_2 < |b| < \sigma_1}.$$ It turns out the image is an ellipse, and this ellipse lies in the annulus. Thus the numbers σ_1 and σ_2 constrain how far the image of the unit circle is from the origin, and how near the image is to the origin. To relate σ_1 and σ_2 to what we've seen before, let $Q = A^t A$. Then, $$\sigma_1^2 = \max |Au|^2 = \max(Au) \cdot (Au) = \max u \cdot A^t A u = \max u \cdot Qu.$$ Thus σ_1^2 is the maximum projected variance corresponding to Q. Similarly, σ_2^2 is the minimum projected variance corresponding to Q. Now let $Q = AA^t$, and let b be in the image. Then b = Au for some unit vector u, and $$b \cdot Q^{-1}b = (Au) \cdot Q^{-1}Au = u \cdot A^{t}(AA^{t})^{-1}Au = u \cdot Iu = |u|^{2} = 1.$$ This shows the image of the unit circle is the unit inverse variance ellipse (§1.4) corresponding to the variance Q, with major and minor axes length $2\sigma_1$ and $2\sigma_2$. Fig. 3.1 Image of unit circle. Let us look at some special cases. The first example is $$V = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}. \tag{3.1.1}$$ If $e_1 = (1,0)$, $e_2 = (0,1)$ is the standard basis in \mathbb{R}^2 , then the columns of V are $$Ve_1 = (\cos \theta, \sin \theta),$$ and $Ve_2 = (-\sin \theta, \cos \theta).$ Since $V^tV = I$, the columns of V are orthonormal. Thus V transforms the orthonormal basis e_1 , e_2 into the orthonormal basis Ve_1 , Ve_2 (see §2.9). By (A.4.4), V is a rotation by the angle θ . The second example is $$S = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}.$$ Then S scales the horizontal direction by the factor σ_1 , and S scales the vertical direction by σ_2 . The third example are the reflections $$R = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$ These reflect vectors across the horizontal axis, and across the vertical axis. Recall an orthogonal matrix is a matrix U satisfying $U^tU = I = UU^t$ (2.9.2). Every orthogonal matrix U is a rotation V or a rotation times a reflection VR. The SVD decomposition ($\S 3.4$) states that every matrix A can be written as a product $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = USV.$$ Here S is a diagonal matrix as above, and U, V are orthogonal and rotation matrices as above. In more detail, apart from a possible reflection, there are scalings σ_1 and σ_2 and angles α and β , so that A transforms vectors by first rotating by α , then scaling by (σ_1, σ_2) , then by rotating by β (Figure 3.2). Fig. 3.2 SVD decomposition A = USV. In other words, each 2×2 matrix A, consisting of four numbers a, b, c, d, may be described by four other numbers. These other numbers present a much clearer picture of the geometry of A: two angles α , β , and two scalings σ_1 , σ_2 . #### Exercises **Exercise 3.1.1** Assume A is an invertible matrix satisfying $\sigma_2 \leq |Au| \leq \sigma_1$ for every unit vector u. Then for every unit vector u, $$\frac{1}{\sigma_1} \le \left| A^{-1} u \right| \le \frac{1}{\sigma_2}.$$ # 3.2 Eigenvalue Decomposition Fig. 3.3 Relations between matrix classes. In §1.4 and §2.5, we saw every variance matrix Q is nonnegative, in the sense $u \cdot Qu \geq 0$ for every unit vector u. In this section, we see that every nonnegative matrix Q is the variance matrix of a specific dataset. The vectors in this dataset are the *principal components* of Q. Let A be a matrix. An eigenvector for A is a nonzero vector v such that Av is aligned with v. This means $$Av = \lambda v \tag{3.2.1}$$ for some scalar λ , the corresponding eigenvalue. Because the solution v = 0 of (3.2.1) is not useful, we insist eigenvectors be nonzero. If v is an eigenvector, then the dimension of v equals the dimension of Av, which can only happen when A is a square matrix. If v is an eigenvector corresponding to eigenvalue λ , then any scalar multiple u = tv is also an eigenvector corresponding to eigenvalue λ , since $$Av = \lambda v \implies Au = A(tv) = t(Av) = t(\lambda v) = \lambda(tv) = \lambda u.$$ Because of this, we usually take eigenvectors to be unit vectors, by normalizing them. Even then, this does not determine v uniquely, since both $\pm v$ are unit eigenvectors. This \pm ambiguity is real, because different software packages make different sign choices. Because of this, when plotting or computing with datasets, units assumptions must be checked carefully. Let $$Q = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$ Then Q has eigenvalues 3 and 1, with corresponding eigenvectors (1,1) and (1,-1). These are not unit vectors, but the corresponding unit eigenvectors are $(1/\sqrt{2},1/\sqrt{2})$ and $(1/\sqrt{2},-1/\sqrt{2})$. The code ``` from numpy import * from scipy.linalg import eig A = array([[2,1],[1,2]]) lamda, U = eig(A) lamda ``` returns the eigenvalues [3,1] as an array, and returns the eigenvectors v_1 , v_2 of Q, as the *columns* of the matrix U. The matrix U is discussed further below. The method eig(A) works on any square matrix A, but may return complex eigenvalues. When eig(A) returns real eigenvalues, they are not necessarily ordered in any predetermined fashion. If the matrix Q is known to be symmetric, then the eigenvalues are guaranteed real. In this case, eigh(Q) returns the eigenvalues in increasing order. If eigh is used on a non-symmetric matrix, it will return erroneous data. ``` from numpy import * from scipy.linalg import eigh Q = array([[2,1],[1,2]]) lamda, U = eigh(Q) lamda ``` returns the array [1,3]. Let A be a square $d \times d$ matrix. The ideal situation is when there is a basis v_1, v_2, \ldots, v_d in \mathbf{R}^d of eigenvectors of A. However, this is not always the case. For example, if $$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \tag{3.2.2}$$ and $Av = \lambda v$, then v = (x, y) satisfies $x + y = \lambda x$, $y = \lambda y$. This system has only the nonzero solution (x, y) = (1, 0) (or its multiples) and $\lambda = 1$. Thus A has only one eigenvector $e_1 = (1, 0)$, and the corresponding eigenvalue is $\lambda = 1$. Let A be any square matrix. # Eigenvalues of A Versus Eigenvalues of A Transpose The eigenvalues of A and the eigenvalues of A^t are the same. This result is a consequence of the rank theorem in §2.9. To see why, suppose λ is an eigenvalue of A with corresponding eigenvector v. Then $Av = \lambda v$, which implies $$(A - \lambda I)v = Av - \lambda v = 0.$$ As a consequence, if we let $B = A - \lambda I$, then v is an eigenvector of A corresponding to λ iff 1v is in the nullspace of B. It follows λ is an eigenvalue for A iff B has a nonzero nullspace. Now $B^t = A^t - \lambda I$. If we show B^t has a nonzero nullspace, by the same logic, we will conclude λ is an eigenvalue of A^t . Now B has a nonzero nullspace iff B is not full-rank. Since B is square, by the rank theorem, this happens iff B^t is not full-rank, which happens iff B^t has a nonzero nullspace. Thus λ is an eigenvalue of A iff λ is an eigenvalue of A^t . ¹ Iff is short for if and only if. Let v be a unit vector. From §2.5, when Q is the variance matrix of a dataset, $v \cdot Qv$ is the variance of the dataset projected onto the line through v. When v is an eigenvector, $Qv = \lambda v$, the variance equals $$v \cdot Qv = v \cdot \lambda v = \lambda v \cdot v = \lambda.$$ More generally, this holds for any symmetric matrix Q. We conclude # Projected Variance along Eigenvector Direction If v is a unit eigenvector of a symmetric matrix Q, then $v \cdot Qv$ equals the corresponding eigenvalue. In particular, the eigenvalues of a variance matrix are nonnegative. In general, when Q is symmetric but not a variance matrix, some eigenvalues of Q may be negative. Suppose λ and μ are eigenvalues of a symmetric matrix Q with corresponding eigenvectors u, v. Since Q is symmetric, $u \cdot Qv = v \cdot Qu$. Using $Qu = \lambda u$, $Qv = \mu v$, we compute $u \cdot Qv$ in two ways: $$\mu u \cdot v = u \cdot (\mu v) = u \cdot Qv = v \cdot Qu = v \cdot (\lambda u) = \lambda u \cdot v.$$ This implies $$(\mu - \lambda)u \cdot v = 0.$$ If $\lambda \neq \mu$, we must have $u \cdot v = 0$. We conclude: #### Distinct Eigenvalues Have Orthogonal Eigenvectors For a symmetric matrix Q, eigenvectors corresponding to distinct eigenvalues are orthogonal. More generally, one can show (Exercise 3.2.15) # Distinct Eigenvalues Have Linearly Independent Eigenvectors Let A be any matrix and suppose $\lambda_1, \lambda_2, \ldots, \lambda_d$ are distinct (non-equal) eigenvalues of A Then the corresponding eigenvectors are linearly independent. The main result in this section is #### Eigenvalue Decomposition (EVD) Let Q be a *symmetric* $d \times d$ matrix. There is an orthonormal basis v_1 , v_2, \ldots, v_d in \mathbf{R}^d of eigenvectors of Q, with corresponding eigenvalues $$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d$$. To see the implications of this main result, for simplicity, assume Q is a 2×2 symmetric matrix. By EVD, there is an orthonormal basis u, v in \mathbf{R}^2 and scalars λ , μ satisfying $Qu =
\lambda u$, and $Qv = \mu v$. These are the eigenvalues and eigenvectors. Define three matrices $$U = (u, v), \qquad E = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}, \qquad V = \begin{pmatrix} u \\ v \end{pmatrix}.$$ Then the columns of U are u, v, the rows of V are u, v, and $V = U^t$. By matrix-vector multiplication, $$QU = (Qu, Qv) = (\lambda u, \mu v), \qquad UE = (\lambda u, \mu v).$$ We conclude QU = UE. Multiplying by V, $$Q = QI = Q(UV) = (QU)V = UEV.$$ This result remains valid in general. To explain this, let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ be the eigenvalues of a symmetric $d \times d$ matrix Q, and let $$E = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{d-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_d \end{pmatrix}.$$ Then we have the following. #### Diagonalization (EVD) If v_1, v_2, \ldots, v_d is an orthonormal basis of eigenvectors of Q, with corresponding eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$, let V be the orthogonal matrix with rows v_1, v_2, \ldots, v_d , and let $U = V^t$. If E is the diagonal matrix consisting of the eigenvalues, then $$Q = UEV (3.2.3)$$ When this happens, we say Q is diagonalizable. Thus A in (3.2.2) is not diagonalizable. In Python, E and U are computed by ``` from numpy import * from scipy.linalg import eigh # Q is any symmetric matrix lamda, U = eigh(Q) ``` and V = U.T. Be careful, though. numpy returns lamda as an array of eigenvalues, not a diagonal matrix. Nevertheless, these are arranged in increasing order, and the columns of U are the eigenvectors. To verify this, we verify that the first row v = U.T[0] of V is an eigenvector corresponding to the first eigenvalue lamda[0], ``` from numpy import * from scipy.linalg import eigh # lambda is a keyword in Python # so we use lamda instead Q = array([[2,1],[1,2]]) lamda, U = eigh(Q) v = U[:,0] allclose(dot(Q,v), lamda[0]*v) ``` returns True. The conclusion is: With the correct choice of orthonormal basis, the matrix Q becomes a diagonal matrix E. The orthonormal basis eigenvectors v_1, v_2, \ldots, v_d are the *principal components* of the matrix Q. The eigenvalues and eigenvectors of Q, taken together, are the *eigendata* of Q. To obtain the diagonal matrix E, ``` E = diag(lamda) ``` Since lambda is a keyword in Python, we deliberately misspell it and write lamba in the code. When used as a symbol and pretty-printed, sympy knows to display lamba as λ . In sympy, the corresponding commands are ``` from sympy import * from sympy import init_printing init_printing() # eigenvalues Q.eigenvals() # eigenvectors Q.eigenvects() U, E = Q.diagonalize() ``` This returns the diagonal E with the eigenvalues in increasing order. The command ${\tt init_printing}$ pretty-prints the output. If $$A = \begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix},$$ and $Q = A^t A$, then the eigenvalues of Q are $$\lambda_1 = 620 + 10\sqrt{3769}, \qquad \lambda_2 = 620 - 10\sqrt{3769}, \qquad \lambda_3 = 0,$$ (3.2.4) and the eigenvectors are the rows of $$V = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \frac{1}{94} \begin{pmatrix} -100 + 2\sqrt{3769} & -3 + \sqrt{3769} & 94 \\ -100 - 2\sqrt{3769} & -3 - \sqrt{3769} & 94 \\ 94 & -188 & 94 \end{pmatrix}$$ (3.2.5) The third row is a multiple of (1, -2, 1), which, as we know, is a basis for the nullspace of A (§2.4). Let $\lambda_1, \lambda_2, \ldots, \lambda_r$ be the nonzero eigenvalues of Q. Then the diagonal matrix E has r nonzero entries on the diagonal, so rank(E) = r. Since U and $V = U^t$ are invertible, rank(E) = rank(UEV). Since Q = UEV, $$rank(Q) = rank(E) = r.$$ # Rank Equals Number of Nonzero Eigenvalues The rank of a diagonal matrix equals the number of nonzero entries. The rank of a square symmetric matrix Q equals the number of nonzero eigenvalues of Q. For example, in (3.2.4), there are two positive eigenvalues, and the rank of Q, which equals the rank of A, is two. Because real-life datasets are composed of floats, a more useful measure of the rank or dimension of a dataset matrix is the approximate dimension. The approximate dimension or approximate rank of A is the number of eigenvalues of the variance $Q = A^t A/N$ (see (2.5.1)) that are not almost zero, measured by numpy. ``` from numpy import * from scipy.linalg import eigh # dataset is Nxd N, d = dataset.shape Q = dot(dataset.T,dataset)/N lamda = eigh(Q)[0] for i,eig in enumerate(lamda): if not allclose(eig,0): approx_nullity = i break approx_rank = d - approx_nullity approx_rank, approx_nullity ``` This code returns 712 for the MNIST dataset, agreeing with the code in $\S 2.8$. Let's go back to diagonalization. Using sympy, ``` from sympy import * Q = Matrix([[2,1],[1,2]]) ``` U, E = Q.diagonalize() display(U,E) returns $$U = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad E = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.$$ Also, from sympy import * a,b,c = symbols("a b c") Q = Matrix([[a,b],[b,c]]) U, E = Q.diagonalize() display(Q,U,E) returns $$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \qquad U = \frac{1}{2b} \begin{pmatrix} a - c - \sqrt{D} & a - c + \sqrt{D} \\ 2b & 2b \end{pmatrix}$$ and $$E = \frac{1}{2} \begin{pmatrix} a + c - \sqrt{D} & 0 \\ 0 & a + c + \sqrt{D} \end{pmatrix}, \qquad D = (a - c)^2 + 4b^2.$$ (display is used to pretty-print the output.) When all the eigenvalues are nonzero, we can write $$E^{-1} = \begin{pmatrix} 1/\lambda_1 & 0 & 0 & \dots & 0 \\ 0 & 1/\lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1/\lambda_d \end{pmatrix}.$$ Then a straightforward calculation using (3.2.3) shows ## Nonzero Eigenvalues Equals Invertible Let Q=UEV be the EVD of a symmetric matrix Q. Then Q is invertible iff all its eigenvalues are nonzero. When this happens, we have $$Q^{-1} = UE^{-1}V$$ More generally, using (2.6.8), one can check ### Pseudo-Inverse and EVD If $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r$ are the nonzero eigenvalues of Q, then $1/\lambda_1 \leq 1/\lambda_2 \leq \cdots \leq 1/\lambda_r$ are the nonzero eigenvalues of Q^+ . Moreover, if U is an orthogonal matrix, and $V = U^t$, then $$Q = UEV \implies Q^+ = UE^+V.$$ (3.2.6) Similarly, eigendata may be used to solve linear systems. ### Nonzero Eigenvalues Equals Solvable Let v_1, v_2, \ldots, v_d be the orthonormal basis of eigenvectors of Q corresponding to eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_d$. Then the linear system $$Qx = b$$ has a solution x for every vector b iff all eigenvalues are nonzero, in which case $$x = \frac{1}{\lambda_1} (b \cdot v_1) v_1 + \frac{1}{\lambda_2} (b \cdot v_2) v_2 + \dots + \frac{1}{\lambda_d} (b \cdot v_d) v_d.$$ (3.2.7) The proof is straightforward using (2.9.4): multiply x by Q to verify. Another consequence of the eigenvalue decomposition is ## Trace is the Sum of Eigenvalues Let Q be a symmetric matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_d$. Then $$\operatorname{trace}(Q) = \lambda_1 + \lambda_2 + \dots + \lambda_d. \tag{3.2.8}$$ To derive this, use (3.2.3): Since U is orthogonal, $VU = U^tU = I$. By (2.2.7), trace(AB) = trace(BA), so $$trace(Q) = trace(QUV) = trace(VQU) = trace(VUEVU) = trace(E).$$ Since $E = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$, trace $(E) = \lambda_1 + \lambda_2 + \dots + \lambda_d$, and the result follows. Let Q be symmetric with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_d$. Since $$Qv = \lambda v$$ \Longrightarrow $Q^2v = QQv = Q(\lambda v) = \lambda Qv = \lambda^2 v$, Q^2 is symmetric with eigenvalues $\lambda_1^2,\,\lambda_2^2,\,\ldots,\,\lambda_d^2$. Applying the last result to Q^2 , we have $$\operatorname{trace}(Q^2) = \operatorname{trace}(QQ^t) = \operatorname{trace}(Q^2) = \lambda_1^2 + \lambda_2^2 + \dots + \lambda_d^2.$$ It turns out every nonnegative matrix Q is the variance of a simple dataset (Figure 3.4). Fig. 3.4 Inverse variance ellipse and centered dataset. ### **Sum of Tensor Products** Let Q be a symmetric $d \times d$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_d$ and orthonormal eigenvectors v_1, v_2, \ldots, v_d . Then $$Q = \lambda_1 v_1 \otimes v_1 + \lambda_2 v_2 \otimes v_2 + \dots + \lambda_d v_d \otimes v_d. \tag{3.2.9}$$ In particular, when Q is nonnegative, the dataset consisting of the 2d points $$\pm\sqrt{d\lambda_1}v_1,\pm\sqrt{d\lambda_2}v_2,\ldots,\pm\sqrt{d\lambda_d}v_d$$ is centered and has variance Q. The vectors in this dataset are the *principal components* of Q. Since v_1, v_2, \ldots, v_d is an orthonormal basis, by (2.9.4), every vector v can be written $$v = (v \cdot v_1) v_1 + (v \cdot v_2) v_2 + \dots + (v \cdot v_d) v_d.$$ Multiply by Q. Since $Qv_k = \lambda_k v_k$, $$Qv = (v \cdot v_1) Qv_1 + (v \cdot v_2) Qv_2 + \dots + (v \cdot v_d) Qv_d$$ = $\lambda_1(v \cdot v_1) v_1 + \lambda_2(v \cdot v_2) v_2 + \dots + \lambda_d(v \cdot v_d) v_d$ = $(\lambda_1 v_1 \otimes v_1 + \lambda_2 v_2 \otimes v_2 + \dots + \lambda_d v_d \otimes v_d) v_d$ This proves the first part. For the second part, let $b_k = \sqrt{\lambda_k} v_k$. Then the mean of the 2d vectors $\pm b_1, \pm b_2, \ldots, \pm b_d$ is clearly zero, and by (3.2.9), the variance matrix $$\frac{2}{2d}\left(b_1\otimes b_1+b_2\otimes b_2+\cdots+b_d\otimes b_d\right)$$ equals Q/d. Now we approach the eigenvalues of Q from a different angle. In §2.5, we studied zero variance directions. Since the eigenvalues of a variance matrix are nonnegative, for a variance matrix, they may also be called minimum variance directions. Now we study maximum variance directions. Let $$\lambda_1 = \max_{|v|=1} v \cdot Qv,$$ where the maximum is over all unit vectors v. We say a unit vector b is best-fit for Q or best-aligned with Q if the maximum is achieved at v = b: $\lambda_1 = b \cdot Qb$. When Q is a variance matrix, this means the unit
vector b is chosen so that the variance $b \cdot Qb$ of the dataset projected onto b is maximized. An eigenvalue λ_1 of Q is the *top eigenvalue* if $\lambda_1 \geq \lambda$ for any other eigenvalue. An eigenvalue λ_1 of Q is the *bottom eigenvalue* if $\lambda_1 \leq \lambda$ for any other eigenvalue. We establish the following results. ## Maximum Projected Variance is an Eigenvalue Let Q be a symmetric matrix. Then $$\lambda_1 = \max_{|v|=1} v \cdot Qv,\tag{3.2.10}$$ is the top eigenvalue of Q. ### Best-aligned vector is an eigenvector Let Q be a symmetric matrix. Then a best-aligned vector b is an eigenvector of Q corresponding to the top eigenvalue λ_1 . To prove these results, we begin with a simple calculation, whose derivation we skip. This result may be derived directly using algebra, or by using calculus and setting f'(0) to equal zero. ## A Calculation Suppose λ , a, b, c, d are real numbers and let $$f(t) = \frac{\lambda + at + bt^2}{1 + ct + dt^2}.$$ If f(t) is maximized at t = 0, then $a = \lambda c$. Let λ be any eigenvalue of Q, with eigenvector v: $Qv = \lambda v$. Dividing v by its length, we may assume |v| = 1. Then $$\lambda_1 \ge v \cdot Qv = v \cdot (\lambda v) = \lambda v \cdot v = \lambda.$$ This shows $\lambda_1 \geq \lambda$ for any eigenvalue λ . Now we show λ_1 itself is an eigenvalue. Let v_1 be a unit vector maximizing $v \cdot Qv$, so v_1 is best-fit for Q. Then $$\lambda_1 = v_1 \cdot Q v_1 \ge v \cdot Q v \tag{3.2.11}$$ for all unit vectors v. Let u be any vector. Then for any real t, $$v = \frac{v_1 + tu}{|v_1 + tu|}$$ is a unit vector. Insert this v into (3.2.11) to obtain $$\lambda_1 \ge \frac{(v_1 + tu) \cdot Q(v_1 + tu)}{|v_1 + tu|^2}.$$ Since Q is symmetric, $u \cdot Qv_1 = v_1 \cdot Qu$. Expanding with $|v_1|^2 = 1$, we obtain $$\lambda_1 \ge \frac{\lambda_1 + 2tu \cdot Qv_1 + t^2u \cdot Qu}{1 + 2tu \cdot v_1 + t^2|u|^2} = \frac{\lambda_1 + at + bt^2}{1 + ct + dt^2}.$$ Applying the calculation with $\lambda = \lambda_1$, $a = 2u \cdot Qv_1$, $b = u \cdot Qu$, $c = 2u \cdot v_1$, and $d = |u|^2$, we conclude $$u \cdot Qv_1 = \lambda_1 u \cdot v_1$$ for all vectors u. But this implies $$u \cdot (Qv_1 - \lambda_1 v_1) = 0$$ for all u. Thus $Qv_1 - \lambda_1v_1$ is orthogonal to all vectors, hence orthogonal to itself. Since this can only happen if $Qv_1 - \lambda_1v_1 = 0$, we conclude $Qv_1 = \lambda_1v_1$. Hence λ_1 is itself an eigenvalue. This completes the proof of the two results. Just as the maximum variance (3.2.10) is the top eigenvalue λ_1 , the minimum variance $$\lambda_d = \min_{|v|=1} v \cdot Qv, \tag{3.2.12}$$ is the bottom eigenvalue, and the corresponding eigenvector v_d is the worst-aligned vector. By the eigenvalue decomposition, the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ of a symmetric matrix Q may be arranged in decreasing order, and may be positive, zero, or negative scalars. When Q is a variance, the eigenvalues are nonnegative, and the bottom eigenvalue is at least zero. When the bottom eigenvalue is zero, the corresponding eigenvectors are zero variance directions. Now we can complete the proof the eigenvalue decomposition. Having found the top eigenvalue λ_1 with its corresponding unit eigenvector v_1 , we let $S = span(v_1)$ and $T = S^{\perp}$ be the orthogonal complement of v_1 (Figure 3.5). Then $\dim(T) = d - 1$, and we can repeat the process and maximize $v \cdot Qv$ over all unit v in T, i.e. over all unit v orthogonal to v_1 . This leads to another eigenvalue λ_2 with corresponding eigenvector v_2 orthogonal to v_1 . Since λ_1 is the maximum of $v \cdot Qv$ over all vectors in \mathbf{R}^d , and λ_2 is the maximum of $v \cdot Qv$ over the restricted space T of vectors orthogonal to v_1 , we must have $\lambda_1 \geq \lambda_2$. **Fig. 3.5** $S = span(v_1)$ and $T = S^{\perp}$. Having found the top two eigenvalues $\lambda_1 \geq \lambda_2$ and their orthonormal eigenvectors v_1 , v_2 , we let $S = span(v_1, v_2)$ and $T = S^{\perp}$ be the orthogonal complement of S. Then $\dim(T) = d - 2$, and we can repeat the process to obtain λ_3 and v_3 in T. Continuing in this manner, we obtain eigenvalues $$\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_d$$. with corresponding orthonormal eigenvectors $$v_1, v_2, v_3, \ldots, v_d$$. This proves the eigenvalue decomposition. Let Q be a positive variance matrix and let $b \cdot Q^{-1}b = 1$ be the inverse variance ellipsoid. If v is a unit eigenvector corresponding to an eigenvalue λ , then $\lambda \geq 0$, and the vector $b = \sqrt{\lambda}v$ has length $\sqrt{\lambda}$. Moreover b satisfies $$b \cdot Q^{-1}b = (\sqrt{\lambda}v) \cdot Q^{-1}(\sqrt{\lambda}v) = \lambda v \cdot Q^{-1}v = \lambda v \cdot (\lambda^{-1}v) = v \cdot v = 1.$$ Hence the line segment joining the vectors $\pm\sqrt{\lambda}v$ is an axis of the inverse variance ellipsoid, with length $2\sqrt{\lambda}$ (Figure 3.4). When $\lambda = \lambda_1$ is the top eigenvalue, the axis is the *principal axis* of the inverse variance ellipsoid. When $\lambda = \lambda_2$ is the next highest eigenvalue, the axis is orthogonal to the principal axis, and is the second principal axis. Continuing in this manner, we obtain all the principal axes of the inverse variance ellipsoid. ### Principal Axes of Inverse Variance Ellipsoid Let v be a unit eigenvector of a variance matrix Q with eigenvalue λ . Then the line segment joining $-\sqrt{\lambda}v$ and $+\sqrt{\lambda}v$ is a principal axis of the inverse variance ellipsoid, with length $2\sqrt{\lambda}$. Together with Figure 1.15, this result provides a geometric interpretation of eigenvalues: They control the variances of a dataset's points, in the principal directions. Sometimes, several eigenvalues are equal, leading to several eigenvectors, say m of them, corresponding to a given eigenvalue λ . In this case, we say the eigenvalue λ has multiplicity m, and we call the span $$S_{\lambda} = \{v : Qv = \lambda v\}$$ the eigenspace corresponding to λ . For example, suppose the top three eigenvalues are equal: $\lambda_1 = \lambda_2 = \lambda_3$, with b_1 , b_2 , b_3 the corresponding eigenvectors. Calling this common value λ , the eigenspace is $S_{\lambda} = span(b_1, b_2, b_3)$. Since b_1 , b_2 , b_3 are orthonormal, $\dim(V_{\lambda}) = 3$. In Python, the eigenspaces V_{λ} are obtained by the matrix U above: The columns of U are an orthonormal basis for the entire space, so selecting the columns corresponding to a specific λ yields an orthonormal basis for S_{λ} . Let (E,U) be the list of eigenvalues and matrix U whose columns are the eigenvectors. Then the eigenvectors are the rows of U^t . Here is code for selecting just the eigenvectors corresponding to eigenvalue s. ``` from numpy import * from scipy.linalg import eigh lamda, U = eigh(Q) V = U.T V[isclose(lamda,s)] ``` The function isclose(a,b) returns True when a and b are numerically close. Using this boolean, we extract only those rows of V whose corresponding eigenvalue is close to s. The subspace S_{λ} is defined for any λ . However, $\dim(S_{\lambda}) = 0$ unless λ is an eigenvalue, in which case $\dim(S_{\lambda}) = m$, where m is the multiplicity of λ . The proof of the eigenvalue decomposition provides a systematic procedure for finding eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$. Now we show there are no other eigenvalues. ## The Eigenvalue Decomposition is Complete If λ is an eigenvalue for Q, $Qv = \lambda v$, then λ equals one of the eigenvalues in the eigenvalue decomposition of Q. To see this, suppose $Qv = \lambda v$ with $\lambda \neq \lambda_j$ for j = 1, ..., d. Since $\lambda \neq \lambda_j$ for j = 1, ..., d, the vector v must be orthogonal to every v_j , j = 1, ..., d. Since $span(v_1, ..., v_d) = \mathbf{R}^d$, it follows v is orthogonal to every vector, hence v is orthogonal to itself, hence v = 0. We conclude λ cannot be an eigenvalue. All this can be readily computed in Python. The eigenvalues of the variance Q of the Iris dataset are and the orthonormal eigenvectors are the columns of the matrix $$U = \begin{pmatrix} 0.36 & -0.66 & -0.58 & 0.32 \\ -0.08 & -0.73 & 0.6 & -0.32 \\ 0.86 & 0.18 & 0.07 & -0.48 \\ 0.36 & 0.07 & 0.55 & 0.75 \end{pmatrix}$$ Since the eigenvalues are distinct, the multiplicity of each eigenvalue is 1. The variance Q was computed in §2.2 and its trace is From (??), the total variance of the Iris dataset is $$4.54 = \operatorname{trace}(Q) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4.$$ For the Iris dataset, the top eigenvalue is $\lambda_1 = 4.2$, it has multiplicity 1, and its corresponding list of eigenvectors contains only one eigenvector, $$v_1 = (0.36, -0.08, 0.86, 0.36).$$ The top eigenvalue accounts for 92.5% of the total variance. The second eigenvalue is $\lambda_2 = 0.24$ with eigenvector $$v_2 = (-0.66, -0.73, 0.18, 0.07).$$ The top two eigenvalues account for 97.8% of the total variance. The third eigenvalue is $\lambda_3 = 0.08$ with eigenvector $$v_3 = (-0.58, 0.60, 0.07, 0.55).$$ The top three eigenvalues account for 99.5% of the total variance. The fourth eigenvalue is $\lambda_4 = 0.02$ with eigenvector $$v_4 = (0.32, -0.32, -0.48, 0.75).$$ The top four eigenvalues account for 100% of the total variance. Here each eigenvalue has multiplicity 1, since there are four distinct eigenvalues. An important class of symmetric matrices are of the form $$\begin{pmatrix} 2-2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 2-1 & -1 \\ -1 & 2-1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2-1 & 0-1 \\ -1 & 2-1 & 0 \\ 0-1 & 2-1 \\ -1 & 0-1 & 2 \end{pmatrix}$$ $$\begin{pmatrix} 2-1 & 0 & 0-1 \\ -1 & 2-1 & 0 & 0 \\ 0-1 & 2-1 & 0 \\
0 & 0-1 & 2-1 \\ -1 & 0 & 0-1 & 2 \end{pmatrix} \begin{pmatrix} 2-1 & 0 & 0 & 0-1 \\ -1 & 2-1 & 0 & 0 & 0 \\ 0-1 & 2-1 & 0 & 0 \\ 0 & 0-1 & 2-1 & 0 \\ 0 & 0 & 0-1 & 2-1 \\ -1 & 0 & 0 & 0-1 & 2 \end{pmatrix}$$ $$\begin{pmatrix} 2-1 & 0 & 0 & 0 & 0-1 \\ -1 & 2-1 & 0 & 0 & 0 & 0 \\ 0-1 & 2-1 & 0 & 0 & 0 \\ 0 & 0-1 & 2-1 & 0 & 0 \\ 0 & 0 & 0-1 & 2-1 & 0 \\ 0 & 0 & 0 & 0-1 & 2-1 \\ -1 & 0 & 0 & 0 & 0-1 & 2 \end{pmatrix}.$$ We denote these matrices Q(2), Q(3), Q(4), Q(5), Q(6), Q(7). The following code generates these symmetric $d \times d$ matrices Q(d), ``` def row(i,d): v = [0]*d v[i] = 2 if i > 0: v[i-1] = -1 if i < d-1: v[i+1] = -1 if i == 0: v[d-1] += -1 if i == d-1: v[0] += -1 return v # using sympy from sympy import Matrix def Q(d): return Matrix([row(i,d) for i in range(d)]) # using numpy from numpy import * def Q(d): return array([row(i,d) for i in range(d)])</pre> ``` The eigenvalues of these symmetric matrices follow interesting patterns that are best explored using Python. Below we will see, the eigenvalues of Q(d) are between 4 and 0, and each eigenvalue other than 4 and 0 has multiplicity 2. Fig. 3.6 Three springs at rest and perturbed. To explain where these matrices come from, look at the mass-spring systems in Figures 3.6 and 3.7. Here we have springs attached to masses and walls on either side. At rest, the springs are the same length. When perturbed, some springs are compressed and some stretched. In Figure 3.6, let x_1 and x_2 denote the displacement of each mass from its rest position. When extended by x, each spring fights back by exerting a force kx proportional to the displacement x. Here k is the *spring constant*. For example, look at the mass m_1 . The spring to its left is extended by x_1 , so exerts a force of $-kx_1$. Here the minus indicates pulling to the left. On the other hand, the spring to its right is extended by $x_2 - x_1$, so it exerts a force $+k(x_2 - x_1)$. Here the plus indicates pulling to the right. Adding the forces from either side, the total force on m_1 is $-k(2x_1 - x_2)$. For m_2 , the spring to its left exerts a force $-k(x_2 - x_1)$, and the spring to its right exerts a force $-kx_2$, so the total force on m_2 is $-k(2x_2 - x_1)$. We obtain the force vector $$-k \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 \end{pmatrix} = -k \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$ However, as you can see, the matrix here is not exactly Q(2). Fig. 3.7 Six springs at rest and perturbed. For five masses, let x_1 , x_2 , x_3 , x_4 , x_5 denote the displacement of each mass from its rest position. In Figure 3.7, x_1 , x_2 , x_5 are positive, and x_3 , x_4 are negative. As before, the total force on m_1 is $-k(2x_1-x_2)$, and the total force on m_5 is $-k(2x_5-x_4)$. For m_2 , the spring to its left exerts a force $-k(x_2-x_1)$, and the spring to its right exerts a force $+k(x_3-x_2)$. Hence, the total force on m_2 is $-k(-x_1+2x_2-x_3)$. Similarly for m_3 , m_4 . We obtain the force vector $$-k \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 - x_4 \\ -x_3 + 2x_4 - x_5 \\ -x_4 + 2x_5 \end{pmatrix} = -k \begin{pmatrix} 2 - 1 & 0 & 0 & 0 \\ -1 & 2 - 1 & 0 & 0 \\ 0 & -1 & 2 - 1 & 0 \\ 0 & 0 & -1 & 2 - 1 \\ 0 & 0 & 0 - 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}.$$ But, again, the matrix here is not Q(5). Notice, if we place one mass and two springs in Figure 3.6, we obtain the 1×1 matrix 2. To obtain Q(2) and Q(5), we place the springs along a circle, as in Figures 3.8 and 3.9. Now we have as many springs as masses. Repeating the same logic, this time we obtain Q(2) and Q(5). Notice if we place one mass and one spring in Figure 3.8, d = 1, we obtain the 1×1 matrix Q(1) = 0: There is no force if we move a single mass around the circle, because the spring is not being stretched. **Fig. 3.8** Two springs along a circle leading to Q(2). Thus the matrices Q(d) arise from mass-spring systems arranged on a circle. From Newton's law (force equals mass times acceleration), one shows the frequencies of the vibrating springs equal $\sqrt{\lambda k}/m$, where k is the spring constant, m is the mass of each of the masses, and λ is an eigenvalue of Q(d). This is the physical meaning of the eigenvalues of Q(d). **Fig. 3.9** Five springs along a circle leading to Q(5). Let v have features (x_1, x_2, \ldots, x_d) , and let Q = Q(d). By elementary algebra, check that $$v \cdot Qv = (x_1 - x_2)^2 + (x_2 - x_3)^2 + \dots + (x_{d-1} - x_d)^2 + (x_d - x_1)^2$$. (3.2.13) As a consequence of (3.2.13), show also the following. - For any vector $v, 0 \le v \cdot Qv \le 4|v|^2$. Conclude every eigenvalue λ satisfies $0 \le \lambda \le 4$. - $\lambda = 0$ is an eigenvalue, with multiplicity 1. - When d is even, $\lambda = 4$ is an eigenvalue with multiplicity 1. - When d is odd, $\lambda = 4$ is not an eigenvalue. To compute the eigenvalues, we use complex numbers, specifically the d-th root of unity ω (§A.5). Let $$p(t) = 2 - t - t^{d-1},$$ and let $$v_1 = \begin{pmatrix} 1 \\ \omega \\ \omega^2 \\ \omega^3 \\ \vdots \\ \omega^{d-1} \end{pmatrix}.$$ Then Qv_1 is $$Qv_1 = \begin{pmatrix} 2 - \omega - \omega^{d-1} \\ -1 + 2\omega - \omega^2 \\ -\omega + 2\omega^2 - \omega^3 \\ \vdots \\ -\omega^{d-2} + 2\omega^{d-1} - 1 \end{pmatrix} = p(\omega) \begin{pmatrix} 1 \\ \omega \\ \omega^2 \\ \omega^3 \\ \vdots \\ \omega^{d-1} \end{pmatrix} = p(\omega)v_1.$$ Thus v_1 is an eigenvector corresponding to eigenvalue $p(\omega)$. For each k = 0, 1, 2, ..., d - 1, define $$v_k = (1, \omega^k, \omega^{2k}, \omega^{3k}, \dots, \omega^{(d-1)k}).$$ (3.2.14) Then $$v_0 = \mathbf{1} = (1, 1, \dots, 1),$$ and, by the same calculation, we have $$Qv_k = p(\omega^k)v_k, \qquad k = 0, 1, 2, \dots, d - 1.$$ By (A.5.9), $$p(\omega^k) = 2 - \omega^k - \omega^{(d-1)k} = 2 - \omega^k - \omega^{-k} = 2 - 2\cos(2\pi k/d).$$ ## Eigenvalues of Q(d) The (unsorted) eigenvalues of Q(d) are $$\lambda_k = p(\omega^k) = 2 - 2\cos\left(\frac{2\pi k}{d}\right),\tag{3.2.15}$$ with corresponding eigenvectors v_k given by (3.2.14), $k = 0, 1, 2, \ldots, d-1$. Corresponding to each eigenvalue λ_k , there is the complex eigenvector v_k . Separating v_k into its real and imaginary parts yields two real eigenvectors $$\Re(v_k) = \left(1, \cos\left(\frac{2\pi k}{d}\right), \cos\left(\frac{4\pi k}{d}\right), \cos\left(\frac{6\pi k}{d}\right), \dots, \cos\left(\frac{2(d-1)\pi k}{d}\right)\right),$$ $$\Im(v_k) = \left(0, \sin\left(\frac{2\pi k}{d}\right), \sin\left(\frac{4\pi k}{d}\right), \sin\left(\frac{6\pi k}{d}\right), \dots, \sin\left(\frac{2(d-1)\pi k}{d}\right)\right).$$ When k = 0 or when k = d/2, d even, we have $\Im(v_k) = 0$. This explains the double multiplicity in Figure 3.10, except when k = 0 or k = d/2, d even. Applying this formula, we obtain eigenvalues $$\begin{split} &Q(2) = (4,0) \\ &Q(3) = (3,3,0) \\ &Q(4) = (4,2,2,0) \\ &Q(5) = \left(\frac{5}{2} + \frac{\sqrt{5}}{2}, \frac{5}{2} + \frac{\sqrt{5}}{2}, \frac{5}{2} - \frac{\sqrt{5}}{2}, \frac{5}{2} - \frac{\sqrt{5}}{2}, 0\right) \\ &Q(6) = (4,3,3,1,1,0) \\ &Q(8) = (4,2 + \sqrt{2},2 + \sqrt{2},2,2,2 - \sqrt{2},2 - \sqrt{2},0) \\ &Q(10) = \left(4, \frac{5}{2} + \frac{\sqrt{5}}{2}, \frac{5}{2} + \frac{\sqrt{5}}{2}, \frac{3}{2} - \frac{\sqrt{5}}{2}, \frac{3}{2} - \frac{\sqrt{5}}{2}, \frac{3}{2} - \frac{\sqrt{5}}{2}, \frac{3}{2} - \frac{\sqrt{5}}{2}, 0\right) \\ &Q(12) = \left(4, 2 + \sqrt{3}, 2 + \sqrt{3}, 3, 3, 2, 2, 1, 1, 2 - \sqrt{3}, 2 - \sqrt{3}, 0\right). \end{split}$$ The matrices Q(d) are *circulant matrices*. Each row in Q(d) is obtained from the row above it in Q(d) by shifting the entries to the right. The trick of using the roots of unity to compute the eigenvalues and eigenvectors works for any circulant matrix. **Fig. 3.10** Plot of eigenvalues of Q(50). Our last topic is the distribution of the eigenvalues for large d. How are the eigenvalues scattered? Figure 3.10 plots the eigenvalues for Q(50) using the code below. ``` from scipy.linalg import eigh from matplotlib.pyplot import stairs,show,scatter,legend d = 50 E = eigh(Q(d))[0] stairs(E,range(d+1),label="numpy") k = arange(d) lamda = 2 - 2*cos(2*pi*k/d) sorted = sort(lamda) scatter(k,lamda,s=5,label="unordered") scatter(k,sorted,c="red",s=5,label="increasing order") grid() legend() show() ``` Figure 3.10 shows the eigenvalues tend to cluster near the top $\lambda_1 \approx 4$ and the bottom $\lambda_d = 0$, they are sparser near the middle. Using the double-angle formula, $$\lambda_k = 4\sin^2\left(\frac{\pi k}{d}\right), \qquad k = 0, 1, 2, \dots, d - 1.$$ Solving for k/d in terms of λ , and multiplying by two to account for the double multiplicity, we obtain the proportion of eigenvalues below threshold λ , $$\frac{\#\{k: \lambda_k \le \lambda\}}{d} \approx \frac{2}{\pi} \arcsin\left(\frac{1}{2}\sqrt{\lambda}\right), \qquad 0 \le \lambda \le 4.$$ (3.2.16) Here \approx means asymptotic equality, see §A.7. Equivalently, the derivative (4.1.28) of the arcsine law (3.2.16) exhibits the eigenvalue clustering near the ends (Figure 3.11). ``` from numpy import * from matplotlib.pyplot import * lamda = arange(0.1,3.9,.01) density = 1/(pi*sqrt(lamda*(4-lamda))) plot(lamda,density) # r"..." means raw string tex = r"$\displaystyle\frac1{\pi\sqrt{\lambda(4-\lambda)}}$" text(.5,.45,tex,usetex=True,fontsize="x-large") grid() show() ``` Fig. 3.11 Density of eigenvalues of Q(d) for d large. The matrices Q(d) are prototypes of matrices that are fundamental in many areas of physics and engineering, including time series analysis and information theory, see [12]. This clustering of eigenvalues near the top and bottom is valid for a wide class of matrices, not just Q(d), as the matrix size d grows without bound, $d \to \infty$. ### **Exercises** **Exercise 3.2.1** Let A be a 2×2 matrix.
Show λ is an eigenvalue of A when $\det(A - \lambda I) = 0$. (See homogeneous systems in §A.4.) **Exercise 3.2.2** Let A be a 2×2 matrix. Show λ is an eigenvalue of A when $$\lambda^2 - \lambda \operatorname{trace}(A) + \det(A) = 0.$$ **Exercise 3.2.3** Let Q be a 2×2 symmetric matrix. Show the eigenvalues λ_{\pm} of Q are given by (1.4.12). **Exercise 3.2.4** Let $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$. Find the eigenvalues and eigenvectors of A. Verify that the trace and determinant of A are the sum and product of the eigenvalues. **Exercise 3.2.5** Let $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show the eigenvalues are $$\lambda_{\pm} = a \pm ib$$ (these are complex numbers $\S A.5$). **Exercise 3.2.6** Let Q be a 2×2 symmetric matrix. Show $\det(Q)$ and $\operatorname{trace}(Q)$ are the product and sum of the eigenvalues. Conclude Q is a positive variance matrix when $\det(Q) > 0$ and $\operatorname{trace}(Q) > 0$. **Exercise 3.2.7** The symmetric 2×2 matrix Q has eigenvalues 1 and 2 and corresponding eigenvectors u = (3,4) and $v = u^{\perp}$ (u^{\perp} is defined in §A.4). What is Q? **Exercise 3.2.8** [32] Let Find all four eigenvalues and eigenvectors of A by solving $Av = \lambda v$. **Exercise 3.2.9** [32] Let $$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$ Find all four eigenvalues and eigenvectors of A by solving $Av = \lambda v$. Exercise 3.2.10 Verify (3.2.4) and (3.2.5) using sympy. **Exercise 3.2.11** With R(d) as in Exercise **2.2.10**, find the eigenvalues and eigenvectors of R(d). Exercise 3.2.12 Use Python to verify the entries in Table 3.12. | d | $4 \cdot \operatorname{trace}(Q(d)^+)$ | |-----|--| | 4 | 4+1 | | 16 | (4+1)(16+1) | | 256 | (4+1)(16+1)(256+1) | **Table 3.12** Trace of pseudo-inverse ($\S 2.3$) of Q(d). **Exercise 3.2.13** Verify (3.2.13). Conclude Q(d) is nonnegative, hence a variance matrix. **Exercise 3.2.14** Let P be a projection matrix (§2.7). Show the eigenvalues of P are 0 and 1. Which vectors are eigenvectors for 1, and which for 0? **Exercise 3.2.15** Let a, b, c be three distinct eigenvalues of a matrix A, with corresponding eigenvectors u, v, w. Show that u, v, w are linearly independent. Use Exercise **A.5.9**: there is a quadratic $p(t) = \alpha t^2 + \beta t + \gamma$ satisfying p(a) = 0, p(b) = 0, p(c) = 1. Multiply ru + sv + tw = 0 by $p(A) = \alpha A^2 + \beta A + \gamma I$ to conclude t = 0, and repeat for r and s. **Exercise 3.2.16** Let Q be a symmetric matrix with positive eigenvalues. Use the Cauchy-Schwarz inequality (2.2.3) to show $$(u \cdot Qu)(u \cdot Q^{-1}u) \ge 1$$ for every unit vector u. First assume Q is diagonal then use EVD. **Exercise 3.2.17** If Q is a symmetric matrix with positive top and bottom eigenvalues L and m, show $$m \le u \cdot Qu \le L$$, and $\frac{1}{L} \le u \cdot Q^{-1}u \le \frac{1}{m}$ for every unit vector u. 3.3. GRAPHS 151 **Exercise 3.2.18** If Q is a symmetric matrix with positive top and bottom eigenvalues L and m, show $$\frac{m}{L} \le (u \cdot Qu)(u \cdot Q^{-1}u) \le \frac{L}{m}$$ for every unit vector u. # 3.3 Graphs Graph theory is a kind of linear geometry, and depends on the material already covered. As such, the study of graphs is an application of the material in the previous sections. Since graph theory is the start of neural networks, we study it here. A graph consists of nodes and edges. The nodes are also called vertices. For example, the graphs in Figure 3.13 each have four nodes and three edges. The left graph is directed, in that a direction is specified for each edge. The graph on the right is undirected, no direction is specified. Fig. 3.13 Directed and undirected graphs. In a directed graph, if there is an edge pointing from node i to node j, we say (i, j) is an edge. For undirected graphs, we say i and j are adjacent. Fig. 3.14 A weighed directed graph. An edge (i, j) is weighed if a scalar w_{ij} is attached to it. If every edge in a graph is weighed, then the graph is a weighed graph. Any two nodes may be considered adjacent by assigning the weight zero to the edge between them. In §4.4, back propagation on weighed directed graphs is used to calculate derivatives. Let w_{ij} be the weight on the edge (i, j) in a weighed directed graph. The weight matrix of a weighed directed graph is the matrix $W = (w_{ij})$. If the graph is unweighed, then we set $A = (a_{ij})$, where $$a_{ij} = \begin{cases} 1, & \text{if } i \text{ and } j \text{ adjacent,} \\ 0, & \text{if not.} \end{cases}.$$ In this case, A consists of ones and zeros, and is called the *adjacency matrix*. If the graph is undirected, then the adjacency matrix is symmetric, $$a_{ij} = a_{ji}$$. Fig. 3.15 A double edge and a loop. Sometimes graphs may have multiple edges between nodes, or loops, which are edges starting and ending at the same node. A graph is *simple* if it has no loops and no multiple edges. In this section, we deal only with *simple* undirected unweighed graphs. To summarize, a simple undirected graph G=(V,E) is a collection V of nodes, and a collection of edges E, each edge corresponding to a pair of nodes. The number of nodes is the order n of the graph, and the number of edges is the size m of the graph. In a (simple undirected) graph of order n, the number of pairs of nodes is n-choose-2, so the number of edges satisfies $$0 \le m \le \binom{n}{2} = \frac{1}{2}n(n-1).$$ How many graphs of order n are there? Since graphs are built out of edges, the answer depends on how many subsets of edges you can grab from a maximum of n(n-1)/2 edges. The number of subsets of a set with m elements is 2^m , so the number G_n of graphs with n nodes is $$G_n = 2^{\binom{n}{2}} = 2^{n(n-1)/2}.$$ For example, the number of graphs with n=5 is $2^{5(5-1)/2}=2^{10}=1,024$, and the number of graphs with n=10 is $$n = 10$$ $\implies G_n = 2^{45} = 35, 184, 372, 088, 832.$ When m = 0, there are no edges, and we say the graph is *empty*. When m = n(n-1)/2, there are the maximum number of edges, and we say the graph is *complete*. The *complete graph* with n nodes is written K_n (Figure 3.16). Fig. 3.16 The complete graph K_6 , the cycle graph C_6 , and the wheel graph W_6 . The cycle graph C_n with n nodes is as in Figure 3.16. The graph C_n has n edges. The wheel graph is the cycle graph with one vertex added at the center and connected to the spokes. The cycle graph C_3 is a triangle. A graph G' is a subgraph of a graph G if every node of G' is a node of G, and every edge of G' is an edge of G. For example, a triangle in G is a graph triangle that is a subgraph of G. Below we see the graph K_6 in Figure 3.16 contains twenty triangles. Fig. 3.17 The triangle $K_3 = C_3$. Let v be a node in a (simple, undirected) graph G. The degree of v is the number d_v of edges containing v. If the nodes are labeled $1, 2, \ldots, n$, with the degrees in decreasing order, then $$d_1 \ge d_2 \ge d_3 \ge \dots \ge d_n$$ is the degree sequence of the graph. We write $$(d_1, d_2, d_3, \ldots, d_n)$$ for the degree sequence. If the graph is directed, the *in-degree* is the number of incoming edges, and the *out-degree* is the number of outgoing edges. If a node has no incoming edges, it is an *input node*. If a node has no outgoing edges, it is an *output node*. Unless specified explicitly, all graphs in this section are undirected and unweighed. If we add the degrees over all nodes, we obtain the number of edges counted twice, because each edge contains two nodes. Thus we have ### Handshaking Lemma If the order is n, the size is m, and the degrees are d_1, d_2, \ldots, d_n , then $$d_1 + d_2 + \dots + d_n = \sum_{k=1}^n d_k = 2m.$$ A node is *isolated* if its degree is zero. A node is *dominating* if it has the highest degree. Notice the highest degree is $\leq n-1$, because there are no loops. We show ### Nodes with Equal Degree In any graph, there are at least two nodes with the same degree. To see this, we consider two cases. First case, assume there are no isolated nodes. Then the degree sequence is $$n-1 \ge d_1 \ge d_2 \ge \cdots \ge d_n \ge 1$$. So we have n integers spread between 1 and n-1. This can't happen unless at least two of these integers are equal. This completes the first case. In the second case, we have at least one isolated node, so $d_n = 0$. If $d_{n-1} = 0$ also, then we have found two nodes with the same degree. If not, then the maximum degree is n-2 (because node n is isolated), and $$n-2 \ge d_1 \ge d_2 \ge \dots d_{n-1} \ge 1$$. 3.3. GRAPHS 155 So now we have n-1 integers spread between 1 and n-2. This can't happen unless at least two of these integers are equal. This completes the second case. A graph is regular if all the node degrees are equal. If the node degrees are all equal to k, we say the graph is k-regular. From the handshaking lemma, for a k-regular graph, we have kn=2m, so $$m = \frac{1}{2}kn.$$ For example, because 2m is even, there are no 3-regular graphs with 11 nodes. Both K_n and C_n are regular, with K_n being (n-1)-regular, and C_n being 2-regular. A walk on a graph is a sequence of nodes v_1, v_2, v_3, \ldots where each consecutive pair v_i, v_{i+1} of nodes are adjacent. For example, if $v_1, v_2, v_3, v_4, v_5, v_6$ are the nodes (in any order) of the complete graph K_6 , then $v_1 \to v_2 \to v_3 \to v_4 \to v_2$ is a walk. A path is a walk with no backtracking: A path visits each node at most once. Two nodes a and b are connected if there is a walk starting at a and ending at b. If a and b are connected, then there is a path starting at a and ending at b, since we can cut out the cycles of the walk. A graph is connected if every two nodes are connected. A graph is disconnected if it is not connected. For example, Figure 3.16 may be viewed as two connected graphs K_6
and C_6 , or a single disconnected graph $K_6 \cup C_6$. A *closed walk* is a walk that ends where it starts. A *cycle* is a closed path. If a graph has no cycles, it is a *forest*. A connected forest is a *tree*. In a tree, any two nodes are connected by exactly one path. The adjacency matrix of a graph is given by $$a_{ij} = \begin{cases} 1, & \text{if } i \text{ and } j \text{ are adjacent,} \\ 0, & \text{if not.} \end{cases}$$ When a graph is undirected, its adjacency matrix is symmetric. Let **1** be the vector **1** = (1, 1, 1, ..., 1). The adjacency matrix of the complete graph K_n is the $n \times n$ matrix A with all ones except on the diagonal. If I is the $n \times n$ identity matrix, then this adjacency matrix is $$A = \mathbf{1} \otimes \mathbf{1} - I$$ For example, for the triangle K_3 , $$A = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$ If we label the nodes of the cycle graph C_n consecutively, then node i is shares an edge with i-1 and i+1, except when i=1 and i=n. Node 1 shares an edge with 2 and n, and node n shares an edge with n-1 and 1. So for C_6 the adjacency matrix is $$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$ Notice there are ones on the sub-diagonal, and ones on the super-diagonal, and ones in the upper-right and lower-left corners. The Seven Bridges of Königsberg was an important technology problem in the eighteenth century. The following description and map are from Wikipedia [36]. Fig. 3.18 An eighteenth-century map of Königsberg showing the seven bridges. The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large islands — Kneiphof and Lomse — which were connected to each other, and to the two mainland portions of the city, by seven bridges. The problem was to devise a path through the city that would cross each of those bridges once and only once. The problem's negative resolution by Leonhard Euler² [pronounced "oy-ler"], in 1736, laid the foundations of graph theory. Based on this, we say a path is *Eulerian* [pronounced "oy-ler-yan"] if it visits *every edge* in the graph *exactly once*. An *Eulerian cycle* is an Eulerian path that is a cycle. Here is Euler's result. ² This is the Euler who named e §A.3. 3.3. GRAPHS 157 ## Euler's Theorem A connected graph has an Eulerian cycle if and only if every vertex has an even degree. If a graph has an Eulerian cycle, it is an *Eulerian graph*. Thus the Eulerian graphs are those where all nodes have even degree. Fig. 3.19 An Eulerian graph. Since the degree sequence of the graph in Figure 3.19 is (4, 4, 4, 4, 4, 2), the graph is Eulerian. For any adjacency matrix A, the sum of each row is equal to the degree of the node corresponding to that row. This is the same as saying $$A\mathbf{1} = \begin{pmatrix} d_1 \\ d_2 \\ \dots \\ d_n \end{pmatrix}.$$ In particular, for a k-regular graph, we have $$A\mathbf{1} = k\mathbf{1}$$, so for a k-regular graph, k is an eigenvalue of A. What is the connection between degrees and eigenvalues in general? To explain this, let λ be an eigenvalue of A with eigenvector $v = (v_1, v_2, \dots, v_n)$, so $Av = \lambda v$. Since a multiple tv of v is also an eigenvector, we may assume the biggest component of v equals 1. Suppose the nodes are labeled so that $v = (1, v_2, v_3, \dots, v_n)$, with $$v_1 = 1 \ge |v_j|, \qquad j = 2, 3, \dots, n.$$ Taking the first component of $Av = \lambda v$, we have $$(Av)_1 = a_{11}v_1 + a_{12}v_2 + a_{13}v_3 + \dots + a_{1n}v_n.$$ Since the sum $a_{11} + a_{12} + \cdots + a_{1n}$ equals the degree d_1 of node 1, this implies $$d_1 = a_{11} + a_{12} + \dots + a_{1n} \ge a_{11}v_1 + a_{12}v_2 + a_{13}v_3 + \dots + a_{1n}v_n = (Av)_1 = \lambda v_1 = \lambda.$$ Since d_1 is one of the degrees, d_1 is no greater than the maximum degree. This explains ## Maximum Degree of Graph If λ is any eigenvalue of the adjacency matrix A, then λ is less or equal to the maximum degree. In particular, for a k-regular graph, the maximum degree equals k, and we already saw k is an eigenvalue, so ### Top Eigenvalue For a k-regular graph, k is the top eigenvalue of the adjacency matrix A. Let $A = \mathbf{1} \otimes \mathbf{1} - I$ be the adjacency matrix of complete graph K_n . Then for any vector v orthogonal to $\mathbf{1}$, $$Av = (\mathbf{1} \otimes \mathbf{1} - I)v = (\mathbf{1} \cdot v)\mathbf{1} - v = 0 - v = -v,$$ so $\lambda = -1$ is an eigenvalue with multiplicity n-1. Since $$A\mathbf{1} = (\mathbf{1} \cdot \mathbf{1})\mathbf{1} - \mathbf{1} = n\mathbf{1} - \mathbf{1} = (n-1)\mathbf{1},$$ n-1 is an eigenvalue. Hence the eigenvalues of A are n-1 with multiplicity 1 and -1 with multiplicity n-1. The *complement* of graph G is the graph \bar{G} obtained by switching 1's and 0's, so the adjacency matrix \bar{A} of \bar{G} is $$\bar{A} = A(\bar{G}) = \mathbf{1} \otimes \mathbf{1} - I - A(G).$$ Let G be a k-regular graph, and suppose $k = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ are the eigenvalues of A = A(G). Since A is symmetric, we have an orthogonal basis of eigenvectors v_1, v_2, \ldots, v_n , with $v_1 = \mathbf{1}$. Then \bar{G} is an (n-1-k)-regular graph, so the top eigenvalue of $\bar{A} = A(\bar{G})$ is n-1-k, with eigenvector $v_1 = \mathbf{1}$. 3.3. GRAPHS 159 If v_k is any eigenvector of A other than 1, then v_k is orthogonal to 1, hence $$\bar{A}v = (\mathbf{1} \otimes \mathbf{1} - I - A)v_k = -v - \lambda_k v_k = (-1 - \lambda_k)v_k.$$ Hence the eigenvalues of \bar{A} are n-1-k and $-1-\lambda_k$, $k=2,\ldots,n$, with the same eigenbasis. Now we look at powers of the adjacency matrix A. By definition of matrix-matrix multiplication, $$(A^2)_{ij} = i$$ -th row $\times j$ -th column $= \sum_{k=1}^n a_{ik} a_{kj}$. Now $a_{ik}a_{kj}$ is either 0 or 1, and equals 1 exactly if there is a 2-step path from i to j. Hence $$(A^2)_{ij}$$ = number of 2-step walks connecting i and j . Notice a 2-step walk between i and j is the same as a 2-step path between i and j. When i = j, $(A^2)_{ii}$ is the number of 2-step paths connecting i and i, which means number of edges. Since this counts edges twice, we have $$\frac{1}{2}$$ trace $(A^2) = m = \text{number of edges}.$ Similarly, $(A^3)_{ij}$ is the number of 3-step walks connecting i and j. Since a 3-step walk from i to i is the same as a triangle, $(A^3)_{ii}$ is the number of triangles in the graph passing through i. Since the trace is the sum of the diagonal elements, $\operatorname{trace}(A^3)$ counts the number of triangles. But this overcounts by a factor of 3! = 6, since three labels may be rearranged in six ways. Hence $$\frac{1}{6}\operatorname{trace}(A^3) = \text{number of triangles.}$$ ## Loops, Edges, Triangles Let A be the adjacency matrix. Then - trace(A) = number of loops = 0, - $\operatorname{trace}(A^2) = 2 \times \text{number of edges},$ - trace(A^3) = 6 × number of triangles. Let us compute these for the complete graph K_n . Since $$(u \otimes v)^2 = (u \otimes v)(u \otimes v) = (u \cdot v)(u \otimes v),$$ and $\mathbf{1} \cdot \mathbf{1} = n$, we have $(\mathbf{1} \otimes \mathbf{1})^2 = n\mathbf{1} \otimes \mathbf{1}$. So $$A^2 = (\mathbf{1} \otimes \mathbf{1} - I)^2 = (\mathbf{1} \otimes \mathbf{1})^2 - 2\mathbf{1} \otimes \mathbf{1} + I = (n-2)\mathbf{1} \otimes \mathbf{1} + I.$$ Since $\operatorname{trace}(u \otimes v) = u \cdot v$, we have $\operatorname{trace}(\mathbf{1} \otimes \mathbf{1}) = n$. Hence $$trace(A^2) = trace((n-2)\mathbf{1} \otimes \mathbf{1} + I) = n(n-2) + n = n(n-1).$$ This is correct because for a complete graph, n(n-1)/2 is the number of edges. Continuing, $$A^{3} = A^{2}A = ((n-2)\mathbf{1} \otimes \mathbf{1} + I)(\mathbf{1} \otimes \mathbf{1} - I)$$ $$= n(n-2)\mathbf{1} \otimes \mathbf{1} - (n-2)\mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} - I$$ $$= (n^{2} - 3n + 3)\mathbf{1} \otimes \mathbf{1} - I.$$ From this, we get $$trace(A^3) = n(n^2 - 3n + 3) - n = n(n^2 - 3n + 2) = n(n - 1)(n - 2).$$ This is correct because for a complete graph, we have a triangle whenever we have a triple of nodes, and there are n-choose-3 triples, which equals n(n-1)(n-2)/6. Remember, a graph is connected if there is a walk connecting any two nodes. Since there is a 4-step walk between i and j exactly when there are r, s, and t satisfying $$a_{ir}a_{rs}a_{st}a_{tj} = 1,$$ we see there is a 4-step walk connecting i and j if $(A^4)_{ij} > 0$. Hence ### Connected Graph Let A be the adjacency matrix. Then the graph is connected if for every $i \neq j$, there is a k with $(A^k)_{ij} > 0$. If a graph is not connected, it may be decomposed as a disjoint union of two or more connected subgraphs. These subgraps are the *components* of the graph. Two graphs are *isomorphic* if a re-labeling of the nodes in one makes it identical to the other. To explain this, we need permutations. A permutation on n letters is a re-arrangement of $1, 2, 3, \ldots, n$. Here are two permutations of (1, 2, 3, 4), $$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}.$$ There are n! permutations of (1, 2, ..., n). If a permutation sends i to j, we write $i \to j$. Since a permutation is just a re-labeling, if $i \to k$ and $j \to k$, then we must have i = j. Each permutation leads to a permutation matrix. A *permutation matrix* is a matrix of zeros and ones, with only one 1 in any column or row (see also Exercise 2.1.1). For example, the above permutations correspond to the 4×4 matrices $$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1
& 0 & 0 & 0 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$ In general, the permutation matrix P has $P_{ij} = 1$ if $i \to j$, and $P_{ij} = 0$ if not. If P is any permutation matrix, then $P_{ik}P_{jk}$ equals 1 if both $i \to k$ and $j \to k$. In other words, $P_{ik}P_{jk} = 1$ if i = j and $i \to k$, and $P_{ik}P_{jk} = 0$ otherwise. Since $i \to k$ for exactly one k, $$(PP^t)_{ij} = \sum_{k=1}^n P_{ik} P_{kj}^t = \sum_{k=1}^n P_{ik} P_{jk} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$ Hence P is orthogonal, $$PP^t = I, \qquad P^{-1} = P^t.$$ Using permutation matrices, we can say two graphs are isomorphic if their adjacency matrices A, A' satisfy $$A' = PAP^{-1} = PAP^t$$ for some permutation matrix P. If two graphs are isomorphic, then it is easy to check their degree sequences are equal. However, the converse is not true. Figure 3.20 displays two non-isomorphic graphs with degree sequences (3, 2, 2, 1, 1, 1). These graphs are non-isomorphic because in one graph, there are two degree-one nodes adjacent to a degree-three node, while in the other graph, there is only one degree-one node adjacent to a degree-three node. **Fig. 3.20** Non-isomorphic graphs with degree sequence (3, 2, 2, 1, 1, 1). A graph is *bipartite* if the nodes can be divided into two groups, with adjacency only between nodes across groups. If we call the two groups even and odd, then odd nodes are never adjacent to odd nodes, and even nodes are never adjacent to even nodes. The *complete bipartite* graph is the bipartite graph with maximum number of edges: Every odd node is adjacent to every even node. The complete bipartite graph with n odd nodes with m even nodes is written $K_{n,m}$. Then the order of $K_{n,m}$ is n+m. Let a = (1, 1, ..., 1, 0, 0, ..., 0) be the vector with n ones and m zeros, and let $b = \mathbf{1} - a$. Then b has n zeros and m ones, and the adjacency matrix of $K_{n,m}$ is $$A = A(K_{n,m}) = a \otimes b + b \otimes a.$$ For example, the adjacency matrix of $K_{5,3}$ is $$\begin{pmatrix} 1\\1\\1\\0\\0\\0\\0\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\0\\1\\1\\1\\1\\1 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1\\1\\1\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\1\\1\\0\\0\\0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$ Recall we have $$(a \otimes b)v = (b \cdot v)a.$$ From this, we see the column space of $A = a \otimes b + b \otimes a$ is span(a, b). Thus the rank of A is 2, and the nullspace of A consists of the orthogonal complement $span(a, b)^{\perp}$ of span(a, b). Using this, we compute the eigenvalues of A. Fig. 3.21 Complete bipartite graph $K_{5,3}$. 3.3. GRAPHS 163 Since the nullspace is $span(a, b)^{\perp}$, any vector orthogonal to a and to b is an eigenvector for $\lambda = 0$. Hence the eigenvalue $\lambda = 0$ has multiplicity n + m - 2. Since trace(A) = 0, the sum of the eigenvalues is zero, and the remaining two eigenvalues are $\pm \lambda \neq 0$. Let v be an eigenvector for $\lambda \neq 0$. Because eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthogonal (see §3.2), v is orthogonal to the nullspace of A, so v must be a linear combination of a and b, v = ra + sb. Since $a \cdot b = 0$, $$Aa = nb, \qquad Ab = ma.$$ Hence $$\lambda v = Av = A(ra + sb) = rnb + sma.$$ Applying A again, $$\lambda^2 v = A^2 v = A(rnb + sma) = rnma + smnb = nm(ra + sb) = nmv.$$ Hence $\lambda = \sqrt{nm}$. We conclude the eigenvalues of $K_{n,m}$ are $$\sqrt{nm}$$, 0, 0, ..., 0, $-\sqrt{nm}$, (with 0 repeated $n+m-2$ times). For example, for the graph in Figure 3.21, the nonzero eigenvalues are $\lambda = \pm \sqrt{3 \times 5} = \pm \sqrt{15}$. Let G be a graph with n nodes and m edges. The *incidence matrix* of G is a matrix whose rows are indexed by the edges, and whose columns are indexed by the nodes. Therefore, the incidence matrix has shape $m \times n$. By placing arrows along the edges, we can make G into a directed graph. In a directed graph, each edge has a *tail node* and a *head node*. Then the incidence matrix is given by $$B_{ij} = \begin{cases} 1, & \text{if node } j \text{ is the head of edge } i, \\ -1, & \text{if node } j \text{ is the tail of edge } i, \\ 0, & \text{if node } j \text{ is not on edge } i. \end{cases}$$ The laplacian of a graph G is the symmetric $n \times n$ matrix $$L = B^t B$$. Both the laplacian matrix and the adjacency matrix are $n \times n$. What is the connection between them? ### Laplacian The laplacian satisfies $$L = D - A$$ where $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$ is the diagonal degree matrix. Note the Laplacian does not depend on how the edges were directed, it only depends on A. For example, for the cycle graph C_6 , the degree matrix is 2I, and the laplacian is the matrix we saw in §3.2, $$L = Q(6) = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{pmatrix}.$$ In a k-regular graph, the Laplacian is L = kI - A, so the eigenvalues of A and L are related by $\lambda \to k - \lambda$. Let A be the adjacency matrix of the cycle graph C_n . Since C_n is 2-regular, the top eigenvalue of A is 2. Since $$A = 2I - Q(n),$$ From this, by (3.2.15), the eigenvalues of A are $$2\cos(2\pi k/n), \qquad k = 0, 1, 2, \dots, n-1,$$ and the eigenvectors of A are the eigenvectors of Q(n). # **Exercises** Exercise 3.3.1 [27] Consider the graph in Figure 3.22 below. What is the order of the graph? What is the degree of vertex H? What is the degree of vertex D? How many components does the graph have? Exercise 3.3.2 [27] Which of the following degree sequences are possible for a simple graph? 1. (4,4,4,3,3,3,3,3,2) 3.3. GRAPHS 165 - 2. (5,3,2,2,2,1) - 3. (8,7,6,5,5,3,1,1) - 4. (6,6,6,5,4,4,4,3,3,3) Fig. 3.22 A graph. Exercise 3.3.3 [27] Construct a tree with five vertices such that the degree of one vertex is 3. How many such (non-isomorphic) graphs can you construct? **Exercise 3.3.4** [27] Consider the cities F, G, H, I, J, K. The costs of the possible roads between cities are c(F,G) = 8, c(G,H) = 5, c(F,H) = 9, c(F,K) = 10, c(I,K) = 6, c(I,J) = 7. What is the minimum cost to build a road system that connects all the cities? **Exercise 3.3.5** [27] A graph has vertices M, N, O, P, Q, R, S, and edges MN, MO, MP, MR, MS, NO, OR, PR, PS, QR. What is the degree of S? What is the degree of M? How many components does the graph have? **Exercise 3.3.6** [27] Find the degree sequences of the cycle graph C_6 , the complete graph K_8 , the complete bipartite graph $K_{3,7}$, and the wheel graph W_4 . **Exercise 3.3.7** [27] A directed graph has vertices v_0 , v_1 , v_2 , v_3 , v_4 , v_5 , v_6 with adjacency matrix $$\begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$ What is the order of the graph? What is the number of edges? What are the in-degree and out-degree of v_3 ? of v_5 ? **Exercise 3.3.8** Which of C_n , K_n , W_n is Eulerian? For which n? Exercise 3.3.9 Find an Eulerian cycle in the graph in Figure 3.19. # 3.4 Singular Value Decomposition In this section, we discuss the singular value decomposition (U, S, V) of a matrix A. Let A be a matrix. We say a real number σ is a singular value of A if there are nonzero vectors v and u satisfying $$Av = \sigma u$$ and $A^t u = \sigma v$. (3.4.1) When this happens, v is a right singular vector and u is a left singular vector associated to σ . When (3.4.1) holds, so does $$Av = (-\sigma)(-u), \qquad A^t(-u) = (-\sigma)v.$$ Because of this, to eliminate ambiguity, it is standard to assume $\sigma \geq 0$; henceforth we shall insist singular values are positive or zero. Contrast singular values with eigenvalues: While eigenvalues may be positive, negative, or zero, singular values are positive or zero, never negative. The definition immediately implies ## Singular Values of A Versus A Transpose The singular values of A and the singular values of A^t are the same. Contrast this with the analogous result for eigenvalues in §3.2. We work out our first example. Let $$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$ Then $Av = \lambda v$ implies $\lambda = 1$ and v = (1,0). Thus A has only one eigenvalue equal to 1, and only one eigenvector. Set $$Q = A^t A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$ Since Q is symmetric, Q has two eigenvalues λ_1 , λ_2 and corresponding eigenvectors v_1 , v_2 . Moreover, as we saw in §3.2, v_1 , v_2 may be chosen orthonormal. The eigenvalues of Q are given by $$0 = \det(Q - \lambda I) = \lambda^2 - 3\lambda + 1.$$ By the quadratic formula, $$\lambda_1 = \frac{3}{2} + \frac{\sqrt{5}}{2} = 2.62, \qquad \lambda_2 = \frac{3}{2} - \frac{\sqrt{5}}{2} = 0.38.$$ Now we turn to singular values. If v and u and σ satisfy (3.4.1), then $$Qv = A^t A v = A^t (\sigma u) = \sigma^2 v. \tag{3.4.2}$$ Hence $\sigma^2 = \lambda$, and we obtain $$\sigma_1 = \sqrt{\frac{3}{2} + \frac{\sqrt{5}}{2}} = 1.62, \qquad \sigma_2 = \sqrt{\frac{3}{2} - \frac{\sqrt{5}}{2}} = 0.62.$$ To make (3.4.1) work, we set $u_1 = Av_1/\sigma_1$. Then $Av_1 = \sigma_1 u_1$, and $$A^{t}u_{1} = A^{t}Av_{1}/\sigma_{1} = Qv_{1}/\sigma_{1} = \lambda_{1}v_{1}/\sigma_{1} = \sigma_{1}v_{1}.$$ Thus v_1 , u_1 are right and
left singular vectors corresponding to the singular value σ_1 of A. Similarly, if we set $u_2 = Av_2/\sigma_2$, then v_2 , u_2 are right and left singular vectors corresponding to the singular value σ_2 of A. We show v_1 , v_2 are orthonormal, and u_1 , u_2 are orthonormal. We already know v_1 , v_2 are orthonormal, because they are orthonormal eigenvectors of the symmetric matrix Q. Also $$0 = \lambda_1 v_1 \cdot v_2 = Q v_1 \cdot v_2 = (A^t A v_1) \cdot v_2 = (A v_1) \cdot (A v_2) = \sigma_1 u_1 \cdot \sigma_2 u_2 = \sigma_1 \sigma_2 u_1 \cdot u_2.$$ Since $\sigma_1 \neq 0$, $\sigma_2 \neq 0$, it follows u_1 , u_2 are orthogonal. Also $$\lambda_1 = \lambda_1 v_1 \cdot v_1 = Q v_1 \cdot v_1 = (A^t A v_1) \cdot v_1 = (A v_1) \cdot (A v_1) = \sigma_1^2 u_1 \cdot u_1.$$ Since $\lambda_1 = \sigma_1^2$, $u_1 \cdot u_1 = 1$. Similarly, $u_2 \cdot u_2 = 1$. This shows u_1 , u_2 are orthonormal, and completes the first example. Let A be an $N \times d$ matrix, and suppose $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ are positive singular values with corresponding left singular vectors u_1, u_2, \ldots, u_r and right singular vectors v_1, v_2, \ldots, v_r . Then, since $u_k = Av_k/\sigma_k$, the vectors u_1, u_2, \ldots, u_r are in the column space of A. If u_1, u_2, \ldots, u_r are linearly independent, it follows r is no larger than rank(A), hence r is no larger than min(N, d). We seek the largest value of r. Below we show the largest r is min(N, d), the lesser of d and N. The close connection between singular values σ of A and eigenvalues λ of $Q = A^t A$ carries over in the general case. # A Versus $Q = A^t A$ Let A be any matrix. Then - the rank of A equals the rank of Q, - σ is a singular value of A iff $\lambda = \sigma^2$ is an eigenvalue of Q. Since the rank equals the dimension of the row space, the first part follows from §2.4. If $Av = \sigma u$ and $A^t u = \sigma v$, then $$Qv = A^t A v = A^t (\sigma u) = \sigma A^t u = \sigma^2 v,$$ so $\lambda = \sigma^2$ is an eigenvalue of Q. Conversely, If $Qv = \lambda v$, then $\lambda \geq 0$, so there are two cases. If $\lambda > 0$, set $\sigma = \sqrt{\lambda}$ and $u = Av/\sigma$. Then $$Av = \sigma u, \qquad A^t u = A^t A v / \sigma = Q v / \sigma = \lambda v / \sigma = \sigma v$$ This shows σ is a singular value of A with singular vectors u and v. If $\lambda = 0$, then we take $\sigma = 0$, and the correct interpretation of the second part is the nullspace of Q equals the nullspace of A, which we already know. From §3.2, the number of positive eigenvalues (possibly repeated) of Q equals the rank of Q. By the above, we conclude the rank of A equals the number of positive singular values (possibly repeated) of A. The above results may be phrased as #### Singular Value Decomposition (SVD) Let A be any matrix, and let r be the rank of A. Then there are r singular values σ_k , an orthonormal basis u_k of the target space, and an orthonormal basis v_k of the source space, such that $$Av_k = \sigma_k u_k, \qquad A^t u_k = \sigma_k v_k, \qquad k \le r,$$ (3.4.3) and $$Av_k = 0, A^t u_k = 0 \text{for } k > r. (3.4.4)$$ Taken together, (3.4.3) and (3.4.4) say the number of nonzero singular values is exactly r. Assume A is $N \times d$, and let $p = \min(N, d)$ be the lesser of N and d. Since (3.4.4) holds as long as there are vectors u_k and v_k , there are p-r zero singular values. Hence there are $p = \min(N, d)$ singular values altogether. The proof of the result is very simple once we remember the rank of Q equals the number of positive eigenvalues of Q. By the eigenvalue decomposition, there is an orthonormal basis v_k of the source space and positive eigenvalues λ_k such that $Qv_k = \lambda_k v_k$, $k \leq r$, and $Qv_k = 0$, k > r. Setting $\sigma_k = \sqrt{\lambda_k}$ and $u_k = Av_k/\sigma_k$, $k \leq r$, as in our first example, we have (3.4.3), and, again as in our first example, u_k , $k \leq r$, are orthonormal. By construction, v_k , k > r, is an orthonormal basis for the nullspace of A, and u_k , $k \le r$, is an orthonormal basis for the column space of A. Choose u_k , k > r, any orthonormal basis for the nullspace of A^t . Since the column space of A is the row space of A^t , the column space of A is the orthogonal complement of the nullspace of A^t (2.7.6). Hence u_k , $k \le r$, and u_k , k > r, are orthogonal. From this, u_k , $k \le r$, together with u_k , k > r, form an orthonormal basis for the target space. For our second example, let a and b be nonzero vectors, possibly of different sizes, and let A be the matrix $$A = a \otimes b, \qquad A^t = b \otimes a.$$ Let v and u be right and left singular vectors corresponding to a positive singular value σ . Then, by (2.2.11), $$Av = (v \cdot b)a = \sigma u$$ and $A^t u = (u \cdot a)b = \sigma v$. Since $\sigma > 0$, it follows v is a multiple of b and u is a multiple of a. If we write v = tb and u = sa and plug in, we get $$v = |a| b,$$ $u = |b| a,$ $\sigma = |a| |b|.$ Thus there is only one positive singular value of A, equal to |a| |b|. All other singular values are zero. This is not surprising since the rank of A is one. Now think of the vector b as a single-row matrix B. Then, in a similar manner, one sees the only positive singular value of B is $\sigma = |b|$. Our third example is $$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}. \tag{3.4.5}$$ Then $$A^{t} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad Q = A^{t}A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ Since Q is diagonal symmetric, its rank is 3 and its eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 1$, $\lambda_4 = 0$, and its eigenvectors are $$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$ Clearly v_1, v_2, v_3, v_4 are orthonormal. By (3.4.2), $\sigma_1 = 1, \sigma_2 = 1, \sigma_3 = 1, \sigma_4 = 0.$ Since we must have $Av = \sigma u$, we can check that $$u_1 = Av_1 = v_2$$, $u_2 = Av_2 = v_3$, $u_3 = Av_3 = v_4$, $u_4 = v_1$ satisfies (3.4.1). This completes our third example. Let A be $N \times d$, let U be the matrix with columns u_1, u_2, \ldots, u_N , and let V be the matrix with rows v_1, v_2, \ldots, v_d . Then V^t has columns v_1, v_2, \ldots, v_d . Because the u's and v's are orthonormal, U and V are orthogonal $N \times N$ and $d \times d$ matrices. To see the implications of (3.4.3), for simplicity, assume A is 2×2 . Then we have two singular values σ_1 , σ_2 , two right singular vectors v_1 , v_2 , and two left singular vectors u_1 , u_2 . left singular vectors u_1 , u_2 . If we let $S = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$, then matrix-vector multiplication shows $$AV^{t} = (Av_1, Av_2) = (\sigma_1 u_1, \sigma_2 u_2), \qquad US = (\sigma_1 u_1, \sigma_2 u_2).$$ Hence $AV^t = US$. Right-multiplying by V and using $V^tV = I$ implies the following result, which remains valid in general. #### Diagonalization (SVD) Let A be any matrix, with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$. Let v_1, v_2, \ldots be an orthonormal basis of right singular vectors of A in the source space, and let u_1, u_2, \ldots be an orthonormal basis of left singular vectors of A in the target space. Let U be the orthogonal matrix with columns u_1, u_2, \ldots , and let V be the orthogonal matrix with rows v_1, v_2, \ldots . Let S be the diagonal matrix with the same shape as A and consisting of the singular values. Then $$A = USV. (3.4.6)$$ In more detail, suppose A is 4×6 . Then we have an orthonormal basis v_1 , v_2 , v_3 , v_4 , v_5 , v_6 of \mathbf{R}^6 , and an orthonormal basis u_1 , u_2 , u_3 , u_4 satisfying (3.4.3) with r = 4. If we set $$S = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_4 & 0 & 0 \end{pmatrix},$$ then U is 4×4 and V is 6×6 , and we can verify directly that A = USV. If A is 6×4 , and $$S = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \\ 0 & 0 & 0 & \sigma_4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$ then U is 6×6 and V is 4×4 , and we can verify directly that A = USV. In either case, S has the same shape as A. When A = Q is a variance matrix, $Q \ge 0$, then the eigenvalues are non-negative, and, from (3.2.3), we have $UEU^t = Q$. If we choose $V = U^t$, we see EVD is a special case of SVD. In general, however, if Q has negative eigenvalues, V is not equal to U^t ; instead V is obtained from U^t by multiplying some of the columns of U by minus signs. In numpy, svd returns the orthogonal matrices U and V and a vector sigma of singular values. The singular values are arranged in decreasing order. To recover the diagonal matrix S, we use diag. ``` from numpy import * from scipy.linalg import svd U, sigma, V = svd(A) # sigma is a vector # build diag matrix S p = min(A.shape) S = zeros(A.shape) ``` ``` S[:p,:p] = diag(sigma) print(U.shape,S.shape,V.shape) print(U,S,V) allclose(A, dot(U, dot(S, V))) ``` This code returns True. Given the relation between the singular values of A and the eigenvalues of $Q = A^t A$, we also can conclude # Right Singular Vectors Are the Same as Eigenvectors Let A be any matrix and let $Q = A^t A$. v is an eigenvector of $Q \iff v$ is a right singular vector of A. (3.4.7) For example, if dataset is the Iris dataset (ignoring the labels), the code ``` from numpy import * from
scipy.linalg import svd,eigh # center dataset m = mean(dataset,axis=0) A = dataset - m # rows of V are right # singular vectors of A V = svd(A)[2] # any of these will work # because the eigenvectors are the same Q = dot(A.T,A) Q = cov(dataset.T,bias=False) Q = cov(dataset.T,bias=True) # columns of U are # eigenvectors of Q U = eigh(Q)[1] # compare columns of U # and rows of V U, V ``` returns $$U = \begin{pmatrix} 0.36 & -0.66 & -0.58 & 0.32 \\ -0.08 & -0.73 & 0.6 & -0.32 \\ 0.86 & 0.18 & 0.07 & -0.48 \\ 0.36 & 0.07 & 0.55 & 0.75 \end{pmatrix}, V = \begin{pmatrix} 0.36 & -0.08 & 0.86 & 0.36 \\ -0.66 & -0.73 & 0.18 & 0.07 \\ 0.58 & -0.6 & -0.07 & -0.55 \\ 0.32 & -0.32 & -0.48 & 0.75 \end{pmatrix}$$ This shows the columns of U are identical to the rows of V, except for the third column of U, which is the negative of the third row of V. Now we turn to the pseudo-inverse. #### Pseudo-Inverse: Invert the Nonzero Singular Values The pseudo-inverse A^+ is obtained by replacing, in the SVD diagonalization of A, the nonzero singular values of A by their reciprocals, and taking the transpose. More explicitly, we can write # Pseudo-Inverse: Flip the Singular Vectors Let A have rank r, and let σ_k be the nonzero singular values, and v_k , u_k the singular vectors as above. Then $$A^{+}u_{k} = \frac{1}{\sigma_{k}}v_{k}, \qquad (A^{+})^{t}v_{k} = \frac{1}{\sigma_{k}}u_{k}, \qquad k = 1, 2, \dots, r,$$ and $$A^+ u_k = 0,$$ $(A^+)^t v_k = 0$ for $k > r$. We illustrate these results in the case of a diagonal matrix $$S = \begin{pmatrix} a & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 \\ 0 & 0 & c & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 & 0 \\ 0 & 0 & c & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} Q & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$ Since S is 4×5 and $SS^+S = S$, S^+ must be 5×4 . Writing S^+ as blocks and applying the four properties of the pseudo-inverse S^+ , leads to #### Exercises **Exercise 3.4.1** Let b be a vector and let B be the matrix with the single row b. Show $\sigma = |b|$ is the only positive singular value. **Exercise 3.4.2** Let Q be a symmetric matrix. When are the eigenvalues of Q equal to the singular values of Q? When are they not? Exercise 3.4.3 In sympy, there is Q.eigenvects(), which returns the eigendata of a symmetric matrix Q. In numpy, svd(A) returns the singular data of a matrix A. Write a sympy function svd(A) that replicates this. (First assume all singular values of A are positive, then adjust the code for when A has zero singular values. Your final product should work for the zero matrix A=0.) **Exercise 3.4.4** Let σ_1 and σ_2 be the greatest and least *nonzero* singular values of a matrix A, and let A^+ be the pseudo-inverse of A. Then $$\sigma_2 \le |Au| \le \sigma_1, \qquad \frac{1}{\sigma_1} \le |(A^+)^t u| \le \frac{1}{\sigma_2},$$ for all unit vectors u in the row space of A (Exercise 2.7.11). **Exercise 3.4.5** Let σ_1 and σ_2 be the greatest and least *nonzero* singular values of $$A = \begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix}.$$ Using sympy, show $$\frac{1}{2} \left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right) = \frac{62\sqrt{3}}{15}.$$ (See (3.2.4) and (3.2.5).) #### 3.5 Principal Component Analysis Let Q be the variance matrix of a dataset in \mathbf{R}^d . Then Q is a $d \times d$ symmetric matrix, and the EVD guarantees an orthonormal basis v_1, v_2, \ldots, v_d in \mathbf{R}^d consisting of eigenvectors of Q, $$Qv_k = \lambda_k v_k, \qquad k = 1, 2, \dots, d.$$ These eigenvectors are the *principal components* of the dataset. Principal Component Analysis (PCA) consists of *projecting the dataset onto lower-dimensional spans of some of the eigenvectors*. Let Q be a symmetric matrix with eigenvalue λ and corresponding eigenvector v, $Qv = \lambda v$. If t is a scalar, then the matrix tQ has eigenvalue $t\lambda$ and corresponding eigenvector v, since $$(tQ)v = tQv = t\lambda v = (t\lambda)v.$$ Hence $multiplying\ Q$ by a scalar does not change the eigenvectors. Let A be the dataset matrix of a given dataset with N samples, and d features. If the samples are the rows of A, then A is $N \times d$. If we assume the dataset is centered, then, by (2.2.20), the variance is $Q = A^t A/N$. From the previous paragraph, the eigenvectors of the variance Q equal the eigenvectors of $A^t A$. From (3.4.7), these are the same as the right singular vectors of A. Thus the principal components of a dataset are the right singular vectors of the centered dataset matrix. This shows there are two approaches to the principal components of a dataset: Either through EVD and eigenvectors of the variance matrix, or through SVD and right singular vectors of the centered dataset matrix. We shall do both. Assuming the eigenvalues are ordered top to bottom, $$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$$ in PCA one takes the most significant components, those components who eigenvalues are near the top eigenvalue. For example, one can take the top two eigenvalues $\lambda_1 \geq \lambda_2$ and their eigenvectors v_1, v_2 , and project the dataset onto $span(v_1, v_2)$. The projected dataset can then be visualized as points in the plane. Similarly, one can take the top three eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_3$ and their eigenvectors v_1, v_2, v_3 and project the dataset onto $span(v_1, v_2, v_3)$. This can then be visualized as points in three dimensions. Recall the MNIST dataset consists of N=60000 points in d=784 dimensions. After we download the dataset, ``` from pandas import * from numpy import * mnist = read_csv("mnist.csv").to_numpy() dataset = mnist[:,1:] labels = mnist[:,0] Q = cov(dataset.T) totvar = Q.trace() ``` we compute Q, the total variance, and the eigenvalues, as percentages of the total variance. We also name the targets as labels for later use. The left column in Figure 3.23 lists the top twenty eigenvalues as a percentage of their sum. For example, the top eigenvalue λ_1 is around 10% of the total variance. The right column lists the cumulative sums of the eigenvalues, so the third entry in the right column is the sum of the top three eigenvalues, $\lambda_1 + \lambda_2 + \lambda_3 = 22.97\%$. ``` array([[9.705, 9.705], 7.096, 16.801], [6.169, 22.97], [5.389, 28.359], [4.869, 33.228], [4.312, 37.54], [3.272, 40.812], [2.884, 43.696], [2.762, 46.458], [2.357, 48.815], [2.109, 50.924], [2.023, 52.947], 1.716, 54.663], 1.692, 56.355], 1.579, 57.934], 1.483, 59.417], [1.325, 60.741], 1.277, 62.018], [1.187, 63.205], [1.153, 64.358]]) ``` Fig. 3.23 MNIST eigenvalues as a percentage of the total variance. This results in Figures 3.23 and 3.24. Here we sort the array eig in decreasing order, then we cumsum the array to obtain the cumulative sums. Because the rank of the MNIST dataset is 712 (§2.9), the bottom 72 = 784 - 712 eigenvalues are exactly zero. A full listing shows that many more eigenvalues are near zero, and the second column in Figure 3.23 shows the top ten eigenvalues alone sum to almost 50% of the total variance. ``` from scipy.linalg import eigh # use eigh for symmetric matrices lamda, U = eigh(Q) # sort in ascending order then reverse sorted = sort(lamda)[::-1] percent = sorted*100/totvar ``` ``` # cumulative sums sums = cumsum(percent) data = array([percent,sums]) print(data.T[:20].round(decimals=3)) d = len(lamda) from matplotlib.pyplot import stairs grid() stairs(percent,range(d+1)) show() ``` Fig. 3.24 MNIST eigenvalue percentage plot. A MNIST image is a point in \mathbf{R}^{784} . Now we turn to projecting the image from 784 dimensions down to n dimensions, where n is 784, 600, 350, 150, 50, 10, 1. Let Q be any $d \times d$ variance matrix, and let v be in \mathbf{R}^d . Let v_1, v_2, \ldots, v_d be the orthonormal basis of eigenvectors corresponding to the eigenvalues of Q, arranged in decreasing order, and let E be the diagonal matrix of eigenvalues. By EVD diagonalization (§3.2), if v_1, v_2, \ldots, v_d are the columns of U and the rows of V, then Q = UEV. Here is code that returns the projection matrix P (§2.7) onto the span of the eigenvectors v_1, v_2, \ldots, v_n corresponding to the top n eigenvalues of Q. ``` from numpy import * from scipy.linalg import eigh # projection matrix onto top n # eigenvectors of variance # of dataset def pca(dataset,n): Q = cov(dataset.T) # columns of U are \mbox{\tt\#} eigenvectors of \mbox{\tt Q} lamda, U = eigh(Q) # decreasing eigenvalue sort order = lamda.argsort()[::-1] # sorted top n columns of U # are cols of Uproj # U is dxd Uproj is dxn Uproj = U[:,order[:n]] P = dot(Uproj,Uproj.T) return P ``` In the code, lamda is sorted in decreasing order, and the sorting order is saved as order. To obtain the top n eigenvectors of U, we sort the first n columns U[:,order[:n]] in the same order, resulting in the $d \times n$ matrix $U_{\rm proj}$. The code then returns the projection matrix $P = U_{\rm proj}U_{\rm proj}^t$ (2.7.4). Instead of working with the variance Q, as discussed at the start of the section, we can work directly with the dataset, using SVD, to obtain the eigenvectors. ``` from numpy import * from scipy.linalg import svd # projection matrix onto top n # eigenvectors of variance # of dataset def pca_with_svd(dataset,n): # center dataset mu = mean(dataset,axis=0) vectors = dataset - mu # rows of V are # right singular vectors V = svd(vectors)[2] # no need to sort, already decreasing order Uproj = V[:n].T # top n rows as columns P = dot(Uproj,Uproj.T) return P ``` Let v = dataset[1] be the second image in the MNIST dataset, and let Q be the variance of the dataset. Then the code below returns the image compressed down to n=784,600,350,150,50,10,1 dimensions, returning
Figure 3.25. ``` def display_image(v,row,col,i): A = reshape(v,(28,28)) fig.add_subplot(row, col,i) xticks([]) yticks([]) imshow(A,cmap="gray_r") ``` ``` from matplotlib.pyplot import * fig = figure(figsize=(10,5)) row, col = 2, 4 v = dataset[1] # second image display_image(v,row,col,1) for i,n in enumerate([784,600,350,150,50,10,1],start=2): # either will work P = pca(dataset,n) #P = pca_with_svd(dataset[:100],n) projv = dot(P,v) display_image(projv,row,col,i) ``` If you run out of memory trying this code, cut down the dataset from 60,000 points to 10,000 points or fewer. The code works with pca or with pca_with_svd. We show how to project a vector v in the dataset using sklearn. The following code sets up the PCA engine using sklearn. ``` from sklearn.decomposition import PCA N = len(dataset) n = 10 engine = PCA(n_components = n) ``` The following code computes the reduced dataset (§2.7) ``` reduced = engine.fit_transform(dataset) reduced.shape ``` and returns (N, n) = (60000, 10). The following code computes the projected dataset ``` projected = engine.inverse_transform(reduced) projected.shape ``` and returns (N, d) = (60000, 784). Let U_{proj} be the $d \times n$ matrix with columns the top n eigenvectors. Then the projection matrix onto the column space of U_{proj} is $P = U_{\text{proj}}U_{\text{proj}}^t$. In the above code, reduced equals $U_{\text{proj}}^t v$ for each image v, and projected is $U_{\text{proj}}U_{\text{proj}}^t v$ for each image v. **Fig. 3.25** Original and projections: n = 784, 600, 350, 150, 50, 10, 1. Then the code ``` from matplotlib.pyplot import * fig = figure(figsize=(10,5)) row, col = 2, 4 v = dataset[1] # second image display_image(v,row,col,1) for i,n in enumerate([784,600,350,150,50,10,1],start=2): engine = PCA(n_components = n) reduced = engine.fit_transform(dataset) projected = engine.inverse_transform(reduced) projv = projected[1] # second image display_image(projv,row,col,i) ``` returns Figure 3.25. Now we project all vectors of the MNIST dataset onto two and three dimensions, those corresponding to the top two or three eigenvalues. To start, we compute reduced as above with n=3, the top three components. Fig. 3.26 The full MNIST dataset (2d projection). In the two-dimensional plotting code below, reduced is an array of shape (60000,3), but we use only the top two components 0 and 1. When the rows are plotted as a scatterplot, we obtain Figure 3.26. Note the rows are plotted grouped by color, to match the legend, and each plot point's color is determined by the value of its label. Code for displaying the convex hulls is included. Fig. 3.27 The Iris dataset (2d projection). Code for the 2d plot (Figure 3.27) of the Iris dataset is Now we turn to three dimensional plotting. Here is the code ``` %matplotlib ipympl from matplotlib.pyplot import * ax = axes(projection="3d") ``` The three dimensional plot of the complete MNIST dataset is Figure 1.5 in §1.2. The command %matplotlib ipympl allows the figure to rotated and scaled. Exercise 3.5.1 Use PCA to reduce the MNIST dataset to four dimensions. Out of the first 1,000 images, reduced to \mathbb{R}^4 , what is the digit corresponding to the projected image closest to the origin? # 3.6 Cluster Analysis Cluster analysis seeks to partition a dataset into groups or clusters based on selected criteria, such as proximity in distance. Let x_1, x_2, \ldots, x_N be a dataset in \mathbf{R}^d . The simplest algorithm is k-means clustering. The algorithm is iterative: We start with k means m_1, m_2, \ldots, m_k , not necessarily part of the dataset, and we divide the dataset into k clusters, where the i-th cluster consists of the points x in the dataset for which the i-th mean m_i is nearest to x. The algorithm is in two parts, the assignment step and the update step. Initially the means m_1, m_2, \ldots, m_k are chosen at random, or by an educated guess, then clusters C_1, C_2, \ldots, C_k are assigned, then each mean is recomputed as the mean of each cluster. The sklearn package contains clustering routines, but here we write the code from scratch to illustrate the ideas. Here is an animated gif illustrating the convergence of the algorithm. We assume each mean is a point in \mathbb{R}^d , coded as an array of shape (d,), and each cluster is a collection of points in \mathbb{R}^d , coded as a list of arrays of shape (d,). Then the collection of cluster means is coded as an array of shape (k,d), and the collection of clusters is coded as a list of lists of length k. Given a point x, we select the first mean closest to x: ``` from numpy import * from scipy.linalg import norm def nearest_index(x,means): distances = norm(means-x,axis=1) return argmin(distances) ``` Starting with empty clusters, we iterate the assign/update steps until the means no longer change. If any clusters remain empty, we discard them. Here is the assignment step. ``` def assign_clusters(dataset,means): clusters = [[] for _ in range(k)] for x in dataset: i = nearest_index(x,means) clusters[i].append(x) return [c for c in clusters if len(c)] ``` Here is the update step. ``` def update_means(clusters): return array([sum(c,axis=0)/len(c) for c in clusters]) ``` Here is the iteration. ``` from numpy.random import default_rng samples = default_rng().random def kmeans(dataset,k): close_enough = False (N,d) = dataset.shape means = samples((k,d)) while not close_enough: clusters = assign_clusters(dataset,means) print([len(c) for c in clusters]) new_means = update_means(clusters) # only check closeness if number of means unchanged if len(new_means) == len(means): close_enough = allclose(means,new_means) means = new_means return means, clusters d, k, N = 2, 7, 100 dataset = samples((N,d)) means, clusters = kmeans(dataset, k) ``` This code also prints the cluster sizes after each iteration. Here is code that plots a cluster. ``` def plot_cluster(mean,cluster,color,marker): scatter(*array(cluster).T, s=30, c=color, marker=marker) scatter(*mean, s=20, c=color, marker='*') ``` Here is code for the entire iteration. hexcolor is in §1.3. ``` from matplotlib.pyplot import * from numpy.random import default_rng samples = default_rng().random d = 2 k,N = 7,100 dataset = samples((N,d)) means = samples((k,d)) colors = [hexcolor() for _ in range(k)] scatter(*dataset.T,s=10) grid() show() means, clusters = kmeans(dataset,k) for i,cluster in enumerate(clusters): tex = '$' + str(i) + '$' mean = means[i] color = colors[i] plot_cluster(mean,cluster,color,tex) grid() show() ``` # Chapter 4 Calculus The material in this chapter lays the groundwork for Chapter 7. It assumes the reader has some prior exposure, and the first section quickly reviews basic material essential for our purposes. The overarching role played by convex functions is emphasized repeatedly. To avoid technical difficulties, our convex functions are usually strongly convex, in the sense that their second derivatives are bounded above and below. The chain rule is treated extensively, combinatorially (back propagation) and geometrically (time-derivatives). Both interpretations are crucial for neural network training in Chapter 7. Because it is used infrequently in the text, integration is treated separately in an appendix $(\S A.6)$. Even though parts of §4.5 are heavy-going, the material is necessary for Chapter 7. Nevertheless, for a first pass, the reader should feel free to skim this material and come back to it after the need is made clear. # 4.1 Single-Variable Calculus In this section, we focus on single-variable calculus, and in §4.3, we review multi-variable calculus. Recall the *slope* of a line y = mx + b equals m. Let y = f(x) be a function as in Figure 4.1, and let a be a fixed point. The derivative of f(x) at the point a is the slope of the line tangent to the graph of f(x) at a. Then the derivative at a point a is a number f'(a) possibly depending on a. #### **Definition of Derivative** The derivative of f(x) at the point a is the slope of the line tangent to the graph of f(x) at a. Since a constant function f(x) = c is a line with slope zero, the derivative of a constant is zero. Since f(x) = mx + b is a line with slope m, its derivative is m. Since the tangent line at a passes through the point (a, f(a)), and its slope is f'(a), the equation of the tangent line at a is $$y = f(a) + f'(a)(x - a).$$ Based on the definition, natural properties of the derivative are - **A.** The derivative of f(x) + g(x) is f'(x) + g'(x), and (-f(x))' is -f'(x). - **B.** If $f'(x) \ge 0$ on an interval [a, b], then $f(b) \ge f(a)$. - C. If $f'(x) \leq 0$ on an interval [a, b], then $f(b) \leq f(a)$. **Fig. 4.1** f'(a) is the slope of the tangent line at a. Using these properties, we determine the formula for f'(a). Suppose the derivative is bounded between two extremes m and L at every point x in an interval [a, b], say $$m \le f'(x) \le L, \qquad a \le x \le b.$$ Then by **A**, the derivative of h(x) = f(x) - mx at x equals h'(x) = f'(x) - m. By assumption, $h'(x) \ge 0$ on [a, b], so, by **B**, $h(b) \ge h(a)$. Since h(a) = f(a) - ma and h(b) = f(b) - mb, this leads to $$\frac{f(b) - f(a)}{b - a} \ge m.$$ Repeating this same argument with f(x) - Lx, and using C, leads to $$\frac{f(b) - f(a)}{b - a} \le L.$$ We have shown #### First Derivative Bounds If $m \leq f'(x) \leq L$ for $a \leq x \leq b$, then $$m \le \frac{f(b) - f(a)}{b - a} \le L. \tag{4.1.1}$$ As an immediate consequence, when m=L=0, applying this to any subinterval [a',b'] in [a,b], ## Zero Derivative Implies Constant For any f(x), $$f'(x) = 0 \implies f(x) \text{ is constant.}$$ (4.1.2) When b is close to a, we expect both extremes m and L to be close to f'(a). From (4.1.1), we arrive at the formula for the derivative, #### **Derivative Formula** $$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$ (4.1.3) From (4.1.3), the derivative of a line f(x) = mx + b equals f'(a) = m, agreeing with what we already know. We
usually deal with limits as in (4.1.3) in an intuitive manner. When needed, please refer to §A.7 for basic properties of limits Below we also write $$y' = f'(x) = \frac{dy}{dx}$$ or $$f'(a) = \left. \frac{dy}{dx} \right|_{x=a}$$ When the particular point a is understood from the context, we write y'. From (4.1.3), the basic properties of the derivative are - Sum rule. h = f + g implies h' = f' + g', - Product rule. h = fg implies h' = f'g + fg', - Quotient rule. h = f/g implies $h' = (f'g fg')/g^2$. • Chain rule. u = f(x) and y = g(u) implies $$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$ To visualize the chain rule, suppose $$u = f(x) = \sin x,$$ $$y = g(u) = u^{2}.$$ These are two functions f, g in composition, as in Figure 4.2. Fig. 4.2 Composition of two functions. Suppose $x = \pi/4$. Then $u = \sin(\pi/4) = 1/\sqrt{2}$, and $y = u^2 = 1/2$. Since $$\frac{dy}{du} = 2u = \frac{2}{\sqrt{2}}, \qquad \frac{du}{dx} = \cos x = \frac{1}{\sqrt{2}},$$ by the chain rule, $$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{2}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = 1.$$ Since the chain rule is important for machine learning, it is discussed in detail in $\S4.4$. By the product rule, $$(x^2)' = x'x + xx' = 1x + x1 = 2x.$$ Similarly one obtains the power rule $$(x^n)' = nx^{n-1}. (4.1.4)$$ Using the chain rule, the power rule can be derived for any rational number n, positive or negative. For example, since $(\sqrt{x})^2 = x$, we can write x = f(g(x)) with $f(x) = x^2$ and $g(x) = \sqrt{x}$. By the chain rule, $$1 = (x)' = f'(g(x))g'(x) = 2g(x)g'(x) = 2\sqrt{x}(\sqrt{x})'.$$ Solving for $(\sqrt{x})'$ yields $$(\sqrt{x})' = \frac{1}{2\sqrt{x}},$$ which is (4.1.4) with n = 1/2. In this generality, the variable x is restricted to positive values only. For example, the code from sympy import * x, a = symbols('x, a') f = x**a f.diff(x), diff(f,x), f.diff(x).simplify(), simplify(diff(f,x)) returns $$\frac{ax^a}{x}, \qquad \frac{ax^a}{x}, \qquad ax^{a-1}, \qquad ax^{a-1}.$$ The power rule can be combined with the chain rule. For example, if $$u = 1 - p + cp$$, $f(p) = u^n$, $g(u) = \frac{u^{n+1}}{(c-1)(n+1)}$, then $$F(p) = \frac{(1-p+cp)^{n+1}}{(c-1)(n+1)},$$ and $$F'(p) = g'(u)u' = u^n,$$ hence $$F(p) = \frac{(1 - p + cp)^{n+1}}{(c-1)(n+1)} \Longrightarrow F'(p) = f(p). \tag{4.1.5}$$ The second derivative f''(x) of f(x) is the derivative of the derivative, $$f''(x) = \left(f'(x)\right)'.$$ For example, $$(x^n)'' = (nx^{n-1})' = n(n-1)x^{n-2} = \frac{n!}{(n-2)!}x^{n-2} = P(n,2)x^{n-2}$$ (for n! and P(n, k) see §A.1). More generally, the k-th derivative $f^{(k)}(x)$ is the derivatives taken k times, so $$(x^n)^{(k)} = n(n-1)(n-2)\dots(n-k+1)x^{n-k} = \frac{n!}{(n-k)!}x^{n-k} = P(n,k)x^{n-k}.$$ When k = 0, $f^{(0)}(x) = f(x)$, and, when k = 1, $f^{(1)}(x) = f'(x)$. The code ``` from sympy import * init_printing() x, n = symbols('x, n') diff(x**n,x,3) ``` returns the third derivative $n(n-1)(n-2)x^{n-3}$. Here is an example using derivatives from sympy. Given a power n, let $p_n(x) = (x^2 - 1)^n$. Then $p_n(x)$ is a polynomial of degree 2n. The Legendre polynomial $P_n(x)$ is the *n*-th derivative of $p_n(x)$ divided by $n!2^n$. Then $P_n(x)$ is a polynomial of degree n. For example, when n = 1, $p_1(x) = x^2 - 1$, so $$P_1(x) = \frac{1}{1!2^1}(x^2 - 1)' = \frac{1}{2}2x = x.$$ When n=2, $$P_2(x) = \frac{1}{2!2^2} ((x^2 - 1)^2)'' = \frac{1}{2} (3x^2 - 1).$$ The Python code for $P_n(x)$ uses symbolic functions and symbolic derivatives ``` from sympy import diff, symbols from scipy.special import factorial def sym_legendre(n): # symbolic variable x = symbols('x') # symbolic function p = (x**2 - 1)**n nfact = factorial(n,exact=True) # symbolic nth derivative return p.diff(x,n)/(nfact * 2**n) ``` For example, ``` from sympy import init_printing, simplify init_printing() ``` ``` [simplify(sym_legendre(n)) for n in range(6)] ``` returns the first six Legendre Polynomials, starting from n = 0: $$\left[1, x, \frac{3x^2}{2} - \frac{1}{2}, \frac{x(5x^2 - 3)}{2}, \frac{35x^4}{8} - \frac{15x^2}{4} + \frac{3}{8}, \frac{x(63x^4 - 70x^2 + 15)}{8}\right]$$ To compute values such as $P_4(5)$, we have modify sym_legendre to a numpy function as follows, ``` from sympy import lambdify def num_legendre(n): x = symbols('x') f = sym_legendre(n) return lambdify(x,f, 'numpy') ``` The function num_legendre(n) can be evaluated, plotted, integrated, etc. Fig. 4.3 Increasing or decreasing? For the parabola in Figure 4.3, $y=x^2$ so, by the power rule, y'=2x. Since y'>0 when x>0 and y'<0 when x<0, this agrees with the increase/decrease of the graph. In particular, the minimum of the parabola occurs when y'=0. For the curve $y = x^4 - 2x^2$ in Figure 4.4, $$y' = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1),$$ so y' is a product of the three factors 4x, x-1, x+1. Since the zeros of these factors are 0, 1, and -1, and y' > 0 when all factors are positive, or two of them are negative, this agrees with the increase/decrease in the figure. Here y' = 0 occurs at the two minima $x = \pm 1$ and at the local maximum 0. Notice 0 is not a global maximum as there is no greatest value for y. Fig. 4.4 Increasing or decreasing? A point x^* is a local maximizer of f(x) if $f(x^*) \ge f(x)$ for x near x^* . A point x^* is a global maximizer if $f(x^*) \ge f(x)$ for all x. A point x^* is a local minimizer of f(x) if $f(x^*) \leq f(x)$ for x near x^* . A point x^* is a global minimizer if $f(x^*) \leq f(x)$ for all x. A *critical point* is a point x^* where the derivative equals zero, $f'(x^*) = 0$. Figures 4.3 and 4.4 exhibit examples of local or global maximizers or minimizers, and show they are critical points. Let f(x) be any function, and let x^* be a local maximizer of f(x). Then for $x > x^*$ near x^* , we have $$\frac{f(x) - f(x^*)}{x - x^*} \le 0,$$ so, by (4.1.1), $f'(x^*) \le 0$. Similarly, for $x < x^*$ near x^* , $$\frac{f(x) - f(x^*)}{x - x^*} \ge 0,$$ so, by (4.1.1), $f'(x^*) \leq 0$. Hence at a local maximizer x^* , we must have $f'(x^*) = 0$. By the same method, a local minimizer x^* satisfies $f'(x^*) = 0$. This shows ## A Maximizer or Minimizer is a Critical Point If x^* is a maximizer or minimizer of f(x) on an interval [a, b], and $a < x^* < b$, then $f'(x^*) = 0$. Thus the maximum of f(x) over the interval equals the maximum over critical points and endpoints, $$\max_{a \le x \le b} f(x) = \max(f(a), f(x^*), f(b)), \tag{4.1.6}$$ and the minimum of f(x) over the interval equals the minimum over critical points and endpoints, $$\min_{a \le x \le b} f(x) = \min(f(a), f(x^*), f(b)), \tag{4.1.7}$$ In other words, to find the maximum or minimum of f(x), find the critical points x^* , plug them and the endpoints a, b into f(x), and select whichever yields the maximum value or minimum value. Suppose f(x) is given by a finite or infinite sum $$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots (4.1.8)$$ Then $f(0) = c_0$. Taking derivatives, by the sum, product, and power rules, $$f'(x) = c_1 + 2c_2x + 3c_3x^2 + 4c_4x^3 + \dots$$ $$f''(x) = 2c_2 + 3 \cdot 2c_3x + 4 \cdot 3c_4x^2 + \dots$$ $$f'''(x) = 3 \cdot 2c_3 + 4 \cdot 3 \cdot 2c_4x + \dots$$ $$f^{(4)}(x) = 4 \cdot 3 \cdot 2c_4 + \dots$$ $$(4.1.9)$$ Inserting x = 0, we obtain $f'(0) = c_1$, $f''(0) = 2c_2$, $f'''(0) = 3 \cdot 2c_3$, $f^{(4)}(0) = 4 \cdot 3 \cdot 2c_4$. This can be encapsulated by $f^{(n)}(0) = n!c_n$, $n = 0, 1, 2, 3, 4, \ldots$, which is best written $$\frac{f^{(n)}(0)}{n!} = c_n, \qquad n \ge 0.$$ Going back to (4.1.8), we derived #### Taylor Series If f(x) has derivatives of all orders, $$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$ = $f(0) + f'(0)x + f''(0)\frac{x^2}{2} + f'''(0)\frac{x^3}{6} + f^{(4)}(0)\frac{x^4}{24} + \dots$ (4.1.10) We now compute the derivatives of the exponential function (§A.3). By the compound-interest formula (A.3.9), $$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n.$$ By the power rule and chain rule, $$\left(\left(1+\frac{x}{n}\right)^n\right)' = n\left(1+\frac{x}{n}\right)^{n-1} \cdot \frac{1}{n} = \left(1+\frac{x}{n}\right)^{n-1}.$$ From this follows $$(e^x)' = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n-1} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \cdot \frac{1}{1 + x/n} = e^x \cdot 1 = e^x.$$ Since the first derivative is e^x , so is the second derivative. This derives # Derivative of the Exponential Function The exponential function satisfies $$(e^x)' = e^x.$$ Since $$(e^x)^{(n)} = e^x, \qquad n \ge 0,$$ the Taylor series of e^x reduces to the exponential series (A.3.13). The logarithm function is the inverse of the exponential function, $$y = \log x \iff x = e^y.$$ This is the same as saying $$\log(e^y) = y, \qquad e^{\log x} = x.$$ From here, we see the logarithm is defined only for x>0 and is strictly increasing (Figure 4.5). Since $e^0 = 1$, $$\log 1 = 0.$$ Since $e^{\infty} = \infty$ (Figure A.3), $$\log \infty = \infty$$. Since $$e^{-\infty} = 1/e^{\infty} = 1/\infty = 0$$, $$\log 0 = -\infty.$$ We also see $\log x$ is negative when 0 < x < 1, and positive when x > 1. **Fig. 4.5** The logarithm function $\log x$. Moreover, by the law of exponents, $$\log(ab) = \log a + \log b.$$ For a > 0 and b real, define $$a^b = e^{b \log a}.$$ Then, by definition, $$\log(a^b) = b\log a,$$ and $$(a^b)^c = (e^{b \log a})^c = e^{bc \log a} = a^{bc}.$$ By definition of the logarithm, $y = \log x$ is shorthand for $x = e^y$. Use the chain rule to find y': $$x = e^y \implies 1 = x' = (e^y)' = e^y y' = xy',$$ so $$y = \log x \qquad \Longrightarrow \qquad y' = \frac{1}{x}.$$ # Derivative of the Logarithm $$y = \log x \qquad \Longrightarrow \qquad y' = \frac{1}{x}.$$ (4.1.11) Since the derivative of $\log(1+x)$ is 1/(1+x), the chain rule implies $$\frac{d^n}{dx^n}\log(1+x) = (-1)^{n-1}\frac{(n-1)!}{(1+x)^n}, \qquad n \ge 1.$$ From this, the Taylor series of log(1+x) is $$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$ (4.1.12) Now
we look at the increase/decrease in y', rather than in y. Applying the above logic to y' instead to y, we see y' is increasing when $y'' \ge 0$, and y' is decreasing when $y'' \le 0$. In the first case, we say f(x) is *convex*, while in the second case, we say f(x) is *concave*. Since multiplying by a minus interchanges $y'' \ge 0$ and $y'' \le 0$, concavity of f(x) is equivalent to convexity of -f(x). The simplest example of a convex function is a quadratic function, $$f(x) = \frac{1}{2}ax^2 + bx + c,$$ $a > 0.$ If we look at Figure 4.3, the slope at x equals y' = 2x. Thus as x increases, y' increases. Even though the parabola height y decreases when x < 0 and increases when x > 0, its slope y' is always increasing: When x < 0, as x increases, y' = 2x is less and less negative, while, when x > 0, as x increases, y' is more and more positive. Since y' increases when its derivative is positive, the parabola's behavior is encapsulated in $$y'' = (y')' = (2x)' = 2 > 0.$$ In general, #### Second Derivatives and Convexity y = f(x) is convex if $y'' \ge 0$, and concave if $y'' \le 0$. A point where y'' = 0 is an *inflection point*. In Figure 4.4, the graph is convex away from 0, and concave near 0. Since $$y'' = (x^4 - 2x^2)'' = (4x^3 - 4x)' = 12x^2 - 4 = 4(3x^2 - 1),$$ the inflection points are $x = \pm 1/\sqrt{3}$. Hence f(x) is convex when $|x| > 1/\sqrt{3}$, and f(x) is concave when $|x| < 1/\sqrt{3}$. Since $1/\sqrt{3} < 1$, f(x) is convex near $x = \pm 1$. A function y = f(x) is strictly convex if y'' > 0, and strictly concave if y'' < 0. Then y = f(x) is strictly convex when y' is strictly increasing, and y = f(x) is strictly concave when y' is strictly decreasing. #### Second Derivatives and Strict Convexity y = f(x) is strictly convex if y'' > 0, and strictly concave if y'' < 0. Since $(x^2)'' = 2 > 0$ and $(e^x)'' = e^x > 0$, x^2 and e^x are strictly convex everywhere, and $x^4 - 2x^2$ is strictly convex for $|x| > 1/\sqrt{3}$. Let $y = -\log x$. By the power rule, $$y'' = (-\log x)'' = \left(-\frac{1}{x}\right)' = -\left(x^{-1}\right)' = \frac{1}{x^2}.$$ Since y'' > 0, which shows $-\log x$ is strictly convex. This shows $\log x$ is strictly concave on x > 0. Suppose y = f(x) is convex, so y' is increasing. Then $a \le t \le x \le b$ implies $f'(a) \le f'(t) \le f'(x) \le f'(b)$. Taking m = f'(a) and L = f'(x) in (4.1.1), $$f'(a) \le \frac{f(x) - f(a)}{x - a} \le f'(x), \qquad a \le x \le b.$$ Since the tangent line at a is y = f'(a)(x - a) + f(a), rearranging this last inequality, we obtain # Convex Function Graph Lies Above the Tangent Line If f(x) is convex on [a.b], then $$f(a) + f'(a)(x - a) \le f(x), \qquad a \le x \le b.$$ For example, the function in Figure 4.6 is convex near x = a, and the graph lies above its tangent line at a. **Fig. 4.6** Tangent parabolas $p_m(x)$ (green), $p_L(x)$ (red), L > m > 0. Let $p_m(x)$ be the parabola $$p_m(x) = f(a) + f'(a)(x - a) + \frac{m}{2}(x - a)^2.$$ (4.1.13) Then $p''_m(x) = m$. Moreover the graph of $p_m(x)$ is tangent to the graph of f(x) at x = a, in the sense $f(a) = p_m(a)$ and $f'(a) = p'_m(a)$. Because of this, we call $p_m(x)$ the lower tangent parabola. Similarly, let $p_L(x)$ be the parabola $$p_L(x) = f(a) + f'(a)(x - a) + \frac{L}{2}(x - a)^2.$$ (4.1.14) Then $p''_L(x) = L$. Moreover the graph of $p_L(x)$ is tangent to the graph of f(x) at x = a, in the sense $f(a) = p_L(a)$ and $f'(a) = p'_L(a)$. Because of this, we call $p_L(x)$ the upper tangent parabola. We say f(x) is strongly convex on an interval [a, b] if there are positive constants m and L satisfying $$m \le f''(x) \le L, \qquad a \le x \le b.$$ When the inequalities hold for all x, we say f(x) is strongly convex. There are several levels of convexity. They are, in order of generality, - quadratic functions, f''(x) is constant, - strongly convex functions, $L \ge f''(x) \ge m$, - strictly convex functions, f''(x) > 0, - general convex functions, $f''(x) \ge 0$. The exponential function e^x is strongly convex on any bounded interval [a,b], since $(e^x)'' = e^x$ and $e^a \le e^x \le e^b$ when $a \le x \le b$. This implies e^x is strictly convex for all x. However, e^x is not strongly convex for all x, since $e^{-\infty} = 0$. When f(x) is convex, we saw above the graph of f(x) lies above its tangent line. When f(x) is strongly convex, we can specify the size of the difference between the graph and the tangent line. In fact, the graph is constrained to lie above or below the lower or upper tangent parabolas for all x. # Lower and Upper Tangent Parabolas Let f(x) be strongly convex, with $m \leq f''(x) \leq L$. Then the graph lies between the lower and upper tangent parabolas $p_m(x)$ and $p_L(x)$, $$\frac{m}{2}(x-a)^2 \le f(x) - f(a) - f'(a)(x-a) \le \frac{L}{2}(x-a)^2. \tag{4.1.15}$$ To see this, suppose f''(x) > m, then $q(x) = f(x) - p_m(x)$ satisfies $$q''(x) = f''(x) - p''_m(x) = f''(x) - m > 0,$$ so g(x) is convex, so g(x) lies above its tangent line at x = a. Since g(a) = 0 and g'(a) = 0, the tangent line is 0, and we conclude $g(x) \ge 0$, which is the left half of (4.1.15). Similarly, if $f''(x) \le L$, then $p_L(x) - f(x)$ is convex, leading to the right half of (4.1.15). Choosing a=0 in (4.1.15) implies the graph lies between two parabolas. Because of this, a strongly convex function must have at least one minimizer x^* . Because a minimizer is a critical point, and strong convexity implies strict convexity which in turn implies y' is strictly increasing, there is at most one minimizer x^* . This shows # Strongly Convex Implies Unique Global Minimizer A strongly convex function has exactly one global minimizer x^* . In particular, choosing $a = x^*$ in (4.1.15) implies $$\frac{m}{2}(x-x^*)^2 \le f(x) - f(x^*) \le \frac{L}{2}(x-x^*)^2. \tag{4.1.16}$$ When $m \le f''(x) \le L$, by (4.1.1), $$t = \frac{f'(b) - f'(a)}{b - a} \implies m \le t \le L. \tag{4.1.17}$$ Replacing b by x implies # Lipschitz Bounds Let f(x) be strongly convex. If p = f'(x) and q = f'(a), then $$m|x-a| \le |p-q| \le L|x-a|.$$ (4.1.18) Replacing b by x in (4.1.17), then multiplying by $(x-a)^2$, we obtain ## **Strongly Convex Gradient Bounds** Let f(x) be strongly convex. If q = f'(x) and p = f'(a), then $$m(x-a)^2 \le (q-p)(x-a) \le L(x-a)^2.$$ (4.1.19) Moreover (4.1.17) implies $$t^{2} - (m+L)t + mL = (t-m)(t-L) < 0.$$ Replacing b by x, then multiplying by $(x-a)^2$, yields ## Coercivity of the Gradient Let f(x) be strongly convex. If q = f'(x) and p = f'(a), then $$\frac{mL}{m+L}(x-a)^2 + \frac{1}{m+L}(q-p)^2 \le (q-p)(x-a). \tag{4.1.20}$$ These are used in gradient descent §7.8. For gradient descent, we need the relation between a convex function and its convex dual. The *convex dual* g(p) of a function f(x) is $$g(p) = \max_{x} (px - f(x)).$$ (4.1.21) Here the maximum is over all x. When f(x) is strongly convex, f(x)-px is also strongly convex, so f(x)-px has a unique minimizer. It follows that for each p there is a unique maximizer x^* in (4.1.21), $$g(p) = px - f(x)$$ \iff $x = x^*(p).$ The simplest example is a quadratic $$f(x) = \frac{1}{2}ax^2 + bx + c,$$ $a > 0.$ In this case, solving (px - f(x))' = 0 leads to $$0 = \left(px - \left(\frac{1}{2}ax^2 + bx + c \right) \right)' = p - ax - b,$$ or $x^* = (p - b)/a$. Plugging x^* back into (4.1.21) yields $$g(p) = \frac{1}{2a}(p-b)^2 - c.$$ Let f(x) be a strongly convex function. Going back to the general setting (4.1.21), since a maximizer x^* is a critical point, $$0 = (px - f(x))' = p - f'(x) \qquad \Longleftrightarrow \qquad x = x^*,$$ hence $$p = f'(x^*).$$ By the product rule and chain rule, since $x^* = x^*(p)$ depends on p, $$g'(p) = (px^* - f(x^*))' = x^* + p(x^*)' - f'(x^*)(x^*)' = x^* + (p - f'(x^*))(x^*)' = x^*.$$ We conclude $$p = f'(x) \qquad \Longleftrightarrow \qquad x = g'(p). \tag{4.1.22}$$ Thus f'(x) is the inverse function of g'(p). Since f'(x) is the inverse function of g'(p), we have $$f'(g'(p)) = p.$$ Differentiating with respect to p again yields $$f''(g'(p))g''(p) = 1.$$ Since g(p) = px - f(x) is equivalent to f(x) = px - g(p), we conclude # Dual of the Dual Let f(x) be strongly convex. If g(p) is the convex dual of f(x), then f(x) is the convex dual of g(p), g(p) is strongly convex, and $$g''(p) = \frac{1}{f''(x)} \iff p = f'(x) \iff x = g'(p).$$ It follows that the dual g(p) is strongly convex with $$\frac{1}{L} \le g''(p) \le \frac{1}{m}.$$ Using this, we also have (Exercise 4.1.20) #### **Dual Second Derivative Bounds** Let f(x) be strongly convex. If p = f'(x) and q = f'(a), then $$\frac{1}{2L}(p-q)^2 \le f(x) - f(a) - f'(a)(x-a) \le \frac{1}{2m}(p-q)^2.$$ (4.1.23) For the chi-squared distribution $\S5.5$, we need Newton's generalization of the binomial theorem (A.2.7) to general exponents. # Newton's Binomial Theorem Let n be any real number. For a > 0 and -a < x < a, $$(a+x)^n = a^n + na^{n-1}x + \binom{n}{2}a^{n-2}x^2 + \binom{n}{3}a^{n-3}x^3 + \dots$$ This makes sense because the binomial coefficient $\binom{n}{k}$ is defined for any real number n (A.2.11), (A.2.12). Using summation notation, $$(a+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} x^k.$$ (4.1.24) The only difference between the binomial theorem and (4.1.24) is the upper limit of the summation, which is set to infinity. When n is a whole number, by (A.1.1), we have $$\binom{n}{k} = 0, \quad \text{for } k > n,$$ so (4.1.24) is a sum of n+1 terms, yielding the binomial theorem exactly. When n is not a whole number, the sum (4.1.24) is an infinite sum. Actually, in §5.5, we need the special case a = 1, which we write in slightly different notation, $$(1+x)^p = \sum_{n=0}^{\infty} \binom{p}{n} x^n. \tag{4.1.25}$$ Newton's binomial theorem (4.1.24) is a special case of the Taylor series (4.1.10). To see this, set $$f(x) = (a+x)^n.$$ Then, by the power rule, $$f^{(k)}(x) = n(n-1)(n-2)\dots(n-k+1)(a+x)^{n-k},$$ so $$\frac{f^{(k)}(0)}{k!} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}a^{n-k} = \binom{n}{k}a^{n-k}.$$
Writing out the Taylor series, $$(a+x)^n = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} = \sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} x^k,$$ which is Newton's binomial theorem. The trigonometric functions sine and cosine were defined in (A.4.3). To plot them, use ``` from matplotlib.pyplot import * from numpy import * a, b = 0, 3*pi theta = arange(a,b,.01) ax = axes() ``` ``` ax.grid(True) ax.axhline(0, color='black', lw=1) plot(theta,sin(theta)) show() ``` This returns Figure 4.7. Fig. 4.7 The sine function. It is often convenient to set the horizontal axis tick marks at the multiples of $\pi/2$. For this, we use ``` from numpy import * from matplotlib.pyplot import * # r'...' is a raw string. In a raw string # the backslash \ is not an escape character def label(k): if k == 0: return '0' elif k == 1: return r'pi/2' elif k == -1: return r'$-\pi/2$' elif k == 2: return r'\pi elif k == -2: return r'$-\pi$' elif k\%2 == 0: return '$' + str(k//2) + r'\pi$' else: return '$' + str(k) + r'\pi/2$' def set_pi_ticks(a,b): base = pi/2 m = floor(b/base) n = ceil(a/base) ``` ``` k = arange(n,m+1,dtype=int) # multiples of base return xticks(k*base, map(label,k)) ``` Then inserting set_pi_ticks(a,b) in the plot code returns Figure 4.8. Fig. 4.8 The sine function with $\pi/2$ tick marks. **Fig. 4.9** Angle θ in the plane, P = (x, y). We review the derivative of sine and cosine. This is needed for the arcsine law (3.2.16). Recall the angle θ in radians is the length of the subtended arc (in red) in Figure 4.9. Following the figure, with P=(x,y), we have $x=\cos\theta,\,y=\sin\theta$. The key idea here is Archimedes' axiom [14], which states: If two convex curves share common initial and terminal points, and one lies inside the convex region defined by the other, than that one is shorter. By the figure, there are three convex curves joining P and I: The line segment PI, the red arc, and the polygonal curve PQI. By Archimedes' axiom, the length of PI is less than the length of the red arc, which in turn is less than the length of PQI. Since the length of PI is greater than y, this implies $$y < \theta < 1 - x + y$$ or $$\sin \theta < \theta < 1 - \cos \theta + \sin \theta$$. Dividing by θ (here we assume $0 < \theta < \pi/2$), $$1 - \frac{1 - \cos \theta}{\theta} < \frac{\sin \theta}{\theta} < 1. \tag{4.1.26}$$ We use this to show (the definition of limit is in $\S A.7$) $$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1. \tag{4.1.27}$$ Since $\sin \theta$ is odd, it is enough to verify (4.1.27) for $\theta > 0$. To this end, since $$\sin^2 \theta = 1 - \cos^2 \theta$$, from (4.1.26), $$0 \le \frac{1 - \cos \theta}{\theta} = \frac{1 - \cos^2 \theta}{\theta (1 + \cos \theta)} = \frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{1 + \cos \theta} \le \sin \theta \le \theta,$$ which implies $$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0.$$ Taking the limit $\theta \to 0$ in (4.1.26), we obtain (4.1.27) for $\theta > 0$. From (A.5.6), $$\sin(\theta + t) = \sin\theta\cos t + \cos\theta\sin t,$$ so $$\lim_{t\to 0}\frac{\sin(\theta+t)-\sin\theta}{t}=\lim_{t\to 0}\sin\theta\cdot\frac{\cos t-1}{t}+\cos\theta\cdot\frac{\sin t}{t}=\cos\theta.$$ Thus the derivative of sine is cosine, $$(\sin \theta)' = \cos \theta.$$ Similarly, $$(\cos \theta)' = -\sin \theta.$$ Using the chain rule, we compute the derivative of the inverse $\arcsin x$ of $\sin \theta$. Since $$\theta = \arcsin x \qquad \iff \qquad x = \sin \theta,$$ we have $$1 = x' = (\sin \theta)' = \theta' \cdot \cos \theta = \theta' \cdot \sqrt{1 - x^2},$$ or $$(\arcsin x)' = \theta' = \frac{1}{\sqrt{1 - x^2}}.$$ We use this to compute the derivative of the arcsine law (3.2.16). With $x = \sqrt{\lambda}/2$, by the chain rule, $$\left(\frac{2}{\pi}\arcsin\left(\frac{1}{2}\sqrt{\lambda}\right)\right)' = \frac{2}{\pi}\frac{1}{\sqrt{1-x^2}}\cdot x'$$ $$= \frac{2}{\pi}\frac{1}{\sqrt{1-\lambda/4}}\cdot\frac{1}{4\sqrt{\lambda}} = \frac{1}{\pi\sqrt{\lambda(4-\lambda)}}.$$ (4.1.28) This shows the derivative of the arcsine law is the density in Figure 3.11. # **Exercises** **Exercise 4.1.1** What is the *y*-intercept of the line tangent to $f(x) = x^2$ at the point (1,1)? **Exercise 4.1.2** With $\exp x = e^x$, what are the first derivatives of $\exp(\exp x)$ and $\exp(\exp(\exp x))$? **Exercise 4.1.3** With a > 0, let $f(x) = \frac{1}{2}ax^2 - e^x$. Where is f(x) convex, and where is it concave? **Exercise 4.1.4** With $P_n(x)$ the Legendre polynomial, use num_legendre to find the general formula for $P_n(0)$, $P_n(1)$, $P_n(-1)$, for n = 1, 2, 3, ... **Exercise 4.1.5** For fixed $\alpha > 0$ and $\beta > 0$, find the maximizer \hat{p} of $$p^{\alpha}(1-p)^{\beta-\alpha}, \qquad 0 \le p \le 1.$$ **Exercise 4.1.6** Compute the maximum and minimum of the second derivative of $\cos \theta$ over the interval $[a, b] = [-\pi/4, \pi/4]$. Use that to compute the upper and lower tangent parabolas at $\theta = 0$. Plots these parabolas against $\cos \theta$. Repeat everything with $[a, b] = [-\pi/2, \pi/2]$. **Exercise 4.1.7** Suppose $f(x) \ge 0$ and $f''(x) \le 1/2$ for all x. Show $$|f'(a)| \le \sqrt{f(a)}.$$ (Write (4.1.15) with x = a + t to obtain a nonnegative parabola $0 \le f(a) + f'(a)t + Lt^2/2$. Compute its nonnegative bottom by completing the square.) **Exercise 4.1.8** Use the Taylor series for $\log(1+x)$ to show $$\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$ **Exercise 4.1.9** Compute the Taylor series for $\sin \theta$ and $\cos \theta$. **Exercise 4.1.10** Let $W = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Compute e^W (Exercise **2.2.16**). Exercise 4.1.11 Using Newton's binomial theorem, show $$\frac{1}{\sqrt{1-2u}} = 1 + u + \frac{1\cdot 3}{2!}u^2 + \frac{1\cdot 3\cdot 5}{3!}u^3 + \frac{1\cdot 3\cdot 5\cdot 7}{4!}u^4 + \dots$$ **Exercise 4.1.12** If the convex dual of f(x) is g(p), and t is a constant, what is the convex dual of f(x) + t? **Exercise 4.1.13** If the convex dual of f(x) is g(p), and t is a constant, what is the convex dual of f(x+t)? **Exercise 4.1.14** If the convex dual of f(x) is g(p), and $t \neq 0$ is a constant, what is the convex dual of f(tx)? **Exercise 4.1.15** If the convex dual of f(x) is g(p), and $t \neq 0$ is a constant, what is the convex dual of tf(x)? **Exercise 4.1.16** Show f(x) convex implies $e^{f(x)}$ convex. **Exercise 4.1.17** Let 0 < m < L be positive scalars, and let r = m/L. Show $$\frac{m}{L} + \frac{L}{m} = r + \frac{1}{r} > 2$$ by searching for critical points over r > 0 (4.1.6). **Exercise 4.1.18** Let 0 < m < L be positive scalars. Show $$q(t) = \left(tm + (1-t)L\right) \times \left(\frac{t}{m} + \frac{1-t}{L}\right)$$ satisfies $$1 \le q(t) \le \frac{(m+L)^2}{4mL}, \qquad 0 \le t \le 1,$$ by searching for critical points over 0 < t < 1 (4.1.6). **Exercise 4.1.19** If Q is a symmetric 2×2 matrix with positive eigenvalues L and m, show $$1 \le (u \cdot Qu)(u \cdot Q^{-1}u) \le \frac{(m+L)^2}{4mL} \tag{4.1.29}$$ for every unit vector u. Use EVD and Exercise 4.1.18. **Exercise 4.1.20** Derive (4.1.23) by applying (4.1.15) with f, x, a replaced by g, q, p, then inserting q = f'(a) and p = f'(x). # 4.2 Entropy and Information Let p be a probability, i.e. a number between 0 and 1. The *entropy* of p is $$H(p) = -p\log p - (1-p)\log(1-p), \qquad 0 \le p \le 1. \tag{4.2.1}$$ This is also called *absolute entropy* to contrast with relative entropy which we see below. **Fig. 4.10** The absolute entropy function H(p). To graph H(p), we compute its first and second derivatives. Here the independent variable is p. By the product rule, $$H'(p) = (-p\log p - (1-p)\log(1-p))' = -\log p + \log(1-p) = \log\left(\frac{1-p}{p}\right).$$ Thus H'(p) = 0 when p = 1/2, H'(p) > 0 on p < 1/2, and H'(p) < 0 on p > 1/2. Since this implies H(p) is increasing on p < 1/2, and decreasing on p > 1/2, p = 1/2 is a global maximizer of the graph. As p increases, 1-p decreases, so (1-p)/p decreases. Since log is increasing as p increases, H'(p) decreases. Thus H(p) is concave. Taking the second derivative, by the chain rule and the quotient rule, $$H''(p) = \left(\log\left(\frac{1-p}{p}\right)\right)' = -\frac{1}{p(1-p)},$$ which is negative, leading to the strict concavity of H(p). A crucial aspect of Figure 4.10 is its limiting values at the edges p=0 and p=1, $$H(0) = \lim_{p \to 0} H(p)$$ and $H(1) = \lim_{p \to 1} H(p)$. Inserting p = 0 into $p \log p$ yields $0 \times (-\infty)$, so it is not at all clear what H(0) should be. On the other hand, Figure 4.10 suggests H(0) = 0. For the first limit, since H(p) is increasing near p=0, it is clear there is a definite value H(0). The entropy is the sum of two terms, $-p \log p$, and $-(1-p) \log (1-p)$. When $p \to 0$, the second term approaches $-\log 1 = 0$, so H(0) is the limit of the first term, $$H(0) = -\lim_{n \to 0} p \log p.$$ When $p \to 0$, also $2p \to 0$. Replacing p by 2p, $$H(0) = -\lim_{p \to 0} p \log p = -\lim_{p \to 0} 2p \log(2p)$$ $$= \lim_{p \to 0} -2p \log 2 + 2H(0) = 2H(0).$$ Thus H(0) = 0. Since H(p) is symmetric, H(1 - p) = H(p), we also have H(1) = 0. To explain the meaning of the entropy function H(p), suppose a coin has heads-bias or heads-probability p. If p is near 1, then we have confidence the outcome of tossing the coin is heads, and, if p is near 0, we have confidence the outcome of tossing the coin is tails. If p = 1/2, then we have least information. Thus we can view the entropy as measuring a lack of information. To formalize this, we define the information or absolute information $$I(p) = p \log p + (1-p) \log(1-p), \qquad 0 \le p \le 1.$$ (4.2.2) Then we have #### **Entropy and Information** Entropy equals negative information. **Fig. 4.11** The absolute information I(p). The clearest explanation of H(p) is in terms of repeated coin-tossing, where it is shown H(p) is the log of the number of outcomes with heads-proportion p. This is explained in §5.2. The *logistic function* is $$p =
\sigma(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}, \quad -\infty < x < \infty.$$ (4.2.3) By the quotient and chain rules, its derivative is $$p' = -\frac{-e^{-x}}{(1+e^{-x})^2} = \sigma(x)(1-\sigma(x)) = p(1-p). \tag{4.2.4}$$ The logistic function, also called the *expit function* and the *sigmoid function*, is studied further in §5.2, where it used in coin-tossing and Bayes theorem. The inverse of the logistic function is the *logit* function. The logit function is found by solving $p = \sigma(x)$ for x, obtaining $$p = \sigma(x)$$ \iff $x = \log\left(\frac{p}{1-p}\right).$ (4.2.5) The logit function is also called the log-odds function. Its derivative is $$x' = \frac{1-p}{p} \cdot \left(\frac{p}{1-p}\right)' = \frac{1-p}{p} \cdot \frac{1}{(1-p)^2} = \frac{1}{p(1-p)}.$$ Let $$Z(x) = \log(1 + e^x). (4.2.6)$$ Then $Z'(x) = \sigma(x)$ and $Z''(x) = \sigma'(x) = \sigma(1 - \sigma) > 0$. This shows Z(x) is strictly convex. We call Z(x) the *cumulant-generating function*, to be consistent with random variable terminology (§5.3). We compute the convex dual (§4.1) of Z(x). By (4.1.6), the maximum $$\max_{x}(px - Z(x))$$ is attained when (px - Z(x))' = 0, which happens when $p = Z'(x) = \sigma(x)$. Therefore the maximizer is the log-odds function $x = \sigma^{-1}(p)$. Inserting this into px - Z(x), we obtain $$\max_{x}(px - Z(x)) = p \log\left(\frac{p}{1-p}\right) - Z\left(\log\left(\frac{p}{1-p}\right)\right), \tag{4.2.7}$$ which simplifies to I(p) (4.2.2). #### **Dual of Cumulant-Generating Function is Information** The convex dual of the cumulant-generating function is the information. The derivative of I(p) is $$I'(p) = \log\left(\frac{p}{1-p}\right). \tag{4.2.8}$$ Then I'(p) is the inverse of $Z'(x) = \sigma(x)$, as it should be (4.1.22). From (4.2.8), $$I''(p) = \frac{1}{p(1-p)}.$$ The multinomial extension of I(p) is in §5.6. Let p and q be two probabilities, $$0 \le p \le 1$$, and $0 \le q \le 1$. When do we consider p and q close to each other? If p and q were just numbers, p and q are considered close if the distance |p-q| is small or the distance squared $|p-q|^2$ is small. But here p and q are probabilities, so it makes sense to consider them close if their information content is close. To this end, we define the relative information I(p,q) by $$I(p,q) = p \log \left(\frac{p}{q}\right) + (1-p) \log \left(\frac{1-p}{1-q}\right). \tag{4.2.9}$$ Then $$I(q,q) = 0,$$ which agrees with our design goal of I(p,q) measuring the divergence between the information in p and the information in q. Because I(p,q) is not symmetric in p, q, we think of q as a base or reference probability, against which we compare p. **Fig. 4.12** The relative information I(p,q) with q=.7. Equivalently, instead of measuring relative information, we can measure the relative entropy, $$H(p,q) = -I(p,q).$$ Since $-\log(x)$ is strictly convex, $$I(p,q) = -p\log\left(\frac{q}{p}\right) - (1-p)\log\left(\frac{1-q}{1-p}\right) > -\log\left(p \cdot \frac{q}{p} + (1-p) \cdot \frac{1-q}{1-p}\right)$$ $$= -\log 1 = 0.$$ This shows I(p,q) is positive and H(p,q) is negative, when $p \neq q$. Since $$I(p,q) = I(p) - p\log(q) - (1-p)\log(1-q),$$ the second derivatives of I(p) and I(p,q) agree, and I(0) = 0 = I(1), I(p,q) is well-defined for p = 0, and p = 1, $$I(1,q) = -\log q,$$ $I(0,q) = -\log(1-q).$ Taking derivatives (with independent variable p), $$\frac{d^2}{dp^2}I(p,q) = I''(p) = \frac{1}{p(1-p)},$$ hence I is strictly convex in p. Thus q is a global minimizer of the graph of I(p,q) (Figure 4.12). Also $$\frac{d^2}{dq^2}I(p,q) = \frac{p}{q^2} + \frac{1-p}{(1-q)^2},$$ so I(p,q) is strictly convex in q as well. In Exercise **4.3.2**, it is shown I(p,q) is convex in all directions in the (p,q)-plane (Figure 4.13). The clearest explanation of H(p,q) is in terms of coin-tossing, where it is shown H(p,q) is the log of the probability of a coin with heads-bias q having outcomes with heads-proportion p. This also is explained in §5.2. Figure 4.13 is the surface plot of I(p,q) as a function of two variables (p,q). This clearly exhibits the trough p=q where I(p,q)=0, and the edges q=0,1 where $I(p,q)=\infty$. Fig. 4.13 Surface plot of I(p,q) over the square $0 \le p \le 1, \, 0 \le q \le 1$. In scipy, I(p,q) is incorrectly called entropy. For more on this terminology confusion, see the remarks at the end of §5.6. The code is as follows. ``` %matplotlib ipympl from numpy import * from matplotlib.pyplot import * from scipy.stats import entropy def I(p,q): return entropy([p,1-p],[q,1-q]) ax = axes(projection='3d') ax.set_axis_off() p = arange(0,1,.01) q = arange(0,1,.01) p,q = meshgrid(p,q) # surface ax.plot_surface(p,q,I(p,q), cmap='cool') # square ax.plot([0,1,1,0,0],[0,0,1,1,0],linewidth=.5,c="k") show() ``` # Exercises Exercise 4.2.1 Check (4.2.7) simplifies to the information (4.2.2). Exercise 4.2.2 Compute $$\min_{0 \le p \le 1} I''(p).$$ **Exercise 4.2.3** Let 0 < q < 1 be a constant. What is the convex dual of $$Z(x,q) = \log (qe^x + 1 - q)?$$ **Exercise 4.2.4** Use Python to plot the entropy H(p) and $\sqrt{p(1-p)}$. Use scipy.optimize.newton to find where they are equal. **Exercise 4.2.5** The relative information I(p,q) has minimum zero when p = q. Use the lower tangent parabola (4.1.13) of I(x,q) at q and Exercise 4.2.2 to show $$I(p,q) \ge 2(p-q)^2.$$ For q = 0.7, plot both I(p, q) and $2(p - q)^2$ as functions of 0 . #### 4.3 Multi-Variable Calculus Let $$f(x) = f(x_1, x_2, \dots, x_d)$$ be a scalar function of a point $x = (x_1, x_2, ..., x_d)$ in \mathbf{R}^d , and suppose v is a unit vector in \mathbf{R}^d . Then, along the line x(t) = x + tv, g(t) = f(x + tv) is a function of the single variable t. Hence its derivative g'(0) at t = 0 is well-defined. This rate of change is the directional derivative of f(x) at x in the direction v. More explicitly, the directional derivative of f(x) at x in the direction v is $$\frac{d}{dt}\Big|_{t=0} f(x+tv). \tag{4.3.1}$$ When we select specific directions, the directional derivatives have specific names. Let e_1, e_2, \ldots, e_d be the standard basis in \mathbf{R}^d . The partial derivative in the k-th direction, $k = 1, \ldots, d$, is $$\frac{\partial f}{\partial x_k}(x) = \frac{d}{dt}\Big|_{t=0} f(x+te_k).$$ The partial derivative in the k-th direction is just the one-dimensional derivative considering x_k as the independent variable, with all other features x_j 's held constant. The multi-variable chain rule, below, expresses the directional derivative (4.3.1) in terms of the partial derivatives of f(x). Below we exhibit the multi-variable chain rule in two ways. The first interpretation is geometric, and involves motion in time and directional derivatives. This interpretation is relevant to gradient descent, §7.3. The second interpretation is combinatorial, and involves repeated compositions of functions. This interpretation is relevant to computing gradients in networks, specifically back propagation §4.4, §7.2. These two interpretations work together when training neural networks, §7.4. For the first interpretation of the chain rule, suppose the features x_1, x_2, \ldots, x_d of a point x are functions of a single variable t (usually time), so we have $$x_1 = x_1(t),$$ $x_2 = x_2(t),$..., $x_d = x_d(t).$ Inserting these into $f(x_1, x_2, \dots, x_d)$, we obtain a function $$f(t) = f(x_1(t), x_2(t), \dots, x_d(t))$$ of a single variable t. Then we have #### Multi-Variable Chain Rule With $f(t) = f(x_1(t), x_2(t), \dots, x_d(t)),$ $$\frac{df}{dt} = \frac{\partial f}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \cdot \frac{dx_2}{dt} + \dots + \frac{\partial f}{\partial x_d} \cdot \frac{dx_d}{dt}.$$ The gradient of f(x) is the vector $$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right). \tag{4.3.2}$$ The \mathbf{R}^d -valued function $x(t) = (x_1(t), x_2(t), \dots, x_d(t))$ represents a curve or path in \mathbf{R}^d , and the vector $$x'(t) = (x'_1(t), x'_2(t), \dots, x'_d(t))$$ represents its velocity at time t. With this notation, the chain rule may be written $$\frac{df}{dt} = \nabla f(x(t)) \cdot x'(t).$$ Let $v=(v_1,v_2,\ldots,v_d)$. The simplest application of the multi-variable chain rule is to select x(t)=x+tv. Then the chain rule becomes # Directional Derivative Formula The directional derivative of f(x) in the direction v is the dot product of the gradient $\nabla f(x + tv)$ and v, $$\frac{d}{dt}f(x+tv) = \nabla f(x+tv) \cdot v. \tag{4.3.3}$$ In particular, $$\frac{d}{dt}\bigg|_{t=0} f(x+tv) = \nabla f(x) \cdot v. \tag{4.3.4}$$ Let f(x) be a quadratic function, $$f(x) = \frac{1}{2}x \cdot Qx - b \cdot x,$$ where Q is a $d \times d$ symmetric matrix and b is a vector. Then $$f(x) = \frac{1}{2} \sum_{i,j=1}^{d} q_{ij} x_i x_j - \sum_{j=1}^{d} b_j x_j,$$ so $$\frac{\partial f}{\partial x_i} = \frac{1}{2} \sum_{j=1}^d q_{ij} x_j + \frac{1}{2} \sum_{j=1}^d q_{ji} x_j - b_i = (Qx - b)_i.$$ Here we used $Q = Q^t$. This shows #### Gradient of a Quadratic $$f(x) = \frac{1}{2}x \cdot Qx - b \cdot x \qquad \Longrightarrow \qquad \nabla f(x) = Qx - b.$$ (4.3.5) In §7.7, we will need to compute the gradient of a function f(W) of matrices W. Towards this, recall the collection of matrices with a fixed shape may be added and scaled. It follows if W and V are matrices with the same shape, then W + sV also has the same shape, for any scalar s. If G and V are two matrices with the same shape, we think of $\operatorname{trace}(V^tG)$ as a dot product between G and V. This is consistent with the definition of norm squared (2.2.17). By analogy with (4.3.4), we say ### Directional Derivative Matrix Formula A matrix G is the gradient of f(W) at W if $$\frac{d}{ds}\Big|_{s=0} f(W+sV) = \operatorname{trace}(V^t G). \quad \text{for all } V.$$ (4.3.6) Then the gradient G has the same shape as W. We use this result in Chapter 7. Here is an example of the second interpretation of
the chain rule. Suppose $$r = f(x) = \sin x,$$ $s = g(x) = \frac{1}{1 + e^{-x}},$ $t = h(x) = x^2,$ $u = r + s + t,$ $y = k(u) = \cos u.$ These are multiple functions in composition, as in Figure 4.14. Fig. 4.14 Composition of multiple functions. The input variable is x and the output variable is y. The intermediate variables are r, s, t, u. Suppose $x = \pi/4$. Then $$x, r, s, t, u, y = 0.79, 0.71, 0.69, 0.62, 2.01, -0.43.$$ To compute derivatives, start with $$\frac{dy}{du} = k'(u) = -\sin u = -0.90.$$ Next, to compute dy/dr, the chain rule says $$\frac{dy}{dr} = \frac{dy}{du}\frac{du}{dr} = -0.90 * 1 = -0.90,$$ and similarly, $$\frac{dy}{ds} = \frac{dy}{dt} = -0.90.$$ By the chain rule, $$\frac{dy}{dx} = \frac{dy}{dr} \cdot \frac{dr}{dx} + \frac{dy}{ds} \cdot \frac{ds}{dx} + \frac{dy}{dt} \cdot \frac{dt}{dx}.$$ By $$(4.2.4)$$, $s' = s(1 - s) = 0.22$, so $$\frac{dr}{dx} = \cos x = 0.71,$$ $\frac{ds}{dx} = s(1-s) = 0.22,$ $\frac{dt}{dx} = 2x = 1.57.$ We obtain $$\frac{dy}{dx} = -0.90 * 0.71 - 0.90 * 0.22 - 0.90 * 1.57 = -2.25.$$ The chain rule is discussed in further detail in §4.4. By (2.2.2), $$\nabla f(x) \cdot v = |\nabla f(x)| |v| \cos \theta,$$ where θ is the angle between v and $\nabla f(x)$. Since $-1 \le \cos \theta \le 1$, we conclude ### Gradient is Direction of Greatest Increase Let v be a unit vector and let a be a point. As the direction v varies, the directional derivative varies between two extremes $$-|\nabla f(a)| \le \nabla f(a) \cdot v \le |\nabla f(a)|.$$ The directional derivative achieves its greatest value when v points in the direction of $\nabla f(a)$, and achieves its least value in the opposite direction, when v points in the direction of $-\nabla f(a)$. A *critical point* is a point x^* satisfying $$\nabla f(x^*) = 0.$$ A local minimizer is a point x^* with $f(x) \ge f(x^*)$ for x near x^* . If the inequality holds for all x, x^* is a global minimizer. A local maximizer is a point x^* with $f(x) \le f(x^*)$ for x near x^* . If the inequality holds for all x, x^* is a global maximizer. As in the single-variable case, # A Maximizer or Minimizer is a Critical Point A minimizer is a critical point, and a maximizer is a critical point. We now address the existence of a global minimizer of a function f(x). Intuitively, if f(x) goes up to $+\infty$ when x is far away, then its graph must have a minimizer at some point x^* . This notion is made precise as follows. Let f(x) be a function. A level is a scalar c determining a sublevel set $f(x) \le c$. A bound is a scalar C determining a bounded set $|x| \le C$. A function f(x) is proper if the sublevel set $f(x) \le c$ is bounded for every level c. For every level c, there is a bound C so that $$f(x) \le c \implies |x| \le C.$$ (4.3.7) In other words, f(x) is proper if every sublevel set is bounded. The functions in Figure 4.3 and 4.4 are proper. This is same as saying f(x) rises to $+\infty$ as $|x| \to \infty$. The exact formula for the bound C, which depends on the level c and the function f(x), is not important for our purposes. What matters is the existence of *some* bound C for each level c. More vividly, suppose x is scalar, and think of the graph of y = f(x) as the cross-section of a river. Then f(x) is proper if the river never floods its banks, no matter how much it rains. So $y = \sin x$ is not proper, but $y = x^2 + \sin x$ is proper. What does it mean for f(x) to not be proper? Unpacking the definition, f(x) is not proper if there is *some* level c with no corresponding bound C. This means there is some level c and a sequence x_1, x_2, \ldots with $f(x_n) \leq c$ and $|x_n| \to \infty$. #### Existence of Global Minimizer A proper function has at least one global minimizer. To see this, pick any point a. Then, by properness, the sublevel set $f(x) \le f(a)$ is bounded. Since a function has a minimizer on a bounded set, ¹ there is a minimizer x^* . Since for all x outside this sublevel set, we have f(x) > f(a), x^* is a global minimizer. This completes the proof. From §4.1, we already know a strongly convex function has a global minimizer. In fact, strongly convex functions are proper (Exercise 4.3.7). Using properness, we can establish the existence of residual minimizers, as promised in §2.6. ### Properness of Residual on Row Space Let A be a matrix, and b a vector with dimensions so that the residual $$f(x) = |Ax - b|^2 (4.3.8)$$ is defined. Then f(x) is proper on the row space of A. To see this, suppose f(x) is not proper. In this case, by (4.3.7), there would be a level c and a sequence x_1, x_2, \ldots in the row space of A satisfying $|x_n| \to \infty$ and $f(x_n) \le c$ for $n \ge 1$. $^{^1}$ We are implicitly assuming continuity of f(x) (see §A.8). Let $x'_n = x_n/|x_n|$. Then x'_n are unit vectors in the row space of A, hence x'_n is a bounded sequence. From §A.8, this implies x'_n subconverges to some x^* , necessarily a unit vector in the row space of A. By the triangle inequality (2.2.4), $$|Ax'_n| = \frac{1}{|x_n|} |Ax_n| \le \frac{1}{|x_n|} (|Ax_n - b| + |b|) \le \frac{1}{|x_n|} (\sqrt{c} + |b|).$$ Moreover Ax'_n subconverges to Ax^* . Since $|x_n| \to \infty$, taking the limit $n \to \infty$, $$|Ax^*| = \lim_{n \to \infty} |Ax'_n| \le \frac{1}{\infty} (\sqrt{c} + |b|) = 0.$$ Thus x^* is both in the row space of A and in the nullspace of A. Since the row space and the nullspace are orthogonal, this implies $x^* = 0$. But we can't have $1 = |x^*| = |0| = 0$. This contradiction shows there is no such sequence x_n , and we conclude f(x) is proper. When the row space is the source space, # Properness of Residual When the $N \times d$ matrix A has rank d, $$f(x) = |Ax - b|^2 (4.3.9)$$ is proper on \mathbf{R}^d . As a consequence, ### Existence of Residual Minimizer Let A be a matrix and b a vector so that the residual $$|Ax - b|^2 (4.3.10)$$ is well-defined. Then there is a residual minimizer x^* in the row space of A, $$|Ax^* - b|^2 \le |Ax - b|^2 \tag{4.3.11}$$ for all x. Let f(x) be a function of $x = (x_1, x_2, \dots, x_d)$. The second partial derivatives are $$\frac{\partial^2 f}{\partial x_i \partial x_j}, \qquad 1 \le i, j \le d,$$ and the second derivative of f(x) is the $d \times d$ symmetric matrix $$D^{2}f(x) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \dots \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}\partial x_{2}} & \dots \\ \dots & \dots & \dots \\ \frac{\partial^{2}f}{\partial x_{d}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{d}\partial x_{2}} & \dots \end{pmatrix}$$ Differentiating (4.3.3) and using the chain rule again, #### Second Directional Derivative Let $Q(t) = D^2 f(x + tv)$. Then $$\frac{d^2}{dt^2}f(x+tv) = v \cdot Q(t)v. \tag{4.3.12}$$ Let Q be a symmetric matrix. Recall (§2.2) $Q \ge 0$ means $v \cdot Qv \ge 0$ for all v, and Q > 0 means $v \cdot Qv > 0$ for all $v \ne 0$. Equivalently, $Q \ge 0$ when the eigenvalues of Q are nonnegative, and Q > 0 when the eigenvalues of Q are positive, As in §4.1, a function f(x) is convex if $D^2 f(x) \ge 0$, and is strictly convex if $D^2 f(x) > 0$. If -f(x) is convex or strictly convex, we say f(x) is concave or strictly concave. When f(x) is quadratic (4.3.5), $D^2 f(x) = Q$. As a consequence, f(x) is convex when $Q \ge 0$, and f(x) is strictly convex when Q > 0. Multi-variable convex functions are studied in §4.5. # **Exercises** **Exercise 4.3.1** Let I(p,q) be the relative information (4.2.9), and let I_{pp} , I_{pq} , I_{qp} , I_{qq} be the second partial derivatives. If Q is the second derivative matrix $$Q = \begin{pmatrix} I_{pp} & I_{pq} \\ I_{qp} & I_{qq} \end{pmatrix},$$ show $$\det(Q) = \frac{(p-q)^2}{p(1-p)q^2(1-q)^2}.$$ **Exercise 4.3.2** Let I(p,q) be the relative information (4.2.9). With x = (p,q) and v = (ap(1-p), bq(1-q)), show $$\frac{d^2}{dt^2}\bigg|_{t=0} I(x+tv) = p(1-p)(a-b)^2 + b^2(p-q)^2.$$ Conclude that I(p,q) is a convex function of (p,q). Where is it not strictly convex? **Exercise 4.3.3** Let $J(x) = J(x_1, x_2, ..., x_d)$ equal $$J(x) = \frac{1}{2}(x_1 - x_2)^2 + \frac{1}{2}(x_2 - x_3)^2 + \dots + \frac{1}{2}(x_{d-1} - x_d)^2 + \frac{1}{2}(x_d - x_1)^2.$$ Compute $Q = D^2 J$. Exercise 4.3.4 Show $$f(x) = \frac{1}{2}|Ax - b|^2$$ \Longrightarrow $\nabla f(x) = A^t Ax - A^t b$. Conclude $\nabla f(x)$ is in the row space of A. **Exercise 4.3.5** Let $f(Q) = \log \det(Q)$ be the log of the determinant of a positive 2×2 matrix Q (Exercise 3.2.6), and let V be a symmetric 2×2 matrix. Using Exercise A.4.12, compute the second derivative of f(Q+tV) at t=0 as in (4.3.12). Using Exercise A.4.10, conclude $\log \det(Q)$ is a concave function of Q. **Exercise 4.3.6** Let f(b) be strictly convex and proper, and let A be a matrix. Use the properness of the residual (4.3.8) to show f(Ax) is strictly convex and proper on the row space of A. Here the shapes of x, A and b are such that Ax = b is defined. Exercise 4.3.7 Show a strongly convex function, either single-variable §4.1 or multi-variable §4.5, is proper. #### 4.4 Back Propagation In this section, we compute outputs and derivatives on a graph. We already did this for the graph (4.14), but now we systematize things so that we can write code. We consider two cases, when the graph is a chain, or the graph is a network of neurons. The derivatives are taken with respect to the outputs at each node of the graph. In §7.2, we consider a third case, and compute outputs and derivatives on a neural network. To compute node outputs, we do forward propagation. To compute derivatives, we do back propagation. Corresponding to the three cases, we will code three versions of forward and back propagation. In all cases, back propagation depends on the chain rule. The chain rule $(\S4.1)$ states $$r = f(x), y = g(r)$$ \Longrightarrow $\frac{dy}{dx} = \frac{dy}{dr}
\cdot \frac{dr}{dx}.$ In this section, we work out the implications of the chain rule on repeated compositions of functions. Suppose $$r = f(x) = \sin x$$, $s = g(r) = \frac{1}{1 + e^{-r}}$, $y = h(s) = s^2$. These are three functions f, g, h composed in a *chain* (Figure 4.15). Fig. 4.15 Composition of three functions in a chain. The chain in Figure 4.15 has five nodes and four edges. There is one input node \bigcirc (no incoming edge from another node) and one output node \bigcirc (no outgoing edge to another node). The outgoing signals at the first four nodes are x, r, s, y. The incoming signals at the last four nodes are x, r, s, y. Start with $x = \pi/4$. Evaluating the functions in order, $$x = 0.785,$$ $r = 0.707,$ $s = 0.670,$ $y = 0.448.$ Notice these values are evaluated in the forward direction: x then r then s then y. This is forward propagation. Now we evaluate the derivatives of the output y with respect to x, r, s, $$\frac{dy}{dx}$$, $\frac{dy}{dr}$, $\frac{dy}{ds}$. With the above values for x, r, s, we have $$\frac{dy}{ds} = 2s = 2 * 0.670 = 1.340.$$ Since g is the logistic function, by (4.2.4), $$g'(r) = g(r)(1 - g(r)) = s(1 - s) = 0.670 * (1 - 0.670) = 0.221.$$ From this, $$\frac{dy}{dr} = \frac{dy}{ds} \cdot \frac{ds}{dr} = 1.340 * g'(r) = 1.340 * 0.221 = 0.296.$$ Repeating one more time, $$\frac{dy}{dx} = \frac{dy}{dr} \cdot \frac{dr}{dx} = 0.296 * \cos x = 0.296 * 0.707 = 0.209.$$ Thus the derivatives are $$\frac{dy}{dx} = 0.209,$$ $\frac{dy}{dr} = 0.296,$ $\frac{dy}{ds} = 1.340.$ Notice the derivatives are evaluated in the backward direction: First dy/dy = 1, then dy/ds, then dy/dr, then dy/dx. This is back propagation. Here is another example. Let $$r = x^{2},$$ $$s = r^{2} = x^{4},$$ $$y = s^{2} = x^{8}.$$ This is the same function $h(x) = x^2$ composed with itself three times. With x = 5, we have $$x = 5,$$ $r = 25,$ $s = 625,$ $y = 390625.$ Applying the chain rule as above, check that $$\frac{dy}{dx} = 625000, \qquad \frac{dy}{dr} = 62500, \qquad \frac{dy}{ds} = 1250.$$ To evaluate x, r, s, y in Figure 4.15, first we built the list of functions and the list of derivatives ``` from numpy import * def f(x): return sin(x) def g(r): return 1/(1+ exp(-r)) def h(s): return s**2 # this for next example def k(t): return cos(t) func_chain = [f,g,h] def df(x): return cos(x) def dg(r): return g(r)*(1-g(r)) def dh(s): return 2*s ``` ``` # this for next example def dk(t): return -sin(t) der_chain = [df,dg,dh] ``` Then we evaluate the output vector x = (x, r, s, y), leading to the first version of forward propagation, ``` # first version: chains def forward_prop(x_in,func_chain): x = [x_in] while func_chain: f = func_chain.pop(0) # first func x_out = f(x_in) x.append(x_out) # insert at end x_in = x_out return x from numpy import * x_in = pi/4 x = forward_prop(x_in,func_chain) ``` Now we evaluate the gradient vector $\delta = (dy/dx, dy/dr, dy/ds, dy/dy)$. Since dy/dy = 1, we set ``` # dy/dy = 1 delta_out = 1 ``` The code for the first version of back propagation is ``` # first version: chains def backward_prop(delta_out,x,der_chain): delta = [delta_out] while der_chain: # discard last output x.pop(-1) df = der_chain.pop(-1) # last der der = df(x[-1]) # chain rule -- multiply by previous der der = der * delta[0] delta.insert(0,der) # insert at start return delta delta = backward_prop(delta_out,x,der_chain) ``` Note forward propagation must be run prior to back propagation. To apply this code to the second example, use ``` d = 3 func_chain, der_chain = [h]*d, [dh]*d x_in, delta_out = 5, 1 x = forward_prop(x_in,func_chain) delta = backward_prop(delta_out,x,der_chain) ``` Fig. 4.16 A network composition [33]. Now we work with the network in Figure 4.16, using the multi-variable chain rule ($\S4.3$). The functions are $$a = f(x, y) = x + y,$$ $b = g(y, z) = \max(y, z),$ $J = h(a, b) = ab.$ The composite function is $$J = (x+y)\max(y,z),$$ Here there are three input nodes, labeled 0, 1, 2, three hidden nodes, 3, 4, 5, and an output node, 6. Starting with inputs (x, y, z) = (1, 2, 0), and plugging in, we obtain the outgoing signals at the first six nodes $$(x_0, x_1, x_2, x_3, x_4, x_5) = (x, y, z, a, b, J) = (1, 2, 0, 3, 2, 6)$$ (Figure 4.18). This is forward propagation. **Fig. 4.17** The function $g = \max(y, z)$. Now we compute the derivatives $$\frac{\partial J}{\partial x}, \quad \frac{\partial J}{\partial y}, \quad \frac{\partial J}{\partial z}, \quad \frac{\partial J}{\partial a}, \quad \frac{\partial J}{\partial b}, \frac{\partial J}{\partial J}.$$ This we do in reverse order. It's clear $\partial J/\partial J=1.$ We compute $$\frac{\partial J}{\partial a} = b = 2, \qquad \frac{\partial J}{\partial b} = a = 3.$$ Then $$\frac{\partial a}{\partial x} = \mathbf{1}, \qquad \frac{\partial a}{\partial y} = \mathbf{1}.$$ Let $$\mathbf{1}(y > z) = \begin{cases} 1, & y > z, \\ 0, & y < z. \end{cases}$$ By Figure 4.17, since y = 2 and z = 0, $$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = \mathbf{1}, \qquad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = \mathbf{0}.$$ By the chain rule, $$\frac{\partial J}{\partial x} = \frac{\partial J}{\partial a} \frac{\partial a}{\partial x} = 2 * 1 = 2,$$ $$\frac{\partial J}{\partial y} = \frac{\partial J}{\partial a} \frac{\partial a}{\partial y} + \frac{\partial J}{\partial b} \frac{\partial b}{\partial y} = 2 * 1 + 3 * 1 = 5,$$ $$\frac{\partial J}{\partial z} = \frac{\partial J}{\partial b} \frac{\partial b}{\partial z} = 3 * 0 = 0.$$ Hence we have $$\left(\frac{\partial J}{\partial x},\frac{\partial J}{\partial y},\frac{\partial J}{\partial z},\frac{\partial J}{\partial a},\frac{\partial J}{\partial b},\frac{\partial J}{\partial J}\right)=(2,5,0,2,3,1).$$ The outputs (blue) and the derivatives (red) are displayed in Figure 4.18. Summarizing, by the chain rule, - derivatives are computed backward, - derivatives along successive edges are multiplied, - derivatives along several outgoing edges are added. Fig. 4.18 Forward and backward propagation [33]. To label these derivatives systematically, look at a specific node, say in Figure 4.16 look at the node $\stackrel{+}{}$. This node has outgoing signal a and incoming signals x and y. Corresponding to these, we have the *upstream derivative* $\partial J/\partial a$ and $\partial J/\partial y$. But there is a problem here, since $\partial J/\partial y$ can be considered a downstream derivative on two separate edges. Because of this, and since there is only one outgoing signal, we label the derivative at this node to be the upstream derivative, $$\delta_3 = \frac{\partial J}{\partial x_3} = \frac{\partial J}{\partial a}.$$ With this notation, we have $$\left(\frac{\partial J}{\partial x_0},\frac{\partial J}{\partial x_1},\frac{\partial J}{\partial x_2},\frac{\partial J}{\partial x_3},\frac{\partial J}{\partial x_4},\frac{\partial J}{\partial x_5}\right) = \left(\frac{\partial J}{\partial x},\frac{\partial J}{\partial y},\frac{\partial J}{\partial z},\frac{\partial J}{\partial a},\frac{\partial J}{\partial b},\frac{\partial J}{\partial J}\right).$$ To do this in general, recall a directed graph (§3.3) as in Figure 4.16 has an adjacency matrix $W = (w_{ij})$ with w_{ij} equal to one or zero depending on whether (i, j) is an edge or not. Suppose a directed graph has d nodes, labeled $0, 1, 2, \ldots, d-1$, and, for each node i, let x_i be the outgoing signal. Then $x = (x_0, x_1, x_2, \ldots, x_{d-1})$ is the *outgoing vector*. In the case of Figure 4.16, d = 7 and $$x = (x_0, x_1, x_2, x_3, x_4, x_5, x_6) = (x, y, z, a, b, J, None).$$ With this order, the adjacency matrix is $$W = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$ This we code as a list of lists, ``` d = 7 w = [[None]*d for _ in range(d)] w[0][3] = w[1][3] = w[1][4] = w[2][4] = 1 w[3][5] = w[4][5] = w[5][6] = 1 ``` More generally, in a weighed directed graph (§3.3), the weights w_{ij} are numeric scalars or None. Once we have the outgoing vector x, for each node j, let $$\bar{x}_{j} = (w_{0j}x_0, w_{1j}x_1, w_{2j}x_2, \dots, w_{d-1,j}x_{d-1}). \tag{4.4.1}$$ This is the *incoming signal list* at node j. Here we adopt the convention that None times anything is None, and any resulting None entry in the list is to be discarded. An activation function at node j is a function f_j of the incoming signal list x_j^- . Then the outgoing signal at node j is $$x_j = f_j(x_j^-). (4.4.2)$$ By the chain rule, $$\frac{\partial x_j}{\partial x_i} = \begin{cases} \frac{\partial f_j}{\partial x_i} \cdot w_{ij}, & \text{if } (i,j) \text{ is an edge,} \\ \text{None,} & \text{if } (i,j) \text{ is not an edge.} \end{cases}$$ (4.4.3) The *incoming vector* is $$x^- = (x_0^-, x_1^-, x_2^-, \dots, x_{d-1}^-).$$ Then x^- is a list of lists. In the case of Figure 4.16, $$x^- = (x_0^-, x_1^-, x_2^-, x_3^-, x_4^-, x_5^-, x_6^-),$$ where ``` x0minus = [None,None,None,None,None,None] x1minus = [None,None,None,None,None,None] x2minus = [None,None,None,None,None,None] x3minus = [x,y,None,None,None,None] x4minus = [None,y,z,None,None,None,None] x5minus = [None,None,None,None,None] x6minus = [None,None,None,None,None,None] ``` This is before discarding. After discarding, ``` x0minus = [] x1minus = [] x2minus = [] x3minus = [x,y] x4minus = [y,z] x5minus = [a,b] x6minus = [J] ``` The activation functions are ``` activate = [None]*d activate[3] = lambda x,y: x+y activate[4] = lambda y,z: max(y,z) activate[5] = lambda a,b: a*b ``` To compute the outgoing signal x_j at node j, we collect the incoming signals x_j^- following (4.4.1) then plug them into the activation function. To compute the incoming signal at node j, we plug the incoming list into the activation function, ``` def outgoing(x,w,j): if x[j] != None: return x[j] else: if activate[j] != None: return
activate[j](*incoming(x,w,j)) else: return None ``` Here * is the unpacking operator. Summarizing, at each node j, we have the outgoing signal x_j , and a *list* x_j^- of incoming signals. Now we can define what is meant by a network. A node with an attached activation function is a neuron. A network is a directed weighed graph where some nodes are neurons. The code in this section works for any network without cycles. In §7.2, we specialize to neural networks. Neural networks are networks with a restricted class of activation functions. Fig. 4.19 Graph, directed graph, weighed directed graph, network. Let x_{in} be the outgoing vector over the input nodes. If there are m input nodes, and d nodes in total, then the length of x_{in} is m, and the length of x is d. In the example above, $x_{in} = (x, y, z)$. We assume the list of nodes is ordered so that the initial portion of the list of nodes is the list of input nodes. ``` m = len(x_in) x[:m] = x_in ``` Here is the second version of forward propagation. ``` # second version: networks def forward_prop(x_in,w): d = len(w) x = [None]*d m = len(x_in) x[:m] = x_in for j in range(m,d): x[j] = outgoing(x,w,j) return x ``` For this code to work, we assume there are no cycles in the graph: All backward paths end at input nodes, and all forward paths end at output nodes. The output function J is a function of all node outputs. For Figure 4.16, this means J is a function of x, y, z, a, b. Therefore, at each node i, we have the derivatives $$\delta_i = \frac{\partial J}{\partial x_i}(x), \qquad i = 0, 1, 2, \dots, d - 1.$$ Then $\delta = (\delta_0, \delta_1, \delta_2, \dots, \delta_{d-1})$ is the gradient vector. We first compute the derivatives of J with respect to the output nodes x_{out} , and we assume these derivatives are assembled into a vector δ_{out} . In Figure 4.16, there is one output node J, and $$\delta_J = \frac{\partial J}{\partial J} = 1.$$ Hence $\delta_{\text{out}} = (1)$. We assume the list of nodes is ordered so that the terminal portion of the list of nodes is the list of output nodes. For each i, j, let $$g_{ij} = \frac{\partial f_j}{\partial x_i}.$$ Then we have a $d \times d$ gradient matrix $g = (g_{ij})$. When (i, j) is not an edge, $g_{ij} = 0$. These are the *local* derivatives, not the derivatives obtained by the chain rule. For example, even though we saw above $\partial J/\partial y = 1$, here the local derivative is zero, since J does not depend directly on y. For the example above, with $(x_1, x_2, x_3, x_4, x_5, x_6) = (x, y, z, a, b, J)$, ``` g = [[None]*d for _ in range(d)] g[0][3] = lambda x,y: 1 g[1][3] = lambda x,y: 1 g[1][4] = lambda y,z: 1 if y >= z else 0 g[2][4] = lambda y,z: 1 if z > y else 0 g[3][5] = lambda a,b: b g[4][5] = lambda a,b: a g[5][6] = lambda J: 1 ``` By the chain rule and (4.4.3), $$\frac{\partial J}{\partial x_i} = \sum_{i \to j} \frac{\partial J}{\partial x_j} \cdot \frac{\partial x_j}{\partial x_i} = \sum_{i \to j} \frac{\partial J}{\partial x_j} \cdot \frac{\partial f_j}{\partial x_i} \cdot w_{ij},$$ SO $$\delta_i = \sum_{i \to j} \delta_j \cdot g_{ij} \cdot w_{ij}.$$ The code is This leads to our second version of back propagation, ``` # second version: networks # m is number of output nodes def backward_prop(x,m,g): d = len(g) delta = [None]*d for i in range(d): delta[i] = derivative(x,m,delta,g,i) ``` ``` return delta[:-m] m = 1 delta = backward_prop(x,m,g) ``` In §7.2, we derive the third version of propagation, this for neural networks. # **Exercises** **Exercise 4.4.1** For the network in Figure 4.15, use the second version of the propagation code and $x = \pi/4$ to compute the output vector and the gradient vector $$x = (x, r, s, y),$$ $\delta = \left(\frac{dy}{dx}, \frac{dy}{dr}, \frac{dy}{ds}, \frac{dy}{dy}\right).$ **Exercise 4.4.2** In Figure **4.20**, the activation function at each neuron is the sum of the squares of the incoming signals to that neuron. Starting with x = 1, compute (x, a, b, c, d, p, q, J), and the corresponding derivatives of J. Do this by hand and by coding. You should get $$x = (1, 1, 2, 5, 26, 667, 2, 458333),$$ $\delta = (18449628, 5632648, 2816320, 704080, 70408, 1354, 4, 1).$ Fig. 4.20 A network with outgoing signals. **Exercise 4.4.3** Compute the outgoing vector x and gradient vector δ for the network in Figure 4.21. The outgoing signal at each neuron is the sum of the squares of the incoming signals at that neuron. Here the input node signal is the variable t, so both x and δ will have powers of t in them. Fig. 4.21 Another network. # 4.5 Convex Functions Let f(x) be a scalar function of points $x = (x_1, \ldots, x_d)$ in \mathbf{R}^d . For example, in two dimensions, $$f(x) = f(x_1, x_2) = \max(|x_1|, |x_2|),$$ $f(x) = f(x_1, x_2) = \frac{x_1^2}{4} + x_2^2$ are scalar functions of points in \mathbb{R}^2 . Fig. 4.22 Level sets and sublevel sets in two dimensions. A level set of f(x) is the set $$E: \qquad f(x) = 1.$$ This is the level set corresponding to level 1. One can have level sets corresponding to any level c, f(x) = c. In two dimensions, level sets are also called level curves. Fig. 4.23 Level curves in two dimensions. For example, the variance ellipse $x \cdot Qx = 1$ is a level set. The perimeters (not their interiors) of the square and ellipse in Figure 4.22 are level sets $$\max(|x_1|, |x_2|) = 1, \qquad \frac{x_1^2}{16} + \frac{x_2^2}{4} = 1.$$ The level curves of $$f(x) = f(x_1, x_2) = \frac{x_1^2}{16} + \frac{x_2^2}{4}$$ are in Figure 4.23. A sublevel set of f(x) is the set $$E: f(x) \le 1.$$ This is the sublevel set corresponding to level 1. One can have sublevel sets corresponding to any level c, $f(x) \leq c$. Sublevel sets were used in the definition of proper functions (4.3.7). For example, in Figure 4.22, the (blue) interior of the square, together with the square itself, is a sublevel set. Similarly, the interior of the ellipse, together with the ellipse itself, is a sublevel set. The interiors of the ellipsoids, together with the ellipsoids themselves, in Figure 4.30 are sublevel sets. We always consider the level set to be part of the sublevel set. The level set f(x) = 1 is the boundary of the sublevel set $f(x) \le 1$. Thus the square and the ellipse in Figure 4.22 are boundaries of their respective sublevel sets, and the unit variance ellipsoid $x \cdot Qx = 1$ is the boundary of the sublevel set $x \cdot Qx \le 1$. Given points x_0 and x_1 in \mathbf{R}^d , let $v = x_1 - x_0$ be the vector joining them. Then $$(1-t)x_0 + tx_1 = x_0 + tv, \qquad 0 \le t \le 1.$$ The line segment $[x_0, x_1]$ joining x_0, x_1 consists of linear combinations $$x = (1-t)x_0 + tx_1 = x_0 + tv,$$ $0 \le t \le 1$ (Figure 4.24). More generally, given points x_1, x_2, \ldots, x_N , a linear combination $$t_1x_1 + t_2x_2 + \dots + t_Nx_N$$ is a convex combination if t_1, t_2, \ldots, t_N are nonnegative, and $$t_1 + t_2 + \dots + t_N = 1.$$ **Fig. 4.24** Line segment $[x_0, x_1]$. In this section we study convex sets and convex functions. We start with convex sets. A convex set is a subset E in \mathbf{R}^d that contains the line segment joining any two points in it: If x_0 and x_1 are in E, then the line segment $[x_0, x_1]$ is in E. To be consistent with sublevel sets, we only consider convex sets that contain their boundaries. More generally, given points x_1, x_2, \ldots, x_N in E, the convex combination $$x = t_1 x_1 + t_2 x_2 + \dots + t_N x_N$$ is also in E. The set of all convex combinations of x_1, x_2, \ldots, x_N is the convex hull of x_1, x_2, \ldots, x_N (Figure 4.25). The convex hull of a dataset is a convex set. Conversely, if E is convex and contains a dataset x_1, x_2, \ldots, x_N , then E contains the convex hull of the dataset. **Fig. 4.25** Convex hull of $x_1, x_2, x_3, x_4, x_5, x_6, x_7$. The interiors of the square and the ellipse in Figure 4.22, together with their boundaries, are convex sets. The interior of the ellipsoid in Figure 4.30, together with the ellipsoid, is a convex set. The following code generates convex hulls, ``` from scipy.spatial import ConvexHull from numpy import * from numpy.random import default_rng samples = default_rng().random # 30 random points in the plane points = samples((30, 2)) hull = ConvexHull(points) ``` and this plots the facets of the convex hull ``` from matplotlib.pyplot import * plot(points[:,0], points[:,1], 'o') for facet in hull.simplices: plot(points[facet,0], points[facet,1], 'k-') facet = hull.simplices[0] plot(points[facet, 0], points[facet, 1], 'r--') grid() show() ``` resulting in Figure 4.26. Fig. 4.26 A convex hull with one facet highlighted. Let E be any convex set, and let x_0 be any point. We search for a point x^* in E that is nearest to x_0 . Since $|x - x_0|$ is the distance between x and x_0 , the nearest point x^* satisfies $$|x^* - x_0|^2 = \min_{x \text{ in } E} |x - x_0|^2.$$ Here we minimize the distance squared, since the distance minimizer is the same as the distance-squared minimizer. If x_0 is in E, then clearly $x^* = x_0$ is the unique distance minimizer. In x_0 is not in E, the results in §A.8 guarantee the existence of a distance minimizer x^* . This means there is at least one point in E that is nearest to x_0 . Let x_0 be any point not in E. We show there is exactly one point x^* in E nearest to x_0 . Let δ be the minimum distance-squared between E and x_0 . To this end, suppose x' is another point in E at the same distance from x_0 as x^* . Then $$|x^* - x_0|^2 = \delta = |x' - x_0|^2.$$ If $x_a = (x^* + x')/2$ is the average of x^* and x', since E is convex, x_a is in E, hence $|x_a - x_0|^2 \ge \delta$. By expanding the squares, check that $$4|x_a - x_0|^2 + |x^* - x'|^2 = 2|x^* - x_0|^2 + 2|x' - x_0|^2.$$ Since x_a is in E, the left side is no less than $4\delta + |x^* - x'|^2$. On the other hand, the right side equals 4δ . This
implies $|x^* - x'|^2 = 0$, or $x^* = x'$, completing the proof. ### Unique Nearest Point in Convex Set Given any point x_0 and any convex set E, there is a unique point x^* in E nearest to x_0 . Fig. 4.27 A convex set has a unique nearest point to any x_0 . Let n be a nonzero vector. In two dimensions, the vectors orthogonal to n form a line (Figure 4.28). In three dimensions, the vectors orthogonal to n form a plane (Figure 4.28). In d dimensions, these vectors form the orthogonal complement n^{\perp} (2.7.5), which is a (d-1)-dimensional subspace. This subspace is a hyperplane passing through the origin. Given a point x_0 and a nonzero vector n, the hyperplane passing through x_0 orthogonal to n consists of all x satisfying $$H: n \cdot (x - x_0) = 0. (4.5.1)$$ The hyperplane equation may be written $$H: \qquad m \cdot x + b = 0, \tag{4.5.2}$$ with a nonzero vector m and scalar b. In this section, we use (4.5.1); in §7.6, we use (4.5.2). A hyperplane separates the whole space \mathbf{R}^d into two half-spaces, $$n \cdot (x - x_0) < 0$$ $n \cdot (x - x_0) = 0$ $n \cdot (x - x_0) > 0$. The vector n is the *normal vector* to the hyperplane. Note replacing n by any nonzero multiple of n leaves the hyperplane unchanged. Fig. 4.28 Hyperplanes in two and three dimensions. # Separating Hyperplane I Let E be a convex set, let x_0 be a point not in E, and let x^* be the point in E nearest to x_0 . If $n = x_0 - x^*$, then the hyperplane passing through x^* and orthogonal to n separates x_0 and E: $n \cdot (x_0 - x^*) > 0$ and $$n \cdot (x - x^*) \le 0$$, for every x in E . (4.5.3) A diagram of the proof is Figure 4.29. If x is in E, then by convexity, the line segment $[x^*, x]$ is in E, hence $x^* + tv$, $v = x - x^*$, is in E for $0 \le t \le 1$. Since x^* is the point of E nearest to x_0 , $$|x^* - x_0|^2 \le |x^* + tv - x_0|^2$$ for $0 \le t \le 1$. Expanding, we have $$|x^* - x_0|^2 \le |x^* - x_0|^2 + 2t(x^* - x_0) \cdot v + t^2|v|^2, \qquad 0 \le t \le 1.$$ Canceling $|x^* - x_0|^2$ then canceling t, we obtain $$0 \le 2(x^* - x_0) \cdot v + t|v|^2, \qquad 0 \le t \le 1.$$ Since this is true for small positive t, sending $t \to 0$ results in $v \cdot (x^* - x_0) \ge 0$. Since $n = x_0 - x^*$, $v = x - x^*$, we obtain $$n \cdot (x - x^*) \le 0$$ and $n \cdot (x_0 - x^*) > 0$. Fig. 4.29 Separating hyperplane I. Now suppose x_0 is a point in the boundary of a convex set E. Since x_0 is in E, we cannot find a separating hyperplane for $x^* = x_0$. In this case, the best we can hope for is a hyperplane passing through x_0 , with E to one side of the hyperplane: $$x \text{ in } E \implies (x - x_0) \cdot n \le 0.$$ (4.5.4) Such a hyperplane is a *supporting hyperplane for E at* x_0 . Figures 4.22 and 4.30 display examples of supporting hyperplanes. Here is the basic result relating convex sets and supporting hyperplanes. ## Supporting Hyperplane for Convex Set Let E be a convex set and let x_0 be a point on the boundary of E. Then there is a supporting hyperplane at x_0 . If x_0 is in the boundary of E, there are points x' not in E approximating x_0 (Figure 4.29). Applying the separating hyperplane theorem to x', with x^* the point in E nearest to x', and taking the limit $x' \to x_0$, results in $x^* \to x_0$, leading to a supporting hyperplane at x_0 . Supporting hyperplanes characterize convex sets in the following sense: If through every point x_0 in the boundary of E, there is a supporting hyperplane, then E is convex. Fig. 4.30 Ellipsoids in three dimensions with supporting hyperplanes. Recall a *bit* is either zero or one. A dataset x_1, x_2, \ldots, x_N is a *two-class* dataset if there are bits p_1, p_2, \ldots, p_N corresponding to each sample. Then the two classes correspond to p = 1 and p = 0 respectively. Let $m \cdot x + b = 0$ be a hyperplane. The *level* of a sample x relative to the hyperplane is $y = m \cdot x + b$. Theb x is in the hyperplane iff its level is zero. A hyperplane is separating if $$y \ge 0,$$ if $p = 1,$ $y \le 0,$ if $p = 0,$ for every sample x . (4.5.5) When there is a separating hyperplane, we say the dataset is *separable*. Because samples are separated by level, positive, negative, or zero, a separating hyperplane is a *decision boundary*. The dataset x_1, x_2, \ldots, x_N lies in the hyperplane $m \cdot x + b = 0$ if $$m \cdot x_k + b = 0, \qquad k = 1, 2, \dots, N.$$ (4.5.6) When a two-class dataset lies in a hyperplane, the hyperplane is separating, so the question of separability is only interesting when the dataset does not lie in a hyperplane. tK_1 If a two-class dataset does not lie in a hyperplane and is separable, then the means of the two classes are distinct (Exercise 4.5.1). ### Separating Hyperplane II Let x_1, x_2, \ldots, x_N be a two-class dataset and assume neither class lies in a hyperplane. Let K_0 and K_1 be the convex hulls of the two classes. Then the dataset is separable $$\iff$$ $K_0 \cap K_1$ has no interior. (4.5.7) To derive this result, from Exercise 4.5.12 both K_0 and K_1 have interiors. Suppose there is a separating hyperplane $m \cdot x + b = 0$. If x_0 is any point in the interior $K_0 \cap K_1$, then we have $m \cdot x_0 + b \leq 0$ and $m \cdot x_0 + b \geq 0$, so $m \cdot x_0 + b = 0$. This shows the separating hyperplane passes through x_0 . Since K_0 lies on one side of the hyperplane, x_0 cannot be in the interior of K_0 . Similarly for K_1 . Hence x_0 cannot be in the interior of $K_0 \cap K_1$. This implies $K_0 \cap K_1$ has no interior. Fig. 4.31 Separating hyperplane II. Conversely, for the reverse direction, suppose $K_0 \cap K_1$ has no interior. There are two cases, whether $K_0 \cap K_1$ is empty or not. If $K_0 \cap K_1$ is empty, then the minimum of $|x_1 - x_0|^2$ over all x_1 in K_1 and x_0 in K_0 is positive. If we let $$|x_1^* - x_0^*|^2 = \min_{\substack{x_0 \text{ in } K_0 \\ x_1 \text{ in } K_1}} |x_1 - x_0|^2, \tag{4.5.8}$$ then x_1^* is on the boundary of K_1 , x_0^* is on the boundary of K_0 , and the points x_0^* , x_1^* are distinct. In the first case, since K_0 and K_1 don't intersect, x_1^* is not in K_0 , and x_0^* is not in K_1 . Let $m = x_1^* - x_0^*$. Since x_0^* is the point in K_0 closest to K_1 , by separating hyperplane I, the hyperplane $H_0: m \cdot (x - x_0^*) = 0$ separates K_0 from x_1^* . Similarly, since x_1^* is the point in K_1 closest to K_0 , the hyperplane $H_1: m \cdot (x - x_1^*) = 0$ separates K_1 from x_0^* . Thus (Figure 4.31) both hyperplanes separate K_0 from K_1 . In the second case, when K_0 and K_1 intersect, then the minimum in (4.5.8) is zero, hence $x_0^* = x_1^* = x^*$. Let 0 < t < 1, and let tK_0 be K_0 scaled towards its mean. Similarly, let tK_1 be K_1 scaled towards its mean. By Exercise 4.5.16, both tK_0 and tK_1 lie in the interiors of K_0 and K_1 respectively, so tK_0 and tK_1 do not intersect. By applying the first case to tK_0 and tK_1 , and choosing t close to tK_0 , we obtain a hyperplane tK_0 and tK_1 . We skip the details. In Figure 4.22, at the corner of the square, there are multiple supporting hyperplanes. However, at every other point a on the boundary of the square, there is a unique (up to scalar multiple) supporting hyperplane. For the ellipse or ellipsoid, at every point of the boundary, there is a unique supporting hyperplane. We now look at convex functions. Convexity in the multi-variable setting is defined by reducing to the single-variable case. Let $f(x) = f(t_1, t_2, ..., t_d)$ be a function of d features $x = (t_1, t_2, ..., t_d)$. If we fix a point a and a direction v, then g(t) = f(a + tv) is a function of the single variable t. A function f(x) is *convex* if g(t) = f(a+tv) is convex in t, for every point a and direction v. A function f(x) is *strictly convex* if g(t) = f(a+tv) is strictly convex, for every point a and direction v. It can be shown f(x) is convex iff $$f(t_1x_1 + \dots + t_Nx_N) \le t_1f(x_1) + \dots + t_Nf(x_N),$$ (4.5.9) for any convex combination of points x_1, x_2, \ldots, x_N . In terms of derivatives, f(x) is convex when $D^2 f(x) \ge 0$, and f(x) is strictly convex when $D^2 f(x) > 0$. By (4.3.12), we have ## Second Directional Derivatives and Convexity A function f(x) is convex when $$\frac{d^2}{dt^2}\Big|_{t=0} f(x+tv) \ge 0, \quad \text{for all } v,$$ (4.5.10) and f(x) is strictly convex when $$\frac{d^2}{dt^2}\Big|_{t=0} f(x+tv) > 0, \quad \text{for all } v \neq 0.$$ (4.5.11) Let f(x) be a function and let $\nabla f(a)$ be the gradient at a. The tangent hyperplane at a is $$y = f(a) + \nabla f(a) \cdot (x - a). \tag{4.5.12}$$ Then as in $\S4.1$, ### Convex Function Graph Lies Above the Tangent Hyperplane If f(x) is convex and has a gradient $\nabla f(a)$, then $$f(a) + \nabla f(a) \cdot (x - a) \le f(x). \tag{4.5.13}$$ This result is obtained by applying the corresponding result in §4.1 to the function g(t) = f(a + tv), with v = x - a. Recall $m \leq Q \leq L$ means the eigenvalues of the symmetric matrix Q are between L and m. We say f(x) is strongly convex there are positive constants m and L satisfying $m \leq D^2 f(x) \leq L$ for every x. As in the scalar case, in order of breadth, we have - quadratic functions, $D^2 f(x)$ is constant, - strongly convex functions, $L \ge D^2 f(x) \ge m$, - strictly convex functions, $D^2 f(x) > 0$, - general convex functions, $D^2 f(x) \ge 0$. Let f(x) be strongly convex with bounds $m \leq L$. Given two points a and x, let v = x - a and g(t) = f(x + tv). By (4.3.12), g(t) is a strongly convex function of the scalar variable t with bounds $m|x-a|^2 \leq L|x-a|^2$. Moreover $$g(1) = f(x), \quad g(0) = f(a), \quad g'(0) = \nabla f(a) \cdot (x-a), \quad g'(1) = \nabla f(x) \cdot (x-a).$$ Applying the scalar strongly convex results in §4.1 to g(t) and the points t = 0, t = 1,
we obtain the following vector versions of those results. ### Lower and Upper Tangent Paraboloids Let f(x) be strongly convex, with $m \leq D^2 f(x) \leq L$. Then $$\frac{m}{2}|x-a|^2 \le f(x) - f(a) - \nabla f(a) \cdot (x-a) \le \frac{L}{2}|x-a|^2.$$ (4.5.14) # Strongly Convex Implies Unique Global Minimizer A strongly convex function has exactly one global minimizer x^* . ### **Strongly Convex Gradient Bounds** Let f(x) be strongly convex. If $q = \nabla(x)$ and $p = \nabla f(a)$, then $$m|x-a|^2 \le (q-p) \cdot (x-a) \le L|x-a|^2.$$ (4.5.15) ### Coercivity of the Gradient Let f(x) be strongly convex. If $q = \nabla f(x)$ and $p = \nabla f(a)$, then $$\frac{mL}{m+L}|x-a|^2 + \frac{1}{m+L}|q-p|^2 \le (q-p)\cdot(x-a). \tag{4.5.16}$$ If $a = x^*$ is a global minimizer, then $\nabla f(x^*) = 0$, and f(x) lies between two quadratics globally, $$\frac{m}{2}|x-x^*|^2 \le f(x) - f(x^*) \le \frac{L}{2}|x-x^*|^2. \tag{4.5.17}$$ These results are used in gradient descent §7.8. We describe the convex dual in the multi-variable setting (the single-variable case was done in §4.1). If f(x) is a scalar convex function of x, and $x = (t_1, t_2, \ldots, t_d)$ has d features, the *convex dual* is $$g(p) = \max_{x} (p \cdot x - f(x)).$$ (4.5.18) Here the maximum is over all vectors x, and $p = (p_1, p_2, \dots, p_d)$, the dual variable, also has d features. As in the scalar case, when f(x) is strongly convex, the maximizer in (4.5.18) is well-defined, and we have # Dual of the Dual Let f(x) be strongly convex. If g(p) is the convex dual of f(x), then f(x) is the convex dual of g(p), g(p) is strongly convex, and $$D^2g(p) = D^2f(x)^{-1} \quad \Longleftrightarrow \quad p = \nabla f(x) \quad \Longleftrightarrow \quad x = \nabla g(p).$$ It follows that the convex dual g(p) is strongly convex with $$\frac{1}{L} \le D^2 g(p) \le \frac{1}{m}.$$ Using this, we also have (Exercise 4.1.20) ### **Dual Second Derivative Bounds** Let f(x) be strongly convex. If $p = \nabla f(x)$ and $q = \nabla f(a)$, then $$\frac{1}{2L}|p-q|^2 \le f(x) - f(a) - \nabla f(a) \cdot (x-a) \le \frac{1}{2m}|p-q|^2. \quad (4.5.19)$$ Combining (4.5.14) and (4.5.19), we have ## Lipschitz Bounds Let f(x) be strongly convex. If $p = \nabla f(x)$ and $q = \nabla f(a)$, then $$m|x-a| \le |p-q| \le L|x-a|.$$ (4.5.20) These are used in gradient descent §7.8. We list some technical properties and definitions of sets that play a role in some of the proofs in this section. They make precise the intuitive notions of *interior* and *boundary* of a set, and they may be safely skipped in a first reading. Let a be a point in \mathbf{R}^d and let r be a positive scalar. The closed ball of radius r and center a is the set of points x satisfying $|x-a|^2 \le r^2$. The open ball of radius r and center a is the set of points x satisfying $|x-a|^2 < r^2$. The *sphere* of radius r and center a is the set of points x satisfying $|x-a|^2 = r^2$. Then the closed ball of radius r and center a is the union of the open ball of radius r and center a and the sphere of radius r and center a. Let E be any set in \mathbf{R}^d . The *complement* of E is the set E^c of points that are not in E. If E and F are sets, the *intersection* $E \cap F$ is the set of points that lie in both sets. A point a is in the *interior* of E if there is a ball B centered at a contained in E; this is usually written $B \subset E$. Here the ball may be either open or closed, the interior is the same. A point a is in the *boundary* of E if every ball centered at a contains points of E and points of E^c . From the definitions, it is clear that there are no points that lie in both the interior of E and the boundary of E. Let E be a set. If E equals its interior, then E is an *open set*. If E contains its boundary, then E is a $closed\ set$. When a set is closed, we have set = interior + boundary. The complement of an open set is a closed set (Exercise 4.5.18). ### **Exercises** Exercise 4.5.1 If a two-class dataset does not lie in a hyperplane and is separable, then the means of the two classes are distinct. (Argue by contradiction: Assume the means are equal, and look at levels of samples.) **Exercise 4.5.2** Let $e_0 = 0$ and let e_1, e_2, \ldots, e_d be the one-hot encoded basis in \mathbf{R}^d . The *d-simplex* Σ_d is the convex hull of $e_0, e_1, e_2, \ldots, e_d$. Draw pictures of Σ_1, Σ_2 , and Σ_3 . Show Σ_d is the suspension (§1.5) of Σ_{d-1} from e_d . Conclude $$Vol(\Sigma_d) = \frac{1}{d!}, \qquad d = 0, 1, 2, 3, \dots$$ (Since Σ_0 is one point, we start with $Vol(\Sigma_0) = 1$.) **Exercise 4.5.3** If Q > 0 be a positive symmetric matrix, then $$\frac{1}{2}(p - Qx) \cdot Q^{-1}(p - Qx) = \frac{1}{2}p \cdot Q^{-1}p - p \cdot x + \frac{1}{2}x \cdot Qx. \tag{4.5.21}$$ Conclude the convex dual of $f(x) = x \cdot Qx/2$ is $g(p) = p \cdot Q^{-1}p/2$. **Fig. 4.32** y = 1/x is a convex function. **Exercise 4.5.4** Let $0 < \lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$ be positive scalars, and let $P_k = (\lambda_k, 1/\lambda_k), k = 1, 2, 3, 4$, be four points on the graph of y = 1/x. If $$(\alpha, \beta) = t_1 P_1 + t_2 P_2 + t_3 P_3 + t_4 P_4$$ is a convex combination of the four points, then (α, β) is located in the blue region in Figure 4.32. Why? Conclude $1 \le \alpha \beta \le \alpha \gamma$. **Exercise 4.5.5** With $m = \lambda_1$ and $L = \lambda_4$ and γ as in Figure 4.32, show $$\gamma = \frac{m + L - \alpha}{mL}$$ and $1 \le \alpha \beta \le \alpha \gamma \le \frac{(m + L)^2}{4mL}$. (maximize $f(\alpha) = \alpha \gamma$ over $m < \alpha < L$). Exercise 4.5.6 Use the previous two exercises to obtain $$1 \le \left(t_1\lambda_1 + t_2\lambda_2 + t_3\lambda_3 + t_4\lambda_4\right) \times \left(\frac{t_1}{\lambda_1} + \frac{t_2}{\lambda_2} + \frac{t_3}{\lambda_3} + \frac{t_4}{\lambda_4}\right) \le \frac{(m+L)^2}{4mL}.$$ **Exercise 4.5.7** If Q is a symmetric nonzero $d \times d$ matrix with nonnegative eigenvalues, and L and m are the greatest and least *positive* eigenvalues of Q, show $$1 \le (u \cdot Qu)(u \cdot Q^{+}u) \le \frac{(m+L)^{2}}{4mL}$$ (4.5.22) for every unit vector u in the row space of Q. Use EVD and Exercise **4.5.6**. See Exercise **4.1.19** for the 2×2 case. **Exercise 4.5.8** Let A be any nonzero matrix and let σ_1 and σ_2 be the greatest and least *nonzero* singular values of A. If u is any vector and A^+ is the pseudo-inverse, show $$1 \le |Au| \times \left| (A^+)^t u \right| \le \frac{1}{2} \left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right)$$ for every unit vector u in the row space of A. Use Exercises 4.5.7 and 2.6.14. **Exercise 4.5.9** Let x_1, x_2, \ldots, x_d be positive scalars. Use convexity of $x = e^t$ to show $$\frac{1}{d} \sum_{i=1}^{d} x_i \ge (x_1 x_2 \dots x_d)^{1/d}.$$ **Exercise 4.5.10** Derive (4.5.16) by applying (4.1.20) to f(a+tv), v = b - a, $0 \le t \le 1$. Exercise 4.5.11 We know strong convexity implies Lipschitz bounds (4.5.20). Show the converse: If $$m|x-a| < |\nabla f(x) - \nabla f(a)| < L|x-a|$$ for all x, then $m \leq D^2 f(a) \leq L$. (Insert x = a + tv with v a unit eigenvector of $D^2 f(a)$, and let $t \to 0$.) Exercise 4.5.12 Let K be the convex hull of a dataset, and suppose the mean μ of the dataset lies on the boundary of K. Then the dataset lies in the supporting hyperplane at μ . **Exercise 4.5.13** Let K be the convex hull of a dataset, and suppose the dataset does not lie in a hyperplane. Then the mean μ of the dataset is in the interior of K. **Exercise 4.5.14** A sphere in \mathbf{R}^d with center μ and radius r is the set of points x satisfying $|x - \mu|^2 = r^2$. Show a hyperplane in \mathbf{R}^d cannot contain a sphere, hence a hyperplane has no interior. **Exercise 4.5.15** Let K be the convex hull of a dataset. Then the dataset lies in a hyperplane iff K has no interior. **Exercise 4.5.16** Let K be a convex set, let x_0 lie on the boundary of K, and let μ be in the interior of K. Then, apart from x_0 , the line segment joining μ and x_0 lies in the interior of K. **Exercise 4.5.17** The boundaries of the open ball $\{x: |x-a| < r\}$ and the closed ball $\{x: |x-a| \le r\}$ both are the sphere $\{x: |x-a| = r\}$. Exercise 4.5.18 The complement of an open set is closed. **Exercise 4.5.19** A hyperplane in \mathbb{R}^d is a closed set (look at its complement). **Exercise 4.5.20** Let B be a ball in \mathbb{R}^d . Then the span of B is \mathbb{R}^d . # Chapter 5 Probability Many concepts of probability are already present in a coin-tossing context. Because of this, we first start with a section on basic notions of probability, then we dive into coin-tossing, and discuss binomial probability. Here we show how, even in this simplest setting, entropy is an inescapable feature, a basic measure of randomness. We also show how Bayes theorem allows us to flip things and gain inference. For this, we need the fundamental theorem of calculus $\S A.6$. After this, random variables and the normal and chi-squared distributions are covered. The presentation is layered so that a reader with only minimal prior exposure will come away with an appreciation of probabilistic reasoning. ### 5.1 Probability Let us start with an experiment. An *experiment* is a procedure that yields an *outcome*, one of a set of possible outcomes. Each time we run the experiment, the result, possibly an aggregate of several interrelated samples, is considered a single outcome. Tossing a coin once yields one of two outcomes, heads or tails, H or T, which we also write as 1 or 0. Rolling a six-sided die yields outcomes 1, 2, 3, 4, 5, 6. Rolling two six-sided dice yields 36 outcomes $(1,1), (1,2), \ldots$ Tossing a coin three times yields outcomes TTT, TTH, THT, THH, HTT, HTH, HHT, HHH, which we also write as 111, 110, 101, 100, 011, 010, 000. The outcome space of an experiment is the set S of
all possible outcomes. If #(S) is the number of outcomes, then for the four experiments above, #(S) equals 2, 6, 36, and 8. The outcome space S is also called the *sample space*, and the *population*. An *event* is a specific subset A of S. For example, when rolling two dice, let A_1 can be the subset of outcomes where the sum of the dice equals 7. Then the event A_1 consists of the outcomes (1,6), (2,5), (3,4), (4,3), (5,2), (6,1). Here #(S) = 36 and $\#(A_1) = 6$. Let A_2 be the event of obtaining three heads when tossing a coin seven times. Here $\#(S) = 2^7 = 128$ and $\#(A_2) = 35$, which is the number of ways you can choose three things out of seven things (§A.1): $$\#(A_2) = 7$$ -choose- $3 = \binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3} = 35.$ Suppose A is an event in an experiment, and suppose the outcome of the experiment is in A. Then we say A has occured. For example, if rolling two dice results in (2,5), the event A_1 has occured. If tossing a coin seven times results in four heads and three tails, the event A_2 has not occured. If an event always occurs, then it is a *certain event*. For example, when tossing a coin seven times, obtaining fewer than ten heads is a certain event. Every outcome is in a certain event. There is only one certain event, the whole outcome space. Even so, we often say "a certain event" because certainty can be presented in many ways. If an event never occurs, it is an *impossible* event. For example, when tossing a coin seven times, obtaining eight heads is an impossible event. There are no outcomes in an impossible event. There is only one impossible event, the event with no outcomes. Even so, we often say "an impossible event" because impossibility can be presented in many ways. The intersection of events A and B is the event $(A \text{ and } B) = A \cap B$ of outcomes common to both events. If A_3 is the event of obtaining at least one 5 when rolling two dice, then the outcomes in $(A_1 \text{ and } A_3)$ are (2,5), (5,2). Here $\#(A_3) = 11$ and $\#(A_1 \text{ and } A_3) = 2$. Events A and B are *exclusive* if there is no outcome common to both events. Two events are exclusive if their intersection is impossible. The *union* of events A and B is the event $(A \text{ or } B) = A \cup B$ of outcomes that are in A or in B. If A_3 is the event of obtaining at least one 5 when rolling two dice, then check that $\#(A_1 \text{ or } A_3) = 15$. Events A and B are *exhaustive* if every outcome is either in A or in B. Two events are exhaustive if their union is certain. If A is an event, the *complementary event* is the event A^c of outcomes not in A. Thus A occurs exactly when A^c does not occur: the events A and A^c are exclusive and exhaustive. The difference of A minus B are the outcomes in A but not in B: The outcomes of $A_1 - A_3$ are (1,6), (3,4), (4,3), (6,1). Similarly, the outcomes of $A_3 - A_1$ are (5,1), (5,3), (5,4), (5,5), (5,6), (1,5), (3,5), (4,5), (5,5), (6,5). An event A is part of event B if every outcome in A is also in B. If A is part of B, then $A \cap B$ is A, $A \cup B$ is B, and A - B is impossible. 5.1. PROBABILITY 259 Moreover, for any A, B, A - B is part of A and B - A is part of B, $A \cap B$ is part of both, and all are part of $A \cup B$. These concepts carry over to several events. Events A, B, C are exclusive if $A \cap B, A \cap C$, and $B \cap C$ are impossible. Events A, B, C are exhaustive if $A \cup B \cup C$ is certain. A probability on an outcome space S is an assignment of a number Prob(A) to every event A in S, satisfying three axioms. ### **Axioms for Probability** A probability on S satisfies - 1. $0 \leq Prob(A) \leq 1$ for every event A in S, - 2. Prob(S) = 1, - 3. (Additivity) If A, B, \ldots are exclusive events in S, $$Prob(A \cup B \cup ...) = Prob(A) + Prob(B) +$$ (5.1.1) Suppose the number of outcomes #(S) is finite. Then the simplest probability is the discrete uniform distribution, assigning to each event A the proportion of outcomes in A, $$Prob(A) = \frac{\#(A)}{\#(S)}.$$ (5.1.2) When this is so and #(S) = N, each outcome has probability 1/N, and we say the outcomes are equally likely. Here are examples of discrete uniform distributions. - 1. A coin is *fair* if, after one toss, the two outcomes are equally likely. Then Prob(heads) = Prob(tails) = 1/2. - 2. A 6-sided die is *fair* if, after one roll, the outcomes are equally likely. Let A be the event that the outcome is less than 3. Since the outcome is then 1 or 2, Prob(A) = 2/6 = 1/3. - 3. With A_1 as above, assuming the dice are fair, leads to $Prob(A_1) = 6/36 = 1/6$. - 4. With A_2 as above, assuming the coin is fair, leads to $Prob(A_2) = 35/128$. - 5. With A_3 as above, assuming the dice are fair, leads to $Prob(A_3) = 11/36$. Here are some consequences of the probability axioms. Since A and A^c are exclusive and exhaustive, the first consequence is ## Complementary Probabilities For any event A, $$Prob(A^c) = 1 - Prob(A).$$ An event A is sure if Prob(A) = 1. An event A is null if Prob(A) = 0. Then A is sure iff A^c is null. A certain event is sure, and an impossible event is null. However, as we see below, sure and certain are not the same, nor are null and impossible. The second consequence of additivity is ## Monotonicity of Probabilities Let A be an event, and let B be part of A. Then $$Prob(B) \le Prob(A).$$ (5.1.3) This follows from Exercise 5.1.7. A useful variation of additivity (5.1.1) is ### Additivity of Probabilities If A_1, A_2, \ldots are exclusive and exhaustive events, and B is any event, then $$Prob(B) = Prob(B \text{ and } A_1) + Prob(B \text{ and } A_2) + \dots$$ (5.1.4) In particular, if A and B are any events, $$Prob(B) = Prob(B \text{ and } A) + Prob(B \text{ and } A^c).$$ (5.1.5) Also, when the events are not exclusive, we have ### **Sub-Additivity of Probabilities** If the event A is part of the union of events A_1, A_2, \ldots , then $$Prob(A) \le Prob(A_1) + Prob(A_2) + \dots$$ (5.1.6) This follows from additivity (Exercise **5.1.10**). Suppose we sample numbers X at random from the interval [0,1] in a uniform manner. This means the outcome space is S = [0,1], and the probability of sampling from a sub-interval [a,b] equals its length, $$Prob(a < X < b) = b - a, \qquad 0 \le a < b \le 1.$$ Since a single number a is a sub-interval [a,a] with zero length, the event A of sampling X exactly equal to 0.5 is a null event. Since A is possible, A is not impossible. Moreover A^c is a sure event, but A^c is not certain. Fig. 5.1 Uniform probability density function. Here is a more sophisticated example of a null event that is not impossible. Because this example relates to the LLN (see below and Exercise **5.1.11**), we go over it carefully. Toss a fair coin n times. Then the outcome space S_n consists of all n-tuples $x = (t_1, t_2, \ldots, t_n)$ of 0's and 1's. Here the number of outcomes is 2^n , and the probability of each outcome is 2^{-n} . Now toss a coin infinitely many times. Then the outcome space S_{∞} consists of all infinite tuples $x=(t_1,t_2,\dots)$ of 0's and 1's. Here the number of samples in each outcome is infinite, and it turns out the probability of each outcome is zero. Why is the probability of each outcome x in S_{∞} zero? To understand why, we first have to discuss how to measure probabilities of events in S_{∞} . If an event A in S_{∞} depends only on the first n samples, this is easy. We consider A as part of S_n , and Prob(A) is taken from the discrete uniform distribution (5.1.2) on S_n . For example, if A consists of all outcomes in S_{∞} with 3 heads in the first 7 samples, then Prob(A) = 35/128. Events that depends only on finitely many samples are called *finite-sample* events. Of course, the interesting events in S_{∞} are those that are *not* finite-sample events, see the LLN below. Even so, it turns out there is one and only one way to specify probabilities Prob on all events in S_{∞} , finite-sample or otherwise, once Prob is specified on finite-sample events as above. Now let $x=(t_1,t_2,...)$ be a specific outcome, and let A_n be the event of all outcomes in S_{∞} whose first n samples are exactly $(t_1,t_2,...,t_n)$. Since A_n depends only on the first n samples, $Prob(A_n)=2^{-n}$. Since x is in A_n for every $n \geq 1$, by monotonicity (5.1.3), $Prob(x) \leq 2^{-n}$ for every $n \geq 1$. In this inequality, let n increase without bound. Since the right side approaches zero, we obtain Prob(x)=0. This shows each outcome has probability zero. Now, for k < n, let $A_{n,k}$ be the event of outcomes in S_{∞} with k heads in the first n samples. Since there are $\binom{n}{k}$ ways of obtaining k heads (§A.1), $$Prob\left(A_{n,k}\right) = 2^{-n} \binom{n}{k}.$$ Let $A_{\infty,k}$ be the event of infinite tuple outcomes with exactly k heads. Then each outcome x in $A_{\infty,k}$ is in $A_{n,k}$ for some n. In fact, an outcome x in $A_{\infty,k}$ is necessarily in $A_{n,k}$ for all sufficiently large n. This means the following: if x is in $A_{\infty,k}$, then for some $N \geq 1$, x is in $A_{n,k}$ for every n greater or equal than N. Therefore, for each outcome x in $A_{\infty,k}$, there is some N, depending on x, with x in $$\bigcap_{n\geq N} A_{n,k} = A_{N,k} \cap A_{N+1,k} \cap A_{N+2,k} \cap \dots$$ This shows the event $A_{\infty,k}$ is part of the union of the events $\bigcap_{n\geq N} A_{n,k}$ over $N=1,2,\ldots$ Since $\bigcap_{n>N} A_{n,k}$ is part of $A_{m,k}$ for every $m \geq N$, by monotonicity (5.1.3), $$Prob\left(\bigcap_{n>N}A_{n,k}\right)\leq 2^{-m}\binom{m}{k}, \quad \text{for every } m\geq N.$$ With k fixed, let m increase without bound in this inequality. Since the right side approaches zero (Exercise **A.7.1**), $\bigcap_{n>N} A_{n,k}$ is a null event. Since $A_{\infty,k}$ is part of the union of $\bigcap_{n\geq N} \overline{A}_{n,k}$ over
$N\geq 1$, by subadditivity (5.1.6), $A_{\infty,k}$ is also a null event. However, since there definitely are outcomes in S_{∞} with k heads, $A_{\infty,k}$ is not impossible. Finally, let A_{∞} be the event of all outcomes with a finite, but unspecified, number of heads. Then A_{∞} equals $$A_{\infty,0} \cup A_{\infty,1} \cup A_{\infty,2} \cup \dots$$ By subadditivity again, A_{∞} is a null event. The moral here is if you try to specify a pattern of infinitely many tosses of a coin, you end up with a null event. This is why coin-tossing is called random. The conditional probability of A given B is $$Prob(A \mid B) = \frac{Prob(A \text{ and } B)}{Prob(B)}.$$ (5.1.7) The definition (5.1.7) is equivalent to the *chain rule* 5.1. PROBABILITY $$Prob(A \text{ and } B) = Prob(A \mid B) Prob(B).$$ (5.1.8) 263 Events A and B are independent if $$Prob(A \text{ and } B) = Prob(A) \times Prob(B).$$ (5.1.9) When A and B are independent, $$Prob(A \mid B) = \frac{Prob(A \text{ and } B)}{Prob(B)} = \frac{Prob(A) \times Prob(B)}{Prob(B)} = Prob(A).$$ When A and B are independent, the conditional probability equals the unconditional probability. Are A_1 and A_3 above independent? Since $Prob(A_1) = 6/36 = 1/6$ and $$Prob(A_1 \mid A_3) = \frac{Prob(A_1 \text{ and } A_3)}{Prob(A_3)} = \frac{2/36}{11/36} = \frac{2}{11},$$ A_1 and A_3 are not independent. Additivity of probabilities and the chain rule can be combined into ### Law of Total Probability If A_1, A_2, \ldots are exclusive and exhaustive events, and B is any event, then $$Prob(B) = Prob(B \mid A_1) Prob(A_1) + Prob(B \mid A_2) Prob(A_2) + \dots$$ (5.1.10) In particular, if A and B are any events, $$Prob(B) = Prob(B \mid A) \ Prob(A) + Prob(B \mid A^c) \ Prob(A^c). \ (5.1.11)$$ Suppose in a certain community 15% of families have no children, 20% have one child, 35% have two children, and 30% have three children. Suppose also each child is equally likely to be a boy or a girl. Let B and G be the number of boys and girls in a randomly selected family. Then $$Prob(B = 0 \text{ and } G = 0) = Prob(\text{no children}) = 0.15,$$ and $$Prob(B = 0 \text{ and } G = 1) = Prob(G = 1 \mid 1 \text{ child}) Prob(1 \text{ child}) = \frac{1}{2} 0.20 = 0.1,$$ and $$Prob(B=1 \text{ and } G=2) = Prob(G=2 \mid 3 \text{ children}) Prob(3 \text{ children}) = \frac{3}{8}0.30 = .1125.$$ Continuing in this manner, the complete table is | Prob((B,G)=(i,j)) | G = 0 | G = 1 | G=2 | G = 3 | |-------------------|-------|-------|-------|-------| | B = 0 | 0.15 | 0.10 | .0875 | .0375 | | B=1 | 0.10 | .175 | .1125 | 0 | | B=2 | .0875 | .1125 | 0 | 0 | | B=3 | .0375 | 0 | 0 | 0 | **Table 5.2** Joint distribution of boys and girls [30]. Now suppose we conduct an experiment by tossing a coin (always assumed fair unless otherwise mentioned) 10 times. Because the coin is fair, we expect to obtain heads around 5 times. Will we obtain heads exactly 5 times? Let's run the experiment with Python. In fact, we will run the experiment 20 times. If we count the number of heads after each run of the experiment, we obtain a digit between 0 and 10 inclusive. To simulate this, we use **binomial(n,p,N)**. When N=1, this returns the number of heads obtained after a single experiment, consisting of tossing a coin n times, where the probability of obtaining heads in each toss is p. More generally, binomial(n,p,N) runs this experiment N times, returning a vector v with N components. For example, the code ``` from numpy import * from numpy.random import default_rng samples = default_rng().binomial p, n, N = .5, 10, 20 v = samples(n,p,N) print(v) ``` returns ``` [9 6 7 4 4 4 3 3 7 5 6 4 6 9 4 5 4 7 6 7] ``` The outcome space S corresponding to (p, n, N) consists of all vectors $v = (v_1, v_2, \ldots, v_N)$ with N components, with each component equal to to $0, 1, \ldots, n$. So here $\#(S) = (n+1)^N$. 5.1. PROBABILITY 265 Now we conduct three experiments: tossing a coin 5 times, then 50 times, then 500 times. The code ``` p = .5 for n in [5,50,500]: print(binomial(n,p,1)) ``` This returns the count of heads after 5 tosses, 50 tosses, and 500 tosses, ``` 3, 28, 266 ``` The proportions are the count divided by the total number of tosses in the experiment. For the above three experiments, the proportions after 5 tosses, 50 tosses, and 500 tosses, are ``` 3/5=.600, 28/50=.560, 266/500=.532 ``` Fig. 5.3 100,000 sessions, with 5, 15, 50, and 500 tosses per session. Now we repeat each experiment 100,000 times and we plot the results in a histogram. ``` from matplotlib.pyplot import * from numpy.random import default_rng samples = default_rng().binomial N, p = 100000, .5 ``` ``` for n in [5,50,500]: data = samples(n,p,N) hist(data,bins=n,edgecolor ='Black') grid() show() ``` This results in Figure 5.3. The takeaway from these graphs are the two fundamental results of probability: ### Law of Large Numbers (LLN) The proportion in a repeated experiment is the *sample proportion*. The sample proportion tends to be near the underlying probability p. The underlying probability is the *population proportion*. The larger the sample size in the experiment, the closer the proportion is to p. Another way of saying this is: For large sample size, the sample mean is approximately equal to the population mean. ## Central Limit Theorem (CLT) For large sample size, the shape of the graph of the proportions or counts is approximately normal. The normal distribution is studied in §5.4. Another way of saying this is: For large sample size, the shape of the sample mean histogram is approximately normal. The law of large numbers is *qualitative* and the central limit theorem is *quantitative*. While the law of large numbers says one thing is close to another, it does not say how close. The central limit theorem provides a numerical measure of closeness, using the normal distribution. One may think that the LLN and the CLT above depend on some aspect of the binomial distribution. After all, the binomial is a specific formula and something about this formula may lead to the LLN and the CLT. To show that this is not at all the case, to show that the LLN and the CLT are universal, we bring in the petal lengths of the Iris dataset. This time the experiment is not something we invent, it is a result of something arising in nature, Iris petal lengths. We begin by loading the Iris dataset, 5.1. PROBABILITY 267 ``` from sklearn import datasets iris = datasets.load_iris() dataset = iris["data"] iris["feature_names"] ``` This code shows the petal lengths are the third feature in the dataset, and we compute the mean of the petal lengths using ``` petal_lengths = dataset[:,2] mean(petal_lengths) ``` This returns the petal length population mean $\mu = 3.758$. If we plot the petal lengths in a histogram with 50 bins using the code ``` from matplotlib.pyplot import * grid() hist(petal_lengths,bins=50) show() ``` we obtain Figure 5.4. Fig. 5.4 The histogram of Iris petal lengths. Now we sample the Iris dataset randomly. More generally, we take a random batch of samples of size n and take the mean of the samples in the batch. For example, the following code grabs a batch of n=5 petals lengths X_1 , X_2, X_3, X_4, X_5 at random and takes their mean, $$\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}.$$ The code is ``` from numpy import * from numpy.random import default_rng rng = default_rng() # n = batch_size def random_batch_mean(n): rng.shuffle(petal_lengths) return mean(petal_lengths[:n]) random_batch_mean(5) ``` This code shuffles the dataset, then selects the first n petal lengths, then returns their mean. Fig. 5.5 Iris petal lengths sampled 100,000 times. To sample a single petal length randomly 100,000 times, we run the code ``` N = 100000 n = 1 ``` 5.1. PROBABILITY 269 ``` Xbar = [random_batch_mean(n) for _ in range(N)] hist(Xbar,bins=50) grid() show() ``` Since we are sampling single petal lengths, here we take n=1. This code returns the histogram in Figure 5.5. In Figure 5.4, the bin heights add up to 150. In Figure 5.5, the bin heights add up to 100,000. Moreover, while the shapes of the histograms are almost identical, a careful examination shows the histograms are not identical. Nevertheless, there is no essential difference between the two figures. Fig. 5.6 Iris petal lengths batch means sampled 100,000 times, batch sizes 3, 5, 20. Now repeat the same experiment, but with batches of various sizes, and plot the resulting histograms. If we do this with batches of size n = 3, n = 5, n = 20 using ``` from matplotlib.pyplot import * figure(figsize=(8,4)) # three subplots rows, cols = 1, 3 N = 100000 for i,n in enumerate([3,5,20],start=1): Xbar = [random_batch_mean(n) for _ in range(N)] subplot(rows,cols,i) grid() hist(Xbar,bins=50) ``` ``` show() ``` we obtain Figure 5.6. This shows the CLT is universal, since here it arises from sampling the petal lengths of Irises, whose dataset has the histogram in Figure 5.4. Of course, we also have the LLN, which says the peak of each of the bell-shaped curves is near $\mu = 3.758$. ### Exercises Exercise 5.1.1 [30] A communications channel transmits bits 0 and 1. Because of noise, the probability of transmitting a bit incorrectly is 0.2. To reduce error probabilities, each bit is repeated five times: 1 is sent as 11111 and 0 is sent as 00000. If the recipient uses majority decoding, what is the probability of mis-reading a message consisting of one bit? Majority decoding means five consecutive bits will be read as 1 if at least three of the bits are 1, and similarly for 0. Exercise 5.1.2 Check the values in Table 5.2. Exercise 5.1.3 A fair coin is tossed infinitely many times. Show that the event of outcomes with both infinitely many heads and infinitely many tails is sure. Exercise 5.1.4 [30] Approximately 80,000 marriages took place in New York last year. Assuming any day is equally likely, what is the probability that for at least one of these couples, both partners were born on
January 1? Both partners celebrate their birthdays on the same day of the year? Exercise 5.1.5 This problem has nothing to do with calculus or probability or data science, and just uses addition of numbers, so can be presented to grade school students. Let dataset be any five numbers, for example [-11.2,sqrt(2),1.4,11, 23.4], and run the code ``` from matplotlib.pyplot import * from numpy import * def sums(dataset,k): if k == 1: return dataset else: s = sums(dataset,k-1) return array([a+b for a in dataset for b in s]) for k in range(5): s = sums(dataset,k) ``` 5.1. PROBABILITY 271 ``` grid() hist(s,bins=50,edgecolor="k") show() ``` for $k = 1, 2, 3, 4, \ldots$ What does this code do? What does it return? What pattern do you see? What if dataset were changed? What if the samples in the dataset were vectors? **Exercise 5.1.6** [30] At least one-half of an airplane's engines are required to function in order for it to operate. If each engine functions independently with probability p, for what value of 0 is a 4-engine plane as likely to operate as a 2-engine plane? (Write the binomial probability as a function of <math>p and use numpy.roots.) **Exercise 5.1.7** Let A and B be any events, not necessarily exclusive. Show $$Prob(A \text{ or } B) = Prob(B) + Prob(A - B).$$ **Exercise 5.1.8** Let A and B be any events, not necessarily exclusive. Extend (5.1.1) to show $$Prob(A \text{ or } B) = Prob(A) + Prob(B) - Prob(A \text{ and } B).$$ (5.1.12) (Break $A \cup B$ into three exclusive events A - B, $A \cap B$, and B - A.) **Exercise 5.1.9** [30] There is a 60% chance an event A will occur. If A does not occur, there is a 10% chance B occurs. What is the chance A or B occurs? **Exercise 5.1.10** Let A, B, C be any events, not necessarily exclusive. Use Exercise **5.1.8** to show $$Prob(A \text{ or } B \text{ or } C) \leq Prob(A) + Prob(B) + Prob(C).$$ (Start with two events, then go from two to three events.) With $a = Prob(A^c)$, $b = Prob(B^c)$, $c = Prob(C^c)$, this exercise is the same as Exercise **A.3.4**. **Exercise 5.1.11** Toss a coin infinitely many times, and let A_1 be the outcomes $x = (x_1, x_2, ...)$ where the limit of the sample means $$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n}$$ equals 1. Show the event A_1 is not certain nor impossible. Here each x_k is 1 or 0. More generally, let t = a/b be any fraction, and let A_t be the event of outcomes where the limit of the sample means equals t. Show A_t is not certain nor impossible. **Exercise 5.1.12** If A is any event in S_{∞} , let \bar{A} be the event A with heads and tails interchanged. This means x_k is replaced by $1 - x_k$ in the definition of A. Then $Prob(A) = Prob(\bar{A})$. We call A symmetric if $\bar{A} = A$. Show for A symmetric, $$Prob(A \text{ and } x_1 = 1) = \frac{1}{2} Prob(A) = Prob(A \text{ and } x_1 = 0).$$ Conclude a symmetric event A is independent of the event $x_1 = 1$. (Use additivity.) **Exercise 5.1.13** Let A_t be the event in Exercise **5.1.11**. Show $\overline{A_t} = A_{1-t}$. Conclude $A_{0.5}$ is symmetric. # 5.2 Binomial Probability Suppose a coin is tossed repeatedly, landing heads or tails each time. After tossing the coin 100 times, we obtain 53 heads. What can we say about this coin? Can we claim the coin is fair? Can we claim the probability of obtaining heads is .53? Whatever claims we make about the coin, they should be *reliable*, in that they should more or less hold up to *repeated* verification. To obtain reliable claims, we therefore repeat the above experiment 20 times, obtaining for example the following count of heads $$[57, 49, 55, 44, 55, 50, 49, 50, 53, 49, 53, 50, 51, 53, 53, 54, 48, 51, 50, 53].$$ On the other hand, suppose someone else repeats the same experiment 20 times with a different coin, and obtains $$[69, 70, 79, 74, 63, 70, 68, 71, 71, 73, 65, 63, 68, 71, 71, 64, 73, 70, 78, 67].$$ In this case, one suspects the two coins are statistically distinct, and have different probabilities of obtaining heads. In this section, we study how the probabilities of coin-tossing behave, with the goal of answering the question: Is a given coin fair? Assume we are tossing a coin. If we let p = Prob(H) and q = Prob(T) be the probabilities of obtaining heads and tails in a single toss, then $$p + q = 1$$. The proportion p is the coin's bias. In particular, we see q = 1 - p, and the bias p may be any proportion between 0 and 1, depending on the particular coin being tossed. When p = 1/2, Prob(H) = Prob(T), we say the coin is fair. If we toss the coin twice, we obtain one of four possibilities, HH, HT, TH, or TT. If we make the natural assumption that the coin has no memory, that the result of the first toss has no bearing on the result of the second toss, then the probabilities are $$Prob(HH) = p^2, Prob(HT) = pq, Prob(TH) = qp, Prob(TT) = q^2.$$ (5.2.1) These are valid probabilities since their sum equals 1, $$p^{2} + pq + qp + q^{2} = (p+q)^{2} = 1^{2} = 1.$$ We use (5.1.7) to compute the probability that we obtain heads on the second toss given that we obtain tails on the first toss. Introduce the convenient notation $$X_n = \begin{cases} 1, & \text{if the } n\text{-th toss is heads,} \\ 0, & \text{if the } n\text{-th toss is tails.} \end{cases}$$ Then X_n is a random variable (§5.3) and represents a numerical reward function of the outcome (heads or tails) at the n-th toss. With this notation, (5.2.1) may be rewritten $$Prob(X_1 = 1 \text{ and } X_2 = 1) = p^2,$$ $Prob(X_1 = 1 \text{ and } X_2 = 0) = pq,$ $Prob(X_1 = 0 \text{ and } X_2 = 1) = qp,$ $Prob(X_1 = 0 \text{ and } X_2 = 0) = q^2.$ In particular, by (5.1.5), this implies (remember q = 1 - p) $$Prob(X_1 = 1) = Prob(X_1 = 1 \text{ and } X_2 = 0) + Prob(X_1 = 1 \text{ and } X_2 = 1)$$ = $pq + p^2 = p(p+q) = p$. Similarly, $Prob(X_2 = 1) = p$. Computing, $$Prob(X_2 = 1 \mid X_1 = 0) = \frac{Prob(X_1 = 0 \text{ and } X_2 = 1)}{Prob(X_1 = 0)} = \frac{qp}{q} = p = Prob(X_2 = 1),$$ SO $$Prob(X_2 = 1 \mid X_1 = 0) = Prob(X_2 = 1).$$ Thus $X_1 = 0$ has no effect on the probability that $X_2 = 1$, and similarly for the other possibilities. This is often referred to as the *independence* of the coin tosses. We conclude ## Multiplication of Probabilities: Independent Coin-Tossing With the conditional probability definition (5.1.7), a coin has no memory between successive tosses iff the probabilities at distinct tosses multiply, $$Prob(X_1 = a_1, X_2 = a_2, ...) = Prob(X_1 = a_1) Prob(X_2 = a_2) ...$$ (5.2.2) Here a_1, a_2, \ldots are 0 or 1. Since we are tossing the same coin repeatedly, we can set $$Prob(X_n = 1) = p,$$ $Prob(X_n = 0) = q = 1 - p,$ $n \ge 1$ Thus all probabilities in (5.2.2) are determined by the parameter p, which may be any number between 0 and 1. It is natural to ask for the probability of obtaining k heads in n tosses, $Prob(S_n = k)$. Here k varies between 0 and n, corresponding to all tails or all heads respectively. There are n+1 possibilities $S_n=0$, $S_n=1$, $S_n=2$, ..., $S_n=n$ for the number of heads in n tosses. If we have no data to think otherwise, then all possibilities are equally likely, so one expects $$Prob(S_n = k) = \frac{1}{n+1}, \qquad 0 \le k \le n.$$ Notice the total probability is 1, $$\sum_{k=0}^{n} Prob(S_n = k) = \sum_{k=0}^{n} \frac{1}{n+1} = 1,$$ as it should be. Assume we know the coin's bias p. Since the number of ways of choosing k heads from n tosses is the binomial coefficient $\binom{n}{k}$ (see §A.2), and the probabilities of distinct tosses multiply, the probability of k heads in n tosses is as follows. ### Coin-Tossing With Known Bias If a coin has bias p, the probability of obtaining k heads in n tosses is the binomial distribution $$Prob(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$ (5.2.3) Why is this? Because the probabilities multiply, so the probability of a specific pattern of k heads in n tosses is $p^k(1-p)^{n-k}$. By (5.1.4), probabilities of exclusive events add, and there are $\binom{n}{k}$ exclusive events here, because $\binom{n}{k}$ is the number of ways of choosing k heads from n tosses. By the binomial theorem, $$\sum_{k=0}^{n} Prob(S_n = k) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = (p+1-p)^n = 1,$$ again as it should be. The binomial distribution with n=1 corresponds to a single coin toss, and is called the *Bernoulli distribution*. The corresponding random variable X, $$Prob(X = 1) = p,$$ $Prob(X = 0) = 1 - p,$ is a *Bernoulli* random variable. The code for N samples of head-counts in n tosses is ``` from numpy import * from numpy.random import default_rng samples = default_rng().binomial n, p, N = 5, .5, 10 # counting heads from n tosses sampled N times samplesl(n,p,N) ``` This returns array([2, 2, 2, 0, 4, 3, 4, 2, 4, 2]). The code for the *probability* of k heads in n tosses of a coin with bias p is ``` from scipy.stats import binom k,n,p = 5, 10, .5 B = binom(n,p) # probability of k heads B.pmf(k) ``` This returns 0.24609375000000003. More generally, ``` from scipy.stats import binom from scipy.special import comb # code to verify binomial pmf def f(n,k,p): return binom(n,p).pmf(k) def g(n,k,p): return comb(n,k,exact=True) * p**k * (1-p)**(n-k) k,n,p = 5, 10, .5 pmf1 = array([f(n,k,p) for k in range(n+1)]) pmf2 = array([g(n,k,p) for k in range(n+1)]) allclose(pmf1,pmf2) ``` returns True. Be careful to distinguish between ``` numpy.random.default_rng.binomial and scipy.stats.binom. ``` The former returns *samples* from a binomial distribution, while the latter returns a binomial *random variable*. Samples are just numbers; random variables have cdf's, pmf's or pdf's, etc. We explain the connection between entropy (§4.2) and coin-tossing. Recall the binomial coefficient $\binom{n}{k}$ is the number of ways of selecting k objects from n objects (A.1.1). Toss the coin n times, and let $\#_n = \#_n(p)$ be the number of outcomes where the proportion k/n of heads is p. Here p may or may not equal the coin's bias, which
we assume not known. Then the number of heads is k = np, so, $$\#_n(p) = \binom{n}{np}.$$ When p is an irrational, np is replaced by the floor $\lfloor np \rfloor$, but we ignore this point. Using (A.1.2), a straightforward calculation yields the following result.¹ ### **Entropy and Coin-Tossing** Let $0 \le p \le 1$ be a proportion. Toss a coin n times, and let $\#_n(p)$ be the number of outcomes where the heads-proportion is p. Then ¹ This result is a precise interpretation of the original definition of entropy, due to the physicist Boltzmann (1875), as the log of the number of outcomes, or configurations, or possibilities. $$\#_n(p)$$ is approximately equal to $e^{nH(p)}$ for n large. In more detail, using Stirling's approximation (A.1.7), one can derive the asymptotic equality $$\#_n(p) \approx \frac{1}{\sqrt{2\pi n}} \cdot \frac{1}{\sqrt{p(1-p)}} \cdot e^{nH(p)}, \quad \text{for } n \text{ large.}$$ (5.2.4) Asymptotic equality means the ratio of the two sides approaches 1 as $n \to \infty$ (see §A.7). Fig. 5.7 Asymptotics of binomial coefficients. Figure 5.7 is returned by the code below, which compares both sides of the asymptotic equality (5.2.4) for n = 10 and $0 \le p \le 1$. ``` from numpy import * from scipy.special import comb from scipy.stats import entropy from matplotlib.pyplot import * n = 10 p = arange(.01,1,.01) def H(p): return entropy([p,1-p]) def stirling(n,p): return exp(n*H(p))/sqrt(2*n*pi*p*(1-p)) plot(p, comb(n,n*p), label="binomial coefficient") ``` ``` plot(p, stirling(n,p), label="entropy approximation") title("number of tosses " + "$n=" + str(n) +"$", usetex=True) legend() grid() show() ``` Suppose a coin has bias q and toss the coin n times. Then we expect the long-term proportion of heads in n tosses to approximately equal q. Now let p be another probability, $0 \le p \le 1$. Toss a coin n times, and let $P_n(p,q)$ be the probability of obtaining outcomes with heads-proportion p, given that the coin's bias is q. If p = q, one's first guess is $P_n(p, p) \approx 1$ for n large. However, this is not correct, because $P_n(p, p)$ is specifying a specific proportion p, predicting specific behavior from the coin tosses. Because this is too specific, it turns out $P_n(p, p) \approx 0$, see Exercise 5.2.8. On the other hand, if $p \neq q$, we definitely expect the proportion of heads to not equal p. In other words, we expect $P_n(p,q)$ to be small for large n. In fact, when $p \neq q$, it turns out $P_n(p,q) \to 0$ exponentially, as $n \to \infty$. We derive a formula for the speed of this decay. With k = np in the binomial distribution (5.2.3), $$P_n(p,q) = \binom{n}{np} q^{np} (1-q)^{n-np}.$$ Let H(p,q) be the relative entropy (§4.2). Using (A.1.2), a straightforward calculation results in #### Relative Entropy and Coin-Tossing Assume a coin's bias is q. Toss the coin n times, and let $P_n(p,q)$ be the probability of obtaining outcomes where the heads-proportion is p. Then $$P_n(p,q)$$ is approximately equal to $e^{nH(p,q)}$ for n large. (5.2.5) In more detail, using Stirling's approximation (A.1.7), one can derive the asymptotic equality $$P_n(p,q) \approx \frac{1}{\sqrt{2\pi n}} \cdot \frac{1}{\sqrt{p(1-p)}} \cdot e^{nH(p,q)}, \quad \text{for } n \text{ large.}$$ (5.2.6) The law of large numbers (§5.1)) states that the heads-proportion in n tosses equals approximately q for large n. Therefore, when $p \neq q$, we expect the probabilities that the heads-proportions equal p become successively smaller as n get larger, and in fact vanish when $n = \infty$. Since H(p,q) < 0 when $p \neq q$, (5.2.6) implies this is so. Thus (5.2.6) may be viewed as a quantitative strengthening of the law of large numbers, in the setting of coin-tossing. Now we assume the coin parameter p is unknown, and we interpret (5.2.3) as the conditional probability that $S_n = k$ given knowledge of p, which we rewrite as $$Prob(S_n = k \mid p) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad 0 \le k \le n.$$ (5.2.7) By additivity of probabilities, $Prob(S_n = k)$ is the sum of the probabilities $Prob(S_n = k \text{ and } p)$ over $0 \le p \le 1$. By the conditional probability chain rule (5.1.8), $$Prob(S_n = k \text{ and } p) = Prob(S_n = k \mid p) Prob(p).$$ Thus $Prob(S_n = k)$ is the sum of $Prob(S_n = k \mid p) \, Prob(p)$ over $0 \le p \le 1$. Since p varies continuously over $0 \le p \le 1$, the sum is replaced by the integral, and $$Prob(S_n = k) = \int_0^1 Prob(S_n = k \mid p) \ Prob(p) \ dp.$$ Integrals are reviewed in §A.6. Since we don't know anything about p, it's simplest to assume a *uniform* prior probability Prob(p) = 1. Based on this, we obtain $$Prob(S_n = k) = \int_0^1 \binom{n}{k} p^k (1-p)^{n-k} dp.$$ (5.2.8) Usually, this integral is evaluated using integration by parts. However, it is easier to evaluate this for all $0 \le k \le n$ at once, by writing $$I(c) = \sum_{k=0}^{n} c^k \operatorname{Prob}(S_n = k).$$ Using (5.2.8) and the binomial theorem (A.2.7), I(c) equals $$\int_0^1 \left(\sum_{k=0}^n \binom{n}{k} c^k p^k (1-p)^{n-k} \right) dp = \int_0^1 (1-p+cp)^n dp.$$ If we set $$f(p) = (1 - p + cp)^n, F(p) = \frac{(1 - p + cp)^{n+1}}{(c-1)(n+1)},$$ then F'(p) = f(p) (see (4.1.5)). By the fundamental theorem of calculus (A.6.2), $$I(c) = F(1) - F(0) = \frac{1}{n+1} \cdot \frac{c^{n+1} - 1}{c-1}.$$ (5.2.9) But by (A.3.5) with n replaced by n+1, $$\frac{1}{n+1} \cdot \frac{c^{n+1}-1}{c-1} = \sum_{k=0}^{n} c^k \cdot \frac{1}{n+1}.$$ Matching coefficients of powers of c here and in I(c), we conclude ## Coin-Tossing With Unknown Bias If a coin has unknown bias p, distributed uniformly on $0 \le p \le 1$, then the probability of obtaining k heads in n tosses is $$Prob(S_n = k) = \frac{1}{n+1}, \qquad k = 0, 1, 2, \dots, n.$$ (5.2.10) Notice the difference: In (5.2.3), we know the coin's bias p, and obtain the binomial distribution, while in (5.2.10), since we don't know p, and there are n+1 possibilities $0 \le k \le n$, we obtain the uniform distribution 1/(n+1). We now turn things around: Suppose we toss the coin n times, and obtain k heads. How can we use this data to estimate the coin's bias p? To this end, we introduce the fundamental #### Bayes Theorem I $$Prob(A \mid B) = \frac{Prob(B \mid A) \cdot Prob(A)}{Prob(B)}.$$ (5.2.11) The proof of Bayes Theorem is straightforward: $$Prob(A \mid B) = \frac{Prob(A \text{ and } B)}{Prob(B)}$$ $$= \frac{Prob(A \text{ and } B)}{Prob(A)} \cdot \frac{Prob(A)}{Prob(B)}$$ $$= Prob(B \mid A) \cdot \frac{Prob(A)}{Prob(B)}.$$ The depth of the result lies in its widespread usefulness. We now write Bayes Theorem to compute $$Prob(p \mid S_n = k) = Prob(S_n = k \mid p) \cdot \frac{Prob(p)}{Prob(S_n = k)}.$$ (5.2.12) But $Prob(S_n = k \mid p)$ is as in (5.2.7), $Prob(S_n = k)$ is as in (5.2.10). Since p is uniformly distributed, Prob(p) = 1. Inserting these quantities into (5.2.12) leads to $$(n+1) \cdot \binom{n}{k} \cdot p^k (1-p)^{n-k} = \frac{(n+1)!}{k!(n-k)!} \cdot p^k (1-p)^{n-k}.$$ (5.2.13) Summarizing, ## Posterior Probability Given k Heads in n Tosses Assume the unknown bias p of a coin is uniformly distributed on $0 \le p \le 1$. Then the conditional probability $Prob(p \mid S_n = k)$ that the bias is p given k heads in n tosses equals (5.2.13). Fig. 5.8 The posterior density of p given 7 heads in 10 tosses. In (5.2.7), p is fixed, and k is the variable. In (5.2.13), k is fixed, and p is the variable. Nevertheless, we call (5.2.13) the *binomial density*. This posterior density for (n,k)=(10,7) is plotted in Figure 5.8, and it peaks at k/n=7/10 (Exercise 4.1.5). The code generating Figure 5.8 is ``` from matplotlib.pyplot import * from numpy import arange from scipy.stats import binom n = 10 k = 7 def f(p): return (n+1) * binom(n,p).pmf(k) p = arange(0,1,.01) plot(p,f(p),color="blue",linewidth=.5) grid() show() ``` Because Bayes Theorem is so useful, here are two alternate forms. Suppose A_1, A_2, \ldots, A_d are several exclusive and exhaustive events, so $$Prob(A_1) + Prob(A_2) + \cdots + Prob(A_d) = 1.$$ Then by the law of total probability (5.1.10) and the first version (5.2.11), we have the second version # Bayes Theorem II If A_1, A_2, \ldots are several exclusive and exhaustive events, then for $i = 1, 2, \ldots, Prob(A_i \mid B)$ equals $$\frac{Prob(B \mid A_i) Prob(A_i)}{Prob(B \mid A_1) Prob(A_1) + Prob(B \mid A_2) Prob(A_2) + \dots}.$$ (5.2.14) In particular, $Prob(A \mid B)$ equals $$\frac{\operatorname{Prob}(B\mid A)\operatorname{Prob}(A)}{\operatorname{Prob}(B\mid A)\operatorname{Prob}(A)+\operatorname{Prob}(B\mid A^c)\operatorname{Prob}(A^c)}.$$ As an example, suppose 20% of the population are smokers, and the prevalence of lung cancer among smokers is 90%. Suppose also 80% of non-smokers are cancer-free. Then what is the probability that someone who has cancer is actually a smoker? To use the second version, set A = smoker and B = cancer. This means A is the event that a randomly sampled person is a smoker, and B is the event that a randomly sampled person has cancer. Then $$Prob(A) = .2, \qquad Prob(B \mid A) = .9, \qquad Prob(B^c \mid A^c) = .8.$$ From this, we have $$Prob(B \mid A^c) = 1 - Prob(B^c \mid A^c) = 1 - .8 = .2,$$ and $$\begin{aligned} Prob(A \mid B) &= \frac{Prob(B \mid A) \, Prob(A)}{Prob(B \mid A) \, Prob(A) + Prob(B \mid A^c) \, Prob(A^c)} \\ &= \frac{.9 \times .2}{.9 \times .2 + .2 \times .8} = .52941. \end{aligned}$$ Thus the probability that a person with lung cancer is indeed a smoker is 53%. Fig. 5.9 The logistic function takes real numbers to probabilities. Fig. 5.10 The logistic function. To describe the third version of Bayes theorem, bring in the logistic function. Let $$p = \sigma(y) = \frac{1}{1 + e^{-y}}. (5.2.15)$$ This is the *logistic function* or *sigmoid function*. The logistic function takes as inputs real numbers y, and returns as outputs probabilities p (Figure 5.9), and is plotted in Figure 5.10. We think of the input y as an activation energy, the output p as the probability of
activation, and y=0 as the activation threshold. In Python, σ is the expit function. ``` from scipy.special import expit p = expit(y) ``` The multinomial or vector-valued version of $\sigma(y)$ is the softmax function §5.6. Dividing the numerator and denominator of (5.2.14) by the numerator, we obtain Bayes Theorem in terms of log-probability, # Bayes Theorem III $$Prob(A \mid B) = \sigma \left(\log \left(\frac{Prob(B \mid A) \, Prob(A)}{Prob(B \mid A^c) \, Prob(A^c)} \right) \right). \tag{5.2.16}$$ When there are several mutually exclusive events A_1, A_2, \ldots, A_d , the same result holds with σ the softmax function (§5.6). Here is an application of the third version. Suppose we have two groups of scalars, selected as follows. A fair coin is tossed. Depending on the result, select a scalar x at random with normal probability density ($\S5.4$) $$Prob(x \mid H) = \frac{1}{\sqrt{2\pi}} \cdot e^{-(x-m_H)^2/2},$$ $$Prob(x \mid T) = \frac{1}{\sqrt{2\pi}} \cdot e^{-(x-m_T)^2/2}.$$ (5.2.17) This says the two groups of scalars are centered around the means m_H and m_T respectively, according to whether the coin toss results in heads or tails. Given a scalar x, what is the probability x is in the heads group? In other words, what is $$Prob(H \mid x)$$? This question is begging for Bayes theorem. Assume the two groups are distinct, by assuming $m_H \neq m_T$, and let $$w = m_H - m_T, \qquad w_0 = -\frac{1}{2}m_H^2 + \frac{1}{2}m_T^2.$$ Then $w \neq 0$. Since Prob(H) = Prob(T), here we have $Prob(A) = Prob(A^c)$. Inserting the formulas for $Prob(x \mid H)$ and $Prob(x \mid T)$ leads to the log-probability $$\log\left(\frac{Prob(x\mid H)\,Prob(H)}{Prob(x\mid T)\,Prob(T)}\right) = wx + w_0. \tag{5.2.18}$$ By (5.2.14), $$Prob(H \mid x) = \sigma(wx + w_0).$$ This shows the group membership of x is determined by the activation threshold $wx + w_0 = 0$, or by the cut-off $x^* = -w_0/w$. Simplifying, the cut-off is $$x^* = -\frac{w_0}{w} = -\frac{1}{2} \frac{-m_H^2 + m_T^2}{m_H - m_T} = \frac{m_H + m_T}{2},$$ which is the midpoint of the line segment joining m_H and m_T . Fig. 5.11 Decision boundary in R. More generally, if the points x are in \mathbf{R}^d , then the same question may be asked, using the normal distribution with variance I in \mathbf{R}^d (§5.5). In this case, w is a nonzero vector, and w_0 is still a scalar, $$w = m_H - m_T,$$ $w_0 = -\frac{1}{2}|m_H|^2 + \frac{1}{2}|m_T|^2.$ Then the cut-off or *decision boundary* between the two groups is the hyperplane $$w \cdot x + w_0 = 0,$$ which is the hyperplane halfway between m_H and m_T , and orthogonal to the vector joining m_H and m_T . Written this way, the probability $$Prob(H \mid x) = \sigma(w \cdot x + w_0) \tag{5.2.19}$$ is a single-layer perceptron ($\S7.2$). For hyperplanes, see $\S4.5$. Fig. 5.12 Decision boundary in \mathbb{R}^3 . #### Exercises Exercise 5.2.1 A fair coin is tossed. What is the probability of obtaining 5 heads in 8 tosses? **Exercise 5.2.2** A coin with bias p is tossed. What is the probability of obtaining 5 heads in 8 tosses? **Exercise 5.2.3** A coin with bias p is tossed 8 times and 5 heads are obtained. What is the most likely value for p? Exercise 5.2.4 A coin with unknown bias p is tossed 8 times and 5 heads are obtained. Assuming a uniform prior for p, what is the probability that p lies between 0.5 and 0.7? Use scipy.integrate.quad (§A.6) to integrate (5.2.13) over $0.5 \le p \le 0.7$.) Exercise 5.2.5 A fair coin is tossed n times. Sometimes you get more heads than tails, sometimes the reverse. If you're really lucky, the number of heads may equal exactly the number of tails. What is the least n for which the probability of this happening is less than 10%? **Exercise 5.2.6** A fair coin is tossed n times. Sometimes you get more heads than tails, sometimes the reverse. If you're really lucky, the number of heads may equal exactly the number of tails. What is the least n for which the probability of this happening is less than 10%? **Exercise 5.2.7** A coin is tossed. Depending on the result, select a scalar x at random with normal probability densities as in (5.2.17). If the coin bias is p, compute the decision boundary. **Exercise 5.2.8** If a fair coin is tossed 2n times, show the probability of obtaining n heads and n tails is approximately $1/\sqrt{\pi n}$ for n large. (Use (5.2.6).) Exercise 5.2.9 Show $$\int_0^1 p^{\alpha - 1} (1 - p)^{\beta - 1} dp = \frac{(\alpha - 1)!(\beta - 1)!}{(\alpha + \beta - 1)!}.$$ (The integral of (5.2.13) over 0 is 1.) **Exercise 5.2.10** The posterior is an *updating* of the prior of p: Based on our observing k heads in n tosses, our estimate of p goes from a uniform prior to a binomial posterior (5.2.13) peaking at $\hat{p} = k/n$. Now assume a binomial prior for p as in (5.2.13), with (k,n) replaced by (α,β) . This prior peaks at $\hat{p} = \alpha/\beta$ (Exercise 4.1.5). Given k heads in n tosses, show the posterior $Prob(p \mid S_n = k)$ is binomial peaking at $\hat{p} = (k + \alpha)/(n + \beta)$. #### 5.3 Random Variables Suppose a real number x is selected at random. Even if we don't know anything about x, we know x is a number, so our *confidence* that $-\infty < x < \infty$ equals 100%, the *chance* that x satisfies $-\infty < x < \infty$ equals 1, and the *probability* that x satisfies $-\infty < x < \infty$ equals 1. When we say x is "selected at random", we think of a machine X that is the source of the numbers x (Figure 5.13). Such a source of numbers is called a $random\ number$, short for random number generator, just like a source for apples should be called a random apple, short for random apple generator. It is standard to call such a source X a random variable. #### Definition of Random Variable A $random\ variable\ X$ is a function of outcomes: Each outcome results in a sample x of X. In $\S 1.3$, this was called *vectorization*. In this section, random variables are scalar-valued. In $\S 5.5$ and $\S 6.4$, they are vector-valued. **Fig. 5.13** When we sample X, we get x. Let X and Y be random variables. Since X is a function of outcomes, the outcomes where X=5 is an event A (§5.1). For simplicity, we write X=5 for this event, rather than introduce the superfluous symbol A. Similarly, (X=5 and Y=7) is the event consisting of outcomes where X=5 and Y=5. With this understood, Prob(X=5) and Prob(X=5) and Y=7) are well-defined probabilities of events. Let X be a random variable and let x be a sample of X. What is the chance, what is our confidence, what is the probability, of selecting x from an interval [a, b]? If we write for this quantity, then we are asking to compute the probability of the event that X lies in the interval [a,b]. If we don't know anything about X, then we can't figure out the probability, and there is nothing we can say. Knowing something about X means knowing the *distribution* of X: Where X is more likely to be and where X is less likely to be. Any quantity X where probabilities of events Prob(a < X < b) can be computed is a random variable. For example, suppose we want to estimate the proportion of American college students who have a smart phone. Instead of asking every student, we take a sample and make an estimate based on the sample. Let p be the actual proportion of students that in fact have a smartphone. If there are N students in total, and m of them have a smartphone, then p = m/N. For each student, let $$X = \begin{cases} 1, & \text{if the student has a smartphone,} \\ 0, & \text{if not.} \end{cases}$$ Then X is a random variable: X is a machine that returns 0 or 1 depending on the chosen student. A random variable taking on only two values is a Bernoulli random variable. Since X takes on the two values 0 and 1, X is a Bernoulli random variable. Throughout we adopt the convention that random variables are written in uppercase, X, while the numbers resulting when sampled are written lowercase, x. In other words, when we sample X, we obtain x. We will meet many different random variables X, Y, Z, \ldots . The letter Z is reserved for a standard random variable, one having mean zero and variance one. Samples from Z are written as z. Every dataset x_1, x_2, \ldots, x_N may be viewed as the samples of a random variable X, as follows. Define $$E(X) = \frac{1}{N} \sum_{k=1}^{N} x_k.$$ (5.3.1) Then E(X) is the mean of the random variable X associated to the dataset. Similarly, $$E(X^2) = \frac{1}{N} \sum_{k=1}^{N} x_k^2$$ is the second moment of the random variable X associated to the dataset. More generally, given any function f(x), we have the mean of $f(x_1)$, $f(x_2)$, ..., $f(x_N)$, $$E(f(X)) = \frac{1}{N} \sum_{k=1}^{N} f(x_k).$$ (5.3.2) Given any interval (a, b), we may set $$f(x) = \begin{cases} 1, & a < x < b, \\ 0, & \text{otherwise,} \end{cases}$$ Then $f(x_k)$ is only counted when $a < x_k < b$, so $$E(f(X)) = \frac{1}{N} \sum_{k=1}^{N} f(x_k) = \frac{\#\{x_k : a < x_k < b\}}{N} = Prob(a < X < b)$$ is the probability that a randomly selected sample lies in (a, b). This shows probabilities are special cases of means. Since we can compute means by (5.3.2), we can compute probabilities for X. This is what is meant by "selecting a random sample from the dataset". Suppose X is a random variable taking on three values a, b, c with probabilities p, q, r, $$P(X = a) = p,$$ $P(X = b) = q,$ $P(X = c) = r.$ Then the mean or average or expected value of X is $$E(X) = ap + bq + cr.$$ Since p + q + r = 1, the expected value of X lies between the greatest of a, b, c, and the least, $$\min(a, b, c) \le E(X) \le \max(a, b, c).$$ Let $\mu = E(X)$ be the mean. The *variance* of X is a measure of how far X deviates from its mean, $$Var(X) = E((X - \mu)^2).$$ For the random variable X above, $$Var(X) = (a - \mu)^2 \cdot p + (b - \mu)^2 \cdot q + (c - \mu)^2 \cdot r.$$ By expanding the squares, one has the identity $$Var(X) = E(X^2) - \mu^2.$$ This is valid for any random variable
X. Random variables are either discrete or continuous. Even though the derivations and identities below are carried out in the context of discrete random variables, these results remain valid in the context of continuous random variables. In the text and exercises, we consider three discrete random variables, $$Bernoulli(p) \rightarrow binomial(n,p) \rightarrow Poisson(\lambda).$$ The Bernoulli random variable is the outcome of a single toss of a coin with bias p, and the binomial random variable is the outcome of n tosses of a coin with bias p. As we see below (5.3.23), the mean of a binomial random variable is np. If we let the number of tosses grow without bound, $n \to \infty$, while keeping the mean fixed at $\lambda = np$, we obtain the Poisson random variable. In the text and the exercises, we consider several continuous random variables, and A random variable X is *discrete* if X takes on discrete values x_1, x_2, \ldots , with probabilities p_1, p_2, \ldots . Here the values may be scalars or vectors, and there may be finitely many or infinitely many values. If all the values are equal to the same scalar μ , then we say X is a constant. For a discrete random variable, the $probability\ mass\ function$ (pmf in Python) is $$p(x) = Prob(X = x),$$ and the cumulative distribution function (cdf in Python) is $$F(x) = Prob(X \le x).$$ Then $p_k = p(x_k)$. By additivity of probabilities (5.1.1), F(x) is the sum of $p(x_k)$ over all $x_k \leq x$. ## Definition of Expectation: Discrete Case Let X take on values x_1, x_2, \ldots , with probabilities p_1, p_2, \ldots . The expectation of X is $$E(X) = x_1 p_1 + x_2 p_2 + \dots (5.3.3)$$ E(X) is also called the *mean* or *average* or *first moment* of X, and is usually denoted μ . When there are N values, and we take $p_1 = p_2 = \cdots = 1/N$, we say the values are *equally likely* or X is *uniform*. In this case, the mean reduces to (1.3.1). More generally, let f(x) be a function. The mean or expectation of f(X) is $$E(f(X)) = f(x_1)p_1 + f(x_2)p_2 + \dots$$ (5.3.4) Since the total probability is one, when f(x) = 1, $$E(1) = p_1 + p_2 + \dots = 1.$$ If a is a constant then the values of aX are ax_1, ax_2, \ldots , with probabilities p_1, p_2, \ldots , so $$E(aX) = ax_1p_1 + ax_2p_2 + \dots = a(x_1p_1 + x_2p_2 + \dots) = aE(X).$$ (5.3.5) When $f(x) = x^2$, the mean of f(X) is the second moment $$E(X^2) = x_1^2 p_1 + x_2^2 p_2 + \dots$$ When $f(x) = e^{tx}$, the mean of f(X) is the moment-generating function $$M(t) = E(e^{tX}) = e^{tx_1}p_1 + e^{tx_2}p_2 + \dots$$ The \log of the moment-generating function is the cumulant-generating function $$Z(t) = \log M(t) = \log E\left(e^{tX}\right).$$ A basic property of expectation is the # Linearity of the Expectation For any random variables X and Y and constants a and b, $$E(aX + bY) = aE(X) + bE(Y).$$ (5.3.6) Linearity is used routinely whenever we compute expectations, and is deceptively simple to state. Because the derivation of linearity uses additivity of probabilities (5.1.1), it is instructive to go over this carefully. Let X have values x_1, x_2, \ldots , and probabilities p_1, p_2, \ldots , and let Y have values y_1, y_2, \ldots , and probabilities q_1, q_2, \ldots If $$r_{jk} = Prob(X = x_j \text{ and } Y = y_k), \quad j, k = 1, 2, ...,$$ then, by additivity of probabilities (5.1.1), $$p_j = Prob(X = x_j)$$ = $Prob(X = x_j \text{ and } Y = y_1) + Prob(X = x_j \text{ and } Y = y_2) + \dots$ = $r_{j1} + r_{j2} + \dots = \sum_k r_{jk}$. Similarly, $$q_k = r_{1k} + r_{2k} + \dots = \sum_j r_{jk}.$$ Since the values of X + Y are $x_j + y_k$, with probabilities r_{jk} , j, k = 1, 2, ..., by definition of expectation, $$E(X+Y) = \sum_{j} \sum_{k} (x_j + y_k) r_{jk}.$$ But this double sum may be written in two parts as $$\sum_{j} \sum_{k} x_{j} r_{jk} + \sum_{j} \sum_{k} y_{k} r_{jk} = \sum_{j} x_{j} p_{j} + \sum_{k} y_{k} q_{k} = E(X) + E(Y).$$ We conclude $$E(X + Y) = E(X) + E(Y).$$ Since we already know E(aX) = aE(X) (5.3.5), this derives linearity. Let μ be the mean of a random variable X. The variance of X is $$Var(X) = E((X - \mu)^2).$$ (5.3.7) The variance measures the spread of X about its mean. Since the mean of aX is $a\mu$, the variance of aX is the mean of $(aX - a\mu)^2 = a^2(X - \mu)^2$. Thus $$Var(aX) = a^2 Var(X).$$ However, the variance of a sum X + Y is not simply the sum of the variances of X and Y: This only happens if X and Y are independent, see (5.3.21). Using (5.3.2), we can view a dataset as the samples of a random variable X. In this case, the mean and variance of X are the same as the mean and variance of the dataset, as defined by (1.4.1) and (1.4.2). When X is a constant, then $X = \mu$, so Var(X) = 0. Conversely, if Var(X) = 0, then by definition $$0 = (x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + \dots,$$ so all values are equal to μ , hence X is a constant. The square root of the variance is the standard deviation. If we write $Var(X) = \sigma^2$, then the standard deviation is σ . Expanding the square in (5.3.7), $$Var(X) = E(X^2) - 2\mu E(X) + \mu^2.$$ Since $\mu = E(X)$, we obtain the alternate formula for the variance $$Var(X) = E(X^{2}) - E(X)^{2}.$$ (5.3.8) This displays the variance in terms of the first moment E(X) and the second moment $E(X^2)$. Equivalently, $$E(X^{2}) = \mu^{2} + \sigma^{2} = (E(X))^{2} + Var(X).$$ (5.3.9) The simplest discrete random variable is the Bernoulli random variable X resulting from a coin toss, with X=1 corresponding to heads, and X=0 corresponding to tails, $$Prob(X = 1) = p,$$ $Prob(X = 0) = 1 - p.$ We say X is Bernoulli with bias p. The probability mass function is $$p(k) = \begin{cases} 1 - p, & \text{if } k = 0, \\ p, & \text{if } k = 1. \end{cases}$$ This is presented graphically in Figure 5.14. **Fig. 5.14** Probability mass function p(x) of a Bernoulli random variable. The mean of the Bernoulli random variable is $$E(X) = 1 \cdot Prob(X = 1) + 0 \cdot Prob(X = 0) = 1 \cdot p + 0 \cdot (1 - p) = p.$$ The second moment is $$E(X^2) = 1^2 \cdot Prob(X = 1) + 0^2 \cdot Prob(X = 0) = p.$$ From this, $$Var(X) = E(X^2) - E(X)^2 = p - p^2 = p(1 - p).$$ When p = 0 or p = 1, the variance is zero, there is no randomness. When p = 1/2, the randomness is maximized and the maximum variance equals 1/4. # Mean and Variance of Bernoulli If X is Bernoulli with bias p, then $$E(X) = p,$$ $var(X) = p(1-p).$ The moment-generating function is $$M(t) = E(e^{tX}) = e^{t1}p + e^{t0}(1-p) = pe^{t} + (1-p).$$ The cumulant-generating function is $$Z(t) = \log M(t) = \log(pe^t + 1 - p).$$ Fig. 5.15 Cumulative distribution function F(x) of a Bernoulli random variable. The cumulative distribution function F(x) is in Figure 5.15. Because the Bernoulli random variable takes on only the values x = 0, 1, these are the values where F(x) jumps. More generally, let A be any event, and define $$B = \begin{cases} 1, & \text{if the outcome is in } A, \\ 0, & \text{if the outcome is in } A^c. \end{cases}$$ (5.3.10) Then B has values 1 and 0 with probabilities $$p = Prob(B = 1) = Prob(A),$$ $1 - p = Prob(B = 0) = Prob(A^c),$ hence B is Bernoulli with bias p. We say B is the Bernoulli random variable corresponding to event A. By definition of B, $$E(B) = p, \qquad Var(B) = p(1-p).$$ The relation between A and B is discussed further in Exercise 5.3.2. Bernoulli random variables are used to count sample proportions. Let X be a random variable, and fix a threshold a for X. Let X_1, X_2, \ldots, X_n be a repeated sampling of X, and let B_1, B_2, \ldots, B_n be the Bernoulli random variables corresponding to the events $X_1 > a, X_2 > a, \ldots, X_n > a$. Then $$\hat{p} = \frac{B_1 + B_2 + \dots + B_n}{n} \tag{5.3.11}$$ is the proportion of samples greater than threshold a. This is a special case of vectorization ($\S1.3$). Let X be any random variable. Since the total probability is one, $$M(0) = E(e^{0X}) = E(1) = 1.$$ The derivative of the moment-generating function is $$M'(t) = E\left(Xe^{tX}\right).$$ When t = 0, $$M'(0) = E(X) = \mu.$$ Similarly, since the derivative of $\log x$ is 1/x, for the cumulant-generating function, $$Z'(0) = \frac{M'(0)}{M(0)} = E(X) = \mu.$$ The second derivative of M(t) is $$M''(t) = E\left(X^2 e^{tX}\right),\,$$ so M''(0) is the second moment $E(X^2)$. By the quotient rule, the second derivative of Z(t) is $$Z''(t) = \left(\frac{M'(t)}{M(t)}\right)' = \frac{M''(t)M(t) - M'(t)^2}{M(t)^2}.$$ Inserting t = 0, and recalling (5.3.8), we have # Cumulant-Generating Function and Variance Let Z(t) be the cumulant-generating function of a random variable X. Then $$Z'(0) = E(X)$$ and $Z''(0) = Var(X)$. (5.3.12) In §5.1, we discussed independence of events. Now we do the same for random variables. #### Definition of Uncorrelated Random variables X and Y are uncorrelated if $$E(XY) = E(X) E(Y).$$ (5.3.13) Otherwise, we say X and Y are *correlated*. By (5.3.8), a random variable X is always correlated to itself, unless it is a constant. Suppose X and Y take on the values $X=\pm 1$ and Y=0,1 with the probabilities $$(X,Y) = \begin{cases} (1,1) & \text{with probability } a, \\ (1,0) & \text{with probability } b, \\ (-1,1) & \text{with probability } b, \\ (-1,0) & \text{with probability } c. \end{cases}$$ (5.3.14) We investigate when X and Y are uncorrelated. Here a > 0, b > 0, and c > 0. First, because the total probability equals 1, $$a + 2b + c = 1. (5.3.15)$$ Also we have $$Prob(X = 1) = a + b = Prob(Y = 1), \qquad Prob(X = -1) = b + c = Prob(Y = 0),$$ and $$E(X) = a - c, \qquad E(Y) = a + b.$$ Now X and Y are uncorrelated if $$a - b = E(XY) = E(X)E(Y) = (a - c)(a + b).$$ (5.3.16) Solving (5.3.15), (5.3.16) using Python, ``` from sympy import * a,b,c = symbols('a,b,c') eq1 = a + 2*b + c - 1 eq2 = a - b - (a-c)*(a+b) solutions = solve([eq1,eq2],a,b) print(solutions) ``` we see X and Y are uncorrelated if $$b = \sqrt{c} - c,$$ $a = c - 2\sqrt{c} + 1.$ (5.3.17) For example, X and Y are uncorrelated when c
= 1/4, which leads to a = b = 1/4. Also, X and Y are uncorrelated if c = .01, which leads to a = .81 and b = .09. Let X and Y be random variables. We say X and Y are independent if all powers of X are uncorrelated with all powers of Y. # Definition of Independence Random variables X and Y are independent if $$E(X^{n}Y^{m}) = E(X^{n}) E(Y^{m})$$ (5.3.18) for all positive powers n and m. When X and Y are discrete, this is equivalent to the events X = x and Y = y being independent, for every value x of X and every value y of Y. Clearly, if X and Y are independent, then, by taking n = 1 and m = 1, X and Y are uncorrelated. Suppose X and Y satisfy (5.3.14) and (5.3.17). Since $X = \pm 1$, $X^n = 1$ for n even and $X^n = X$ for X odd. Since Y = 0, 1, $Y^n = Y$ for all n. This is enough to show that, in this case, X and Y uncorrelated is equivalent to X and Y independent. However, this is certainly not true in general. Here is an example of uncorrelated random variables that are not independent. Let X, Y be as above and set U = XY. We check when U and Y are uncorrelated versus when they are independent. As before, check that E(UY) = E(U)E(Y) is equivalent to $$a - b = (a - b)(a + b).$$ This happens in one of two cases. Either $a - b \neq 0$, or a - b = 0. If $a - b \neq 0$, then canceling a - b leads to a + b = 1. By (5.3.15), this leads to b + c = 0, which can't happen, since both b and c are positive or zero. Hence we must have the other case, a - b = 0. By (5.3.15), this leads to $$a = \frac{1}{3} - \frac{c}{3}, \qquad b = \frac{1}{3} - \frac{c}{3}.$$ (5.3.19) Thus U and Y are uncorrelated when (5.3.19) holds, for any choice of c. However, since $X^2 = 1$ and $Y^2 = Y$, $U^2 = Y$, so U^2 and Y are always correlated, unless Y is constant. Hence U and Y are never independent, unless Y is constant. Note Y is a constant when a = 1 or c = 1. Let X and Y be random variables. The *joint* moment-generating function of the pair (X,Y) is $$M_{X,Y}(s,t) = E\left(e^{sX+tY}\right).$$ Expanding the exponentials into their series, and using (5.3.18), one can show #### **Independence and Moment-Generating Functions** Let X and Y be random variables. Then X and Y are independent if their moment-generating functions multiply, $$M_{X,Y}(s,t) = M_X(s) M_Y(t).$$ As a special case, choosing s = t, we see ## Independent Sums and Moment-Generating Functions Let X and Y be independent random variables. Then the moment-generating function of X+Y is $$M_{X+Y}(t) = M_X(t)M_Y(t).$$ (5.3.20) As an illustration, consider an ordinary dice with $X=1, X=2, \ldots, X=6$ equally probable. Then $Prob(X=k)=1/6, k=1,2,\ldots,6$. Now suppose we have a random variable Y with values $Y=0, Y=1,\ldots,Y=6$, and assume X and Y are independent. If we are told the sum X+Y is uniform over $1 \le X+Y \le 12$, how should we choose the probabilities for $Y=0, Y=1, \ldots, Y=6$? To answer this, we use (5.3.20). By Exercise 5.3.1, $$M_X(t) = \frac{1}{6} \frac{e^{7t} - e^t}{e^t - 1}.$$ By Exercise 5.3.1 again, $$M_{X+Y}(t) = \frac{1}{12} \frac{e^{13t} - e^t}{e^t - 1},$$ It follows, by (5.3.20), $$\frac{1}{12} \frac{e^{13t} - e^t}{e^t - 1} = \frac{1}{6} \frac{e^{7t} - e^t}{e^t - 1} \cdot M_Y(t).$$ Factoring $$e^{13t} - e^t = e^t(e^{6t} - 1)(e^{6t} + 1), e^{7t} - e^t = e^t(e^{6t} - 1),$$ we obtain $$M_Y(t) = \frac{1}{2}(e^{6t} + 1).$$ This says $$Prob(Y=0)=\frac{1}{2}, \qquad Prob(Y=6)=\frac{1}{2},$$ and all other probabilities are zero. Taking the log in (5.3.20), independence is related to cumulant-generating functions as follows. ## Independent Sums and Cumulant-Generating Functions Let X and Y be independent random variables. Then the cumulantgenerating function of X+Y is $$Z_{X+Y}(t) = Z_X(t) + Z_Y(t).$$ Taking the second derivative, plugging in t = 0, and using (5.3.12), we obtain $$Var(X + Y) = Var(X) + Var(Y).$$ This holds when X and Y are independent. In general, the result is # **Independent Sums and Variances** Let X_1, X_2, \ldots, X_n be independent random variables, and let $$S = X_1 + X_2 + \dots + X_n.$$ Then $$Var(S) = Var(X_1) + Var(X_2) + \dots + Var(X_n).$$ (5.3.21) While this result depends strongly on independence, the corresponding result for means $$E(S) = E(X_1) + E(X_2) + \dots + E(X_n)$$ is valid for any sum, by linearity of the expectation (5.3.6). The next simplest discrete random variable is the binomial random variable, $$S = X_1 + X_2 + \dots + X_n$$ obtained from n independent Bernoulli random variables. Then S has values $0, 1, 2, \ldots, n$, and the probability mass function $$p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \text{if } k = 0, 1, 2, \dots, n.$$ (5.3.22) Since the cdf F(x) is the sum of the pmf p(k) for $k \leq x$, the code from scipy.stats import binom n, p = 8, .5 ``` B = binom(n,p) for k in range(n+1): print(k, B.pmf(k), B.cdf(k)) ``` returns ``` 0 0.003906250000000007 0.00390625 1 0.03124999999999983 0.03515625 2 0.10937500000000004 0.14453125 3 0.218749999999999 0.36328125 4 0.2734374999999999 0.63671875 5 0.218749999999999 0.85546875 6 0.1093750000000004 0.96484375 7 0.0312499999999983 0.99609375 8 0.00390625 1.0 ``` Since $$E(S) = E(X_1) + E(X_2) + \dots + E(X_n) = p + p + \dots + p = np,$$ the mean of S is np. Since X_1, X_2, \ldots, X_n are independent, by (5.3.21), Var(S) = np(1-p). Summarizing, #### Mean and Variance of Binomial If S is binomial with bias p and tosses n, then $$E(S) = np,$$ $Var(S) = np(1-p).$ (5.3.23) If \hat{p}_n is the proportion of heads, then $\hat{p}_n = S/n$, so $$E(\hat{p}_n) = p, \qquad Var(\hat{p}_n) = \frac{p(1-p)}{n}.$$ (5.3.24) By the binomial theorem, the moment-generating function is $$E(e^{tS}) = \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^{k} (1-p)^{n-k} = (pe^{t} + 1 - p)^{n}.$$ Then the cumulant-generating function is $$Z(t) = n \log \left(p e^t + 1 - p \right).$$ A random variable X is Poisson with parameter λ if X is discrete and takes on the nonnegative integer values $k = 0, 1, 2, \ldots$ with probability mass function $$Prob(X = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}, \qquad k = 0, 1, 2, \dots$$ (5.3.25) Here $\lambda > 0$. From the exponential series (A.3.13), $$\sum_{k=0}^{\infty} Prob(X=k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = 1,$$ so the total probability is one. The Python code for a Poisson random variable is from scipy.stats import poisson lamda = 1 P = poisson(lamda) for k in range(10): print(k, P.pmf(k), P.cdf(k)) ## Mean and Variance of Poisson If X is Poisson with parameter λ , then $$E(X) = \lambda, \qquad Var(X) = \lambda.$$ (5.3.26) This is derived in Exercise 5.3.13. The Poisson random variable with parameter λ is the limit of the binomial random variable as $n \to \infty$ while keeping the mean $\lambda = np$ fixed (Exercise 5.3.16). A continuous random variable X takes on continuous values x with probability density function p(x) (pdf in Python). Here means are computed by integrals using the fundamental theorem of calculus (A.6.2). # **Definition of Expectation: Continuous Case** Let X have probability density function p(x). The expectation of X is $$E(X) = \int x p(x) dx. \tag{5.3.27}$$ E(X) is also called the *mean* or *average* or *first moment* of X, and is usually denoted μ . Here the integration is over the entire range of the random variable: If X takes values in the interval [a, b], the integral is from a to b. For a normal random variable, the range is $(-\infty, \infty)$. For a chi-squared random variable, the range is $(0, \infty)$. Below, when we do not specify the limits of integration, the integral is taken over the whole range of X. More generally, let f(x) be a function. The mean of f(X) or expectation of f(X) is $$E(f(X)) = \int f(x)p(x) \, dx.$$ (5.3.28) Since the total probability is one, $$E(1) = \int p(x) \, dx = 1.$$ This only holds when the integral is over the complete range of X. When this is not so, $$Prob(a < X < b) = \int_a^b p(x) \, dx$$ is the green area in Figure 5.16. Thus chance = confidence = probability = area. **Fig. 5.16** Confidence that X lies in interval [a, b]. When $f(x) = x^2$, the mean of f(X) is the second moment $$E(X^2) = \int x^2 p(x) \, dx.$$ When $f(x) = e^{tx}$, the mean of f(X) is the moment-generating function $$M(t) = E\left(e^{tX}\right) = \int e^{tx} p(x) dx.$$ As before, the \log of the moment-generating function is the cumulant-generating function $$Z(t) = \log M(t) = \log E\left(e^{tX}\right).$$ The simplest continuous distribution is the *uniform* distribution. A random variable X is distributed uniformly over the interval [0,1] if (Figure 5.1) $$Prob(a < X < b) = b - a = \int_{a}^{b} 1 \, dx, \qquad 0 \le a < b \le 1.$$ Here the probability density function is $$p(x) = \begin{cases} 1, & a < x < b, \\ 0, & \text{otherwise,} \end{cases}$$ for any interval (a, b) inside (0, 1). The mean of a uniform random variable is $$E(X) = \int_0^1 x \, dx.$$ Since $$F(x) = \frac{1}{2}x^2 \implies F'(x) = x,$$ by the fundamental theorem of calculus (A.6.2), $$E(X) = \int_0^1 x \, dx = F(1) - F(0) = \frac{1}{2}.$$ Since $F(x) = x^3/3$ implies $F'(x) = x^2$, the second moment is $$E(X^2) = \int_0^1 x^2 dx = F(1) - F(0) = \frac{1}{3}.$$ Hence the variance is $$Var(X) = E(X^2) - E(X)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$ The moment-generating function is $$M(t) = E(e^{tX}) = \int_0^1 e^{tx} dx = \frac{e^t - 1}{t}.$$ The cumulative distribution function is $$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ x, & \text{if } 0 \le x \le 1, \\ 1, & \text{if } x > 1. \end{cases}$$ (5.3.29) More generally, fix an interval [a, b]. A random variable X is uniform on [a, b] if the probability density function of X is $$p(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & \text{otherwise,} \end{cases}.$$ For such an X, the mean is $$\mu = E(X) = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{1}{b-a} \cdot \frac{b^2 - a^2}{2} = \frac{1}{2}(a+b), \tag{5.3.30}$$ and the variance is $$Var(X) = \frac{1}{b-a} \int_{a}^{b} (x-\mu)^{2} dx =
\frac{1}{12} (b-a)^{2}.$$ (5.3.31) In particular, if [a, b] = [-1, 1], then the mean is zero, the variance is 1/3, and $$E(f(X)) = \frac{1}{2} \int_{-1}^{1} f(x) \, dx.$$ We summarize the differences between discrete and continuous random variables. In both cases, the *cumulative distribution function* is $$F(x) = Prob(X < x).$$ When X is discrete, $$F(x) = \sum_{x_k \le x} p_k.$$ When X is continuous, $$F(x) = \int_{-\infty}^{x} p(z) \, dz.$$ Then each green area in Figure 5.16 is the difference between two areas, $$F(b) - F(a)$$. Fig. 5.17 Continuous cumulative distribution function. When X is discrete, the probability mass function is $$p(x) = Prob(X = x).$$ When X is continuous, the probability density function p(x) satisfies $$Prob(a < X < b) = \int_{a}^{b} p(x) dx.$$ | | discrete | continuous | |--------------|---|--------------------------------------| | density | pmf | pdf | | distribution | cdf | cdf | | sum | <pre>cdf(x) = sum([pmf(k)for k in range(x+1)])</pre> | <pre>cdf(x) = integrate(pdf,x)</pre> | | difference | pmf(k) = cdf(k) - cdf(k-1) | pdf(x) = derivative(cdf,x) | Table 5.18 Densities versus distributions. For a continuous random variable the probability density function is the derivative of the cumulative distribution function, $$p(x) = F'(x). (5.3.32)$$ Table 5.18 summarizes the situation. For the distribution on the left in Figure 5.16, the cumulative distribution function is in Figure 5.17. A logistic random variable is a random variable X with cumulative distribution function $\sigma(x)$ (5.2.15). For a logistic random variable, the probability density function is $$p(x) = \sigma'(x) = \sigma(x)(1 - \sigma(x)),$$ (5.3.33) the mean is zero, and the variance is $\pi^2/3$ (see the exercises). Let X and Y be independent uniform random variables on [0,1], and let $Z = \max(X,Y)$. We compute the pdf p(x), the cdf F(x), and the mean of Z. By definition of $\max(X,Y)$, $$F(x) = Prob(Z \le x) = Prob(\max(X, Y) \le x)) = Prob(X \le x \text{ and } Y \le x).$$ By independence, for $0 \le x \le 1$, this equals $$Prob(X \le x) Prob(Y \le x) = x^2.$$ Hence $$F(x) = Prob(\max(X, Y) \le x) = \begin{cases} 0, & \text{if } x < 0, \\ x^2, & \text{if } 0 \le x \le 1, \\ 1, & \text{if } x > 1. \end{cases}$$ From this, $$p(x) = F'(x) = \begin{cases} 0, & \text{if } x < 0, \\ 2x, & \text{if } 0 \le x \le 1, \\ 0, & \text{if } x > 1. \end{cases}$$ From this, by the FTC (\S A.6), $$E(\max(X,Y)) = \int xp(x) \, dx = \int_0^1 x(2x) \, dx = \frac{2}{3}x^3 \Big|_{x=0}^{x=1} = \frac{2}{3}.$$ Let X have mean μ and variance σ^2 , and write $$Z = \frac{X - \mu}{\sigma}.$$ Then $$E(Z) = \frac{1}{\sigma}E(X - \mu) = \frac{E(X) - \mu}{\sigma} = \frac{\mu - \mu}{\sigma} = 0,$$ and $$E(Z^2) = \frac{1}{\sigma^2} E((X - \mu)^2) = \frac{\sigma^2}{\sigma^2} = 1.$$ We conclude Z has mean zero and variance one. A random variable is standard if its mean is zero and its variance is one. The variable Z is the standardization of X. For example, the standardization of a Bernoulli random variable is $$Z = \frac{X - p}{\sqrt{p(1 - p)}},$$ and the standardization of a uniform random variable on [0,1] is $$Z = \sqrt{12}(X - 1/2).$$ # Definition of Identically Distributed Random variables X and Y are identically distributed if $$E(X^n) = E(Y^n), \qquad n \ge 1.$$ This is equivalent to X and Y having equal probabilities, $$Prob(a < X < b) = Prob(a < Y < b),$$ for every interval [a, b], and equivalent to having the same moment-generating functions, $$M_X(t) = M_Y(t)$$ for every t. For example, if X and Y satisfy (5.3.14), then X and 2Y - 1 are identically distributed. However, X and 2Y - 1 are independent iff X and Y are independent, which, as we saw above, happens only when (5.3.17) holds. On the other hand, Let X be any random variable, and let Y = X. Then X and Y are identically distributed, but are certainly correlated. So identical distributions does not imply independence, nor vice-versa. Let X be a random variable. A *simple random sample* of size n is a sequence of random variables X_1, X_2, \ldots, X_n that are independent and identically distributed. We also say the sequence X_1, X_2, \ldots, X_n is an *i.i.d. sequence* (independent identically distributed). For example, going back to the smartphone example, suppose we select n students at random, where we are allowed to select the same student twice. We obtain numbers x_1, x_2, \ldots, x_n . So the result of a single selection experiment is a sequence of numbers x_1, x_2, \ldots, x_n . To make statistical statements about the results, we repeat this experiment many times, and we obtain a sequence of numbers x_1, x_2, \ldots, x_n each time. This process can be thought of n machines producing x_1, x_2, \ldots, x_n each time, or n random variables X_1, X_2, \ldots, X_n (Figure 5.19). By making each of the n selections independently, we end up with an i.i.d. sequence, or a simple random sample. **Fig. 5.19** When we sample X_1, X_2, \ldots, X_n , we get x_1, x_2, \ldots, x_n . Let X_1, X_2, \ldots, X_n be independent and identically distributed, and let μ be their common mean E(X). The *sample mean* is $$\bar{X}_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{k=1}^n X_k.$$ Then $$E(\bar{X}_n) = \frac{1}{n}(E(X_1) + E(X_2) + \dots + E(X_n)) = \frac{1}{n} \cdot n\mu = \mu.$$ We conclude the mean of the sample mean equals the population mean. Now let σ^2 be the common variance of X_1, X_2, \ldots, X_n . By (5.3.21), the variance of S_n is $n\sigma^2$, hence the variance of \bar{X}_n is σ^2/n . Summarizing, ## Mean and Variance of Sample Mean If X_1, X_2, \ldots, X_n are independent and identically distributed, each with mean μ and variance σ^2 , then $$E(\bar{X}_n) = \mu, \qquad Var(\bar{X}_n) = \frac{\sigma^2}{n}, \tag{5.3.34}$$ and $$\sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right) \tag{5.3.35}$$ is standard. For example, when X_1, X_2, \ldots, X_n are independent and identically distributed according to a random variable X, the proportion \hat{p} of samples (5.3.11) greater than a threshold a has mean p = Prob(X > a), and variance p(1-p)/n. It follows that $$Z = \sqrt{n} \cdot \frac{\hat{p} - p}{\sqrt{p(1 - p)}}$$ is standard. #### **Exercises** **Exercise 5.3.1** Let a and b be integers and let X have values a, a+1, a+2, ..., b-1. Assume the values are equally likely. Use (A.3.5) to show $$M_X(t) = \frac{1}{b-a} \cdot \frac{e^{tb} - e^{ta}}{e^t - 1}.$$ **Exercise 5.3.2** Let A and B be events and let X and Y be the Bernoulli random variables corresponding to A and B (5.3.10). Show that A and B are independent (5.1.9) if and only if X and Y are independent (5.3.18). **Exercise 5.3.3** [30] Let X be a binomial random variable with mean 7 and variance 3.5. What are Prob(X = 4) and Prob(X > 14)? Exercise 5.3.4 The proportion of adults who own a mobile phone in a certain Canadian city is believed to be 90%. Thirty adults are selected at random from the city. Let X be the number of people in the sample who own a mobile phone. What is the distribution of the random variable X? **Exercise 5.3.5** If two random samples of sizes n_1 and n_2 are selected independently from two populations with means μ_1 and μ_2 , show the mean of the sample mean difference $\bar{X}_1 - \bar{X}_2$ equals $\mu_1 - \mu_2$. If σ_1 and σ_2 are standard deviations of the two populations, then the standard deviation of $\bar{X}_1 - \bar{X}_2$ equals $$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$ **Exercise 5.3.6** Check (5.3.30) and (5.3.31). Exercise 5.3.7 [30] You arrive at the bus stop at 10:00am, knowing the bus will arrive at some time uniformly distributed during the next 30 minutes. What is the probability you have to wait longer than 10 minutes? Given that the bus hasn't arrived by 10:15am, what is the probability that you'll have to wait at least an additional 10 minutes? **Exercise 5.3.8** If X and Y satisfy (5.3.14), show X and 2Y-1 are identically distributed for any a, b, c. **Exercise 5.3.9** Let B and G be the number of boys and the number of girls in a randomly selected family with probabilities as in Table 5.2. Are B and G independent? Are they identically distributed? Exercise 5.3.10 If X and Y satisfy (5.3.14), use Python to verify (5.3.17) and (5.3.19). **Exercise 5.3.11** If X and Y satisfy (5.3.14), compute Var(X) and Var(Y) in terms of a, b, c. What condition on a, b, c maximizes Var(X)? What condition on a, b, c maximizes Var(Y)? **Exercise 5.3.12** Let X be Poisson with parameter λ . Show the cumulant-generating function is $$Z(t) = \lambda(e^t - 1).$$ (Use the exponential series (A.3.13).) **Exercise 5.3.13** Let X be Poisson with parameter λ . Show both E(X) and Var(X) equal λ (Use (5.3.12).) **Exercise 5.3.14** Let X and Y be independent Poisson with parameter λ and μ respectively. Show X+Y is Poisson with parameter $\lambda + \mu$. **Exercise 5.3.15** If X_1, X_2, \ldots, X_n are i.i.d. Poisson with parameter λ , show $$S = X_1 + X_2 + \dots + X_n$$ is Poisson with parameter $n\lambda$. **Exercise 5.3.16** With $p = \lambda/n$, use the compound-interest formula (A.3.9) to show the binomial pmf (5.3.22) converges to the Poisson pmf (5.3.25) as $n \to \infty$. **Exercise 5.3.17** The relu(x) function is a common activation function in neural networks (§7.2), $$relu(x) = \begin{cases} x & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$ If S is Poisson with parameter n, then $$E\left(\operatorname{relu}(S-n)\right) = e^{-n} \cdot \frac{n^{n+1}}{n!}.$$ (Use Exercise A.1.2.) **Exercise 5.3.18** Suppose X is a logistic random variable (5.3.33). Show the probability density function of X is $\sigma(x)(1-\sigma(x))$. **Exercise 5.3.19** Suppose X is a logistic random variable (5.3.33). Show the mean of X is zero. **Exercise 5.3.20**
Suppose X is a logistic random variable (5.3.33). Use (A.3.18) with $a = -e^{-x}$ to show the variance of X is $$4\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 4\left(1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \dots\right).$$ (This requires knowledge of integration substitution.) Using other tools, it can be shown separately this sum equals $\pi^2/3$ [16]. **Exercise 5.3.21** Let X_1, X_2, \ldots, X_n be i.i.d. each uniformly distributed on [0,1]. Let $$X_{\max} = \max(X_1, X_2, \dots, X_n).$$ Compute $F(x) = Prob(X_{\text{max}} \leq x)$. From that, compute the pdf p(x) of X_{max} , then the mean $E(X_{\text{max}})$. (To evaluate the integral in $E(X_{\text{max}})$, use the FTC.) **Exercise 5.3.22** Let X_1, X_2, \ldots, X_n be i.i.d. each uniformly distributed on [0,1]. Let $$X_{\min} = \min(X_1, X_2, \dots, X_n).$$ Compute $1 - F(x) = Prob(X_{\min} > x)$. From that, compute the pdf p(x) of X_{\min} , then the mean $E(X_{\min})$. (To evaluate the integral in $E(X_{\min})$, use (5.2.13) with k = 1.) **Exercise 5.3.23** A random variable X is *exponential* with parameter a > 0 if $Prob(X > x) = e^{-x/a}$. Then $Prob(X \le 0) = 0$, so the values of X are positive. Show that the mean and standard deviation of X are both a. **Exercise 5.3.24** A random variable is *arcsine* if its pdf is given by Figure 3.11. Compute the mean and variance of an arcsine random variable. (Substitute $x = (2/\pi) \arcsin(\sqrt{\lambda}/2)$ in the integrals and use the double-angle formula.) **Exercise 5.3.25** For k and n fixed, compute the mean of the conditional probability of a coin's bias p given k heads in n tosses. The answer is not k/n. (Use (5.2.13) with n, k replaced by n+1, k+1.) **Exercise 5.3.26** Let X and Y be discrete random variables, with values x_1 , x_2 , ... for X. The *conditional expectation* of X given Y = y is $$E(X \mid Y = y) = \sum_{k} x_k \operatorname{Prob}(X = x_k \mid Y = y).$$ Then the following holds for every value y of Y. - $E(aX + bZ \mid Y = y) = aE(X \mid Y = y) + bE(Z \mid Y = y).$ - If X and Y are independent, then $E(X \mid Y = y) = E(X)$. - E(f(X,Y) | Y = y) = E(f(X,y) | Y = y). These properties, also valid for continuous random variables, are used in §7.8. **Exercise 5.3.27** If $f(y) = E(X \mid Y = y)$, we define \hat{X} to be f(Y), and we also write $\hat{X} = E(X \mid Y)$. Continuing the previous exercise, show $E(\hat{X}f(Y)) = E(Xf(Y))$ for every f(y). In particular, $E(\hat{X}) = E(X)$. **Exercise 5.3.28** By definition, \hat{X} is a function of Y. Continuing the previous exercises, show \hat{X} minimizes $E\left((X-f(Y))^2\right)$ over all functions f(Y). Use the same argument that the mean minimizes the MSD (§1.4). ## 5.4 Normal Distribution A random variable Z has a standard normal distribution or Z distribution or gaussian distribution if its probability density function is given by the famous formula $$p(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{-z^2/2}.$$ (5.4.1) This means the normal distribution is continuous and the probability that Z lies in a *small* interval [a,b] is $$\frac{Prob(a < Z < b)}{b - a} \approx p(z), \qquad a < z < b,$$ When the interval [a, b] is not small, this is not correct. The exact formula for Prob(a < Z < b) is the area under the graph (Figure 5.20). This is obtained by integration (§A.6), $$Prob(a < Z < b) = \int_{a}^{b} p(x) dx.$$ (5.4.2) Under this interpretation, this probability corresponds to the area under the graph (Figure 5.20) between the vertical lines at a and at b, and the total area under the graph corresponds to $a = -\infty$ and $b = \infty$. Fig. 5.20 The pdf of the standard normal distribution. The normal probability density function is plotted by ``` from scipy.stats import norm as Z from numpy import * from matplotlib.pyplot import * # Z defaults to standard normal # for non-standard, use Z(mu,sdev) grid() ``` ``` z = arange(mu-3*sdev,mu+3*sdev,.01) p = Z.pdf(z) plot(z,p) show() ``` The curious constant $\sqrt{2\pi}$ in (5.4.1) is inserted to make the total area under the graph equal to one. That this is so arises from the fact that 2π is the circumference of the unit circle. Using Python, we see $\sqrt{2\pi}$ is the correct constant, since the code ``` from numpy import * from scipy.integrate import quad def p(z): return exp(-z**2/2) a,b = -inf, inf I = quad(p,a,b)[0] # integral from a to b allclose(I, sqrt(2*pi)) ``` returns True. The mean of Z is $$E(Z) = \int zp(z) \, dz.$$ More generally, means of f(Z) are $$E(f(Z)) = \int f(z)p(z) dz,$$ with the integral computed using the fundamental theorem of calculus (A.6.2) or Python. Let p(z) be the probability density function of Z. If we shift the graph of p(z) by horizontally by t, we obtain p(z-t). Since shifting a graph doesn't change the total area under the graph, $$\int p(z-t) \, dz = 1. \tag{5.4.3}$$ By definition, the moment-generating function of Z is $$M(t) = E\left(e^{tZ}\right) = \int e^{tz} p(z) dz.$$ Using (5.4.3), one can show (Exercise 5.4.11) $$M(t) = e^{t^2/2} = \exp(t^2/2).$$ (5.4.4) From this, the cumulant-generating function is $t^2/2$. Using (5.3.12), it follows Z is indeed a standard random variable, $$E(Z) = 0, \qquad Var(Z) = 1$$ Expand both sides of the definition of $M_Z(t)$ in exponential series. This results in $$1 + tE(Z) + \frac{t^2}{2!}E(Z^2) + \frac{t^3}{3!}E(Z^3) + \frac{t^4}{4!}E(Z^4) + \dots$$ $$= 1 + \frac{t^2}{2} + \frac{1}{2!}\left(\frac{t^2}{2}\right)^2 + \frac{1}{3!}\left(\frac{t^2}{2}\right)^3 + \dots$$ From this, the odd moments of Z are zero, and the even moments are $$E(Z^{2n}) = \frac{(2n)!}{2^n n!}, \qquad n = 0, 1, 2, \dots$$ By separating the even and the odd factors, this simplifies to $$E(Z^{2n}) = \frac{(1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1))(2 \cdot 4 \cdot \dots \cdot 2n)}{2^n n!}$$ $$= \frac{(1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1))2^n n!}{2^n n!}$$ $$= 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1), \qquad n \ge 1.$$ (5.4.5) For example, $$E(Z) = 0, E(Z^2) = 1, E(Z^3) = 0, E(Z^4) = 3, E(Z^5) = 0, E(Z^6) = 15.$$ More generally, we say X has a normal distribution with parameters μ and σ^2 , if its moment-generating function is $$M_X(t) = E(e^{tX}) = \exp(\mu t + \sigma^2 t^2 / 2).$$ (5.4.6) Then its cumulant-generating function is $$Z_X(t) = \mu t + \frac{1}{2}\sigma^2 t^2,$$ hence its mean and variance are $$Z_X'(0) = \mu, \qquad Z_X''(0) = \sigma^2.$$ From this, if X is normal with parameters μ and σ^2 , then its standardization $Z = (X - \mu)/\sigma$ is standard normal. We restate the two fundamental results of probability in the language of this section and in terms of limits. We usually deal with limits in an intuitive manner. For additional information on limits, see §A.7. Given a sample from a random variable X, the population mean is $\mu = E(X)$, and the population variance is $\sigma^2 = Var(X)$. The LLN says for large sample size, the sample mean \bar{X} approximately equals μ . # Law of Large Numbers (LLN) Let X_1, X_2, \ldots, X_n be independent identically distributed random variables, each with mean μ and variance σ^2 , and let $$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$ be the sample mean. Then the event of outcomes where $$\lim_{n \to \infty} \bar{X}_n = \mu$$ is sure (sure events are defined in $\S 5.1$). In other words, the LLN says the outcomes where the limiting sample mean is not equal to μ form a null event. The event specified in the LLN is sure, but not certain (see §5.1 and Exercise 5.1.11 for the distinction). The LLN is qualitative: There is no measure of closeness in the LLN statement. On the other hand, the CLT is more quantitative. The CLT says for large sample size, the sample mean is approximately normal with mean μ and variance σ^2/n . More exactly, # Central Limit Theorem (CLT) Let $$\bar{Z}_n = \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right)$$ be the standardized sample mean, and let Z be a standard normal random variable. Then $$\lim_{n \to \infty} Prob\left(a < \bar{Z}_n < b\right) = Prob\left(a < Z < b\right)$$ for every interval [a, b]. An equivalent form of the CLT is $$\lim_{n \to \infty} E\left(f\left(\bar{Z}_n\right)\right) = E(f(Z)) \tag{5.4.7}$$ for every function f(x). Let $M_n(t)$ be the moment-generating function of \bar{Z}_n . Another equivalent form of the CLT is convergence of the moment-generating functions, $$\lim_{n \to \infty} M_n(t) = e^{t^2/2},\tag{5.4.8}$$ for every t. Toss a coin n times, assume the coin's bias is p, and let S_n be the number of heads. Then, by (5.3.23), S_n is binomial with mean $\mu = np$ and standard deviation $\sigma = \sqrt{np(1-p)}$. By the CLT, S_n is approximately normal with the same mean and variance, so the cumulative distribution function of S_n approximately equals the cumulative distribution function of a normal random variable with the same mean and variance. The code ``` from numpy import * from scipy.stats import binom, norm from matplotlib.pyplot import * n, p = 100, pi/4 mu = n*p sigma = sqrt(n*p*(1-p)) B = binom(n,p) Z = norm(mu,sigma) ``` ``` x = arange(mu - 2*sigma, mu + 2*sigma, .01) plot(x, Z.cdf(x), label="normal approx") plot(x, B.cdf(x), label="binomial") grid() legend() show() ``` returns Figure 5.21. Fig. 5.21 The binomial cdf and its CLT normal approximation. Using the compound-interest formula (A.3.9), it is simple to derive the CLT. We derive the third version (5.4.8) of the CLT. Let x_1, x_2, \ldots, x_N be a scalar dataset, and assume the dataset is standardized. Then its mean and variance are zero and one, $$\sum_{k=1}^{N} x_k = 0, \qquad \frac{1}{N} \sum_{k=1}^{N} x_k^2 = 1.$$ If the samples of the dataset are equally likely, then sampling the dataset results in a random variable X, with expectations given by (5.3.2). It follows that X is standard, and the moment-generating function of X is $$E(e^{tX}) = \frac{1}{N} \sum_{k=1}^{N} e^{tx_k}.$$ If X_1, X_2, \ldots, X_n are obtained by repeated
sampling of the dataset, then they are i.i.d. following X. If \bar{X}_n is the sample mean $$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$ then, by (5.3.35), $\bar{Z}_n = \sqrt{n}\bar{X}_n$ is standard. By independence, the moment-generating function $M_n(t)$ of \bar{Z}_n is the product $$M_n(t) = E\left(e^{t\sqrt{n}\bar{X}_n}\right) = E\left(e^{t(X_1 + X_2 + \dots + X_n)/\sqrt{n}}\right) = \left(E\left(e^{tX/\sqrt{n}}\right)\right)^n.$$ By the exponential series, $$e^{tX/\sqrt{n}} = 1 + \frac{t}{\sqrt{n}}X + \frac{t^2}{2n}X^2 + \dots$$ Since the mean and variance of X are zero and 1, taking expectations of both sides, $$E\left(e^{tX/\sqrt{n}}\right) = 1 + \frac{t^2}{2n} + \dots$$ From this, $$M_n(t) = \left(1 + \frac{t^2}{2n} + \dots\right)^n.$$ By the compound-interest formula (A.3.9) (the missing terms . . . don't affect the result) $$\lim_{n \to \infty} M_n(t) = e^{t^2/2},$$ which is the moment-generating function of the standard normal distribution. Even though we couched this derivation in terms of a standardized dataset. it is valid in general. This completes the derivation of the CLT. The standard normal distribution is symmetric about zero, and has a specific width. Because of the symmetry, a random number Z following this distribution is equally likely to satisfy Z < 0 and Z > 0, so Prob(Z < 0) = Prob(Z > 0). Since the total area equals 1, $$Prob(Z < 0) + Prob(Z > 0) = 1,$$ we expect the chance that Z<0 should equal 1/2. In other words, because of the symmetry of the curve, we expect to be 50% confident that Z<0, or 0 is at the 50-th percentile level. So chance = confidence = percentile = area To summarize, we expect Prob(Z < 0) = 1/2. Fig. 5.22 z = Z.ppf(p) and p = Z.cdf(z). When $$Prob(Z < z) = p,$$ we say z is the z-score z corresponding to the p-value p. Equivalently, we say our confidence that Z < z is p, or the percentile of z equals 100p. In Python, the relation between z and p (Figure 5.22) is specified by ``` from scipy.stats import norm as Z p = Z.cdf(z) z = Z.ppf(p) ``` ppf is the percentile point function, and cdf is the cumulative distribution function. Fig. 5.23 Confidence (green) or significance (red) (lower-tail, two-tail, upper-tail). In Figure 5.23, the red areas are the lower tail p-value Prob(Z < z), the two-tail p-value Prob(|Z| > z), and the upper tail p-value Prob(Z > z). To go backward, suppose we are given Prob(|Z| < z) = p and we want to compute the cutoff z. Then Prob(|Z| > z) = 1 - p, so Prob(Z > z) = (1 - p)/2. This implies $$Prob(Z < z) = 1 - (1 - p)/2 = (1 + p)/2.$$ By symmetry of the graph, upper-tail and two-tail p-values can be computed from lower tail p-values. $$Prob(a < Z < b) = Prob(Z < b) - Prob(Z < a),$$ and $$Prob(|Z| < z) = Prob(-z < Z < z) = Prob(Z < z) - Prob(Z < -z),$$ and $$Prob(Z > z) = 1 - Prob(Z < z).$$ In Python, ``` from scipy.stats import norm as Z # p = P(|Z| < z) z = Z.ppf((1+p)/2) p = Z.cdf(z) - Z.cdf(-z)</pre> ``` Now let's zoom in closer to the graph and mark off z-scores 1, 2, 3 on the horizontal axis to obtain specific colored areas as in Figure 5.25. These areas are governed by the 68-95-99 rule (Table 5.24). Our confidence that |Z| < 1 equals the blue area 0.685, our confidence that |Z| < 2 equals the sum of the blue plus green areas 0.955, and our confidence that |Z| < 3 equals the sum of the blue plus green plus red areas 0.997. This is summarized in Table 5.24. | cutoff | abs confidence | two-tail p -value | |--------|----------------|---------------------| | z | 1-p | p | | 1 | .685 | .315 | | 2 | .955 | .045 | | 3 | .997 | .003 | Table 5.24 Cutoffs, confidence levels, p-values. The possibility |Z| > 1 is called a 1-sigma event, |Z| > 2 a 2-sigma event, and so on. So a 2-sigma event is 95.5% unlikely, or 4.5% likely. An event is considered *statistically significant* if it's a 2-sigma event or more. In other words, *something is significant if it's unlikely*. A six-sigma event |Z| > 6 is two in a billion. You want a plane crash to be six-sigma. Fig. 5.25 68%, 95%, 99% confidence cutoffs for standard normal. These terms are defined for two-tail p-values. The same terms may be used for upper-tail or lower tail p-values. Figure 5.25 is not to scale, because a 1-sigma event should be where the curve inflects from convex to concave (in the figure this happens closer to 2.7). Moreover, according to Table 5.24, the left-over white area should be .03% (3 parts in 10,000), which is not what the figure suggests. An event is statistically significant if its p-value is 5% or less (Table 5.26). For example, Z>z is statistically significant if Prob(Z>z) is .05 or less, which means z is greater than 1.64, Z<z is statistically significant if Prob(Z<z) is .05 or less, which means z is less than -1.64, and |Z|>z is statistically significant if Prob(|Z|>z) is .05 or less, which means |z| is greater than 1.96. | | 4 | 1 | | |--------|------------|-----------------|---------| | event | type | <i>p</i> -value | z-score | | Z > z | upper tail | .05 | 1.64 | | Z < z | lower tail | .05 | -1.64 | | Z > z | two-tail | .05 | 1.96 | | Z > z | upper tail | .01 | 2.33 | | Z < z | lower tail | .01 | -2.33 | | Z > z | two-tail | .01 | 2.56 | **Table 5.26** p-values at 5% and at 1%. An event is highly significant if its p-value is 1% or less (Table 5.26). For example, Z > z is highly significant if Prob(Z > z) is .01 or less, which means z is greater than 2.33, Z < z is highly significant if Prob(Z < z) is .01 or less, which means z is less than -2.33, and |Z| > z is highly significant if Prob(|Z| > z) is .01 or less, which means |z| is greater than 2.56. ### Significant and Highly Significant An event A is significant if $Prob(A) \leq 0.05$. An event A is highly significant if Prob(A) < 0.01. In general, the normal distribution is not centered at the origin, but elsewhere. We say X is normal with mean μ and standard deviation σ if $$Z = \frac{X - \mu}{\sigma}$$ is distributed according to a standard normal. We write $N(\mu, \sigma)$ for the normal with mean μ and standard deviation σ . As its name suggests, it is easily checked that such a random variable X has mean μ and standard deviation σ . For the normal distribution with mean μ and standard deviation σ , the cutoffs are as in Figure 5.27. In Python, norm(mu, sigma) returns the normal with mean m and standard deviation s. Fig. 5.27 68%, 95%, 99% cutoffs for non-standard normal. Here is a sample computation. Let X be a normal random variable with mean μ and standard deviation σ , and suppose Prob(X < 7) = .15, and Prob(X < 19) = .9. Given this data, we find μ and σ as follows. With Z as above, we have $$Prob(Z < (7 - \mu)/\sigma) = .15,$$ and $Prob(Z < (19 - \mu)/\sigma) = .9.$ Also, since Z is standard, we compute By definition of ppf (see above), we then have $$a = \frac{7 - \mu}{\sigma}, \qquad b = \frac{19 - \mu}{\sigma}.$$ These are two equations in two unknowns. Multiplying both equations by σ then subtracting, we obtain μ and σ , $$\sigma = \frac{19 - 7}{b - a}, \qquad \mu = 7 - a\sigma.$$ Let \bar{X} be the sample mean $$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n},$$ drawn from a normally distributed population with mean μ and standard deviation σ . By (5.3.34), the standard deviation of \bar{X} is σ/\sqrt{n} . ## Standard Deviation of Sample Mean is Standard Error The standard deviation of the sample mean is called the *standard* error. If the samples have standard deviation σ , the standard error is σ/\sqrt{n} . To compute probabilities for \bar{X} when X has mean μ and standard deviation σ , standardize \bar{X} by writing $$Z = \sqrt{n} \cdot \frac{\bar{X} - \mu}{\sigma},$$ then compute standard normal probabilities. Here are two examples. In the first example, suppose student grades are normally distributed with mean $\mu=80$ and variance $\sigma^2=16$. This says the average of all grades is 80, and the standard deviation is $\sigma=4$. If a grade is g, the standardized grade is $$z = \frac{g - \mu}{\sigma} = \frac{g - 80}{4}.$$ A student is picked and their grade was g = 84. Is this significant? Is it highly significant? In effect, we are asking, how unlikely is it to obtain such a grade? Remember, $$significant = unlikely$$ Since the standard deviation is 4, the student's z-score is $$z = \frac{g - 80}{4} = \frac{84 - 80}{4} = 1.$$ What's the upper-tail p-value corresponding to this z? It's $$Prob(Z > z) = Prob(Z > 1) = \frac{1}{2} Prob(|Z| > 1) = .16,$$ or 16%. Since the upper-tail p-value is more than 5%, this student's grade is not significant. For the second example, suppose a sample of n=9 students are selected and their sample average grade is $\bar{g}=84$. Is this significant? Is it highly significant? This time we take $$z = \sqrt{n} \cdot \frac{\bar{g} - 80}{4} = 3\frac{84 - 80}{4} = 3.$$ What's the upper-tail p-value corresponding to this z? It's $$Prob(Z > z) = Prob(Z > 2.5) = 0.0013,$$ or .13%. Since the upper-tail p-value is less than 1%, yes, this sample average grade is both significant and highly significant. The same grade, g=84, is not significant for a single student, but is significant for nine students. This is a reflection of the law of large numbers, which says the sample mean approaches the population mean as the sample size grows. To extract samples from a normal distribution, use a random generator. The code below uses the default random number generator, ``` from numpy.random import default_rng samples = default_rng().normal mean, sdev, n = 80, 4, 20 samples(mean,sdev,n) ``` This returns 20 normally distributed numbers, with specified mean and standard deviation. Be careful to distinguish between ``` numpy.random.default_rng.normal and scipy.stats.norm. ``` The former returns *samples* from a normal distribution, while the latter returns a normal *random variable*. Samples are just numbers; random variables have cdf's, pmf's or
pdf's, etc. Suppose student grades are normally distributed with mean 80 and variance 16. How many students should be sampled so that the chance that at least one student's grade lies below 70 is at least 50%? To solve this, if p is the chance that a single student has a grade below 70, then 1-p is the chance that the student has a grade above 70. If n is the sample size, $(1-p)^n$ is the chance that all sample students have grades above 70. Thus the requested chance is $1-(1-p)^n$. The following code shows the answer is n=112. ``` from scipy.stats import norm as Z z = 70 mean, sdev = 80, 4 p = Z(mean,sdev).cdf(z) for n in range(2,200): q = 1 - (1-p)**n print(n, q) ``` Here is the code for computing tail probabilities for the sample mean \bar{X} drawn from a normally distributed population with mean μ and standard deviation σ . When n=1, this applies to a single normal random variable. ``` else: print("What's the tail type (lower-tail, upper-tail, → two-tail)?") return print("sample size: ",n) print("mean,sdev,xbar: ",mean,sdev,xbar) print("mean,sdev,n,xbar: ",mean,sdev,n,xbar) print("p-value: ",p) z = sqrt(n) * (xbar - mean) / sdev print("z-score: ",z) type = "upper-tail" mean = 80 sdev = 4 n = 1 xbar = 90 pvalue(mean,sdev,n,xbar,type) ``` #### **Exercises** **Exercise 5.4.1** Let X be a normal random variable and suppose Prob(X < 1) = 0.3, and Prob(X < 2) = 0.4 What are the mean and variance of X? Exercise 5.4.2 [27] Consider a normal distribution curve where the middle 90% of the area under the curve lies above the interval (4, 18). Use this information to find the mean and the standard deviation of the distribution. **Exercise 5.4.3** Let Z be a normal random variable with mean 30.4 and standard deviation of 0.7. What is Prob(29 < Z < 31.1)? **Exercise 5.4.4** [27] Consider a normal distribution where the 70th percentile is at 11 and the 25th percentile is at 2. Find the mean and the standard deviation of the distribution. **Exercise 5.4.5** [27] Let X_1, X_2, \ldots, X_n be an i.i.d. sample each with mean 300 and standard deviation of 21. What is the mean and standard deviation of the sample mean \bar{X} ? Exercise 5.4.6 Suppose the scores of students are normally distributed with a mean of 80 and a standard deviation of 4. A sample of size n is selected, and the sample mean is 84. What is the least n for which this is significant? What is the least n for which this is highly significant? Exercise 5.4.7 [27] A manufacturer says their laser printers' printing speeds are normally distributed with mean 17.63 ppm and standard deviation 4.75 ppm. An i.i.d. sample of n=11 printers is selected, with speeds X_1, X_2, \ldots, X_n . What is the probability the sample mean speed \bar{X} is greater than 18.53 ppm? **Exercise 5.4.8** [27] Continuing Exercise **5.4.7**, let Y_k be the Bernoulli random variable corresponding to the event $X_k > 18$ (5.3.10), $$Y_k = \begin{cases} 1, & \text{if } X_k > 18, \\ 0, & \text{otherwise.} \end{cases}$$ We count the proportion of printers in the sample having speeds greater than 18 by setting $\hat{p} = \frac{Y_1 + Y_2 + \dots + Y_n}{n}.$ Compute $E(\hat{p})$ and $Var(\hat{p})$. Use the CLT to compute the probability that more than 50.9% of the printers have speeds greater than 18. Exercise 5.4.9 [27] The level of nitrogen oxides in the exhaust of a particular car model varies with mean 0.9 grams per mile and standard deviation 0.19 grams per mile . What sample size is needed so that the standard deviation of the sampling distribution is 0.01 grams per mile? Exercise 5.4.10 [27] The scores of students had a normal distribution with mean $\mu = 559.7$ and standard deviation $\sigma = 28.2$. What is the probability that a single randomly chosen student scores 565 or higher? Now suppose n = 30 students are sampled, assume i.i.d. What are the mean and standard deviation of the sample mean score? What z-score corresponds to the mean score of 565? What is the probability that the mean score is 565 or higher? **Exercise 5.4.11** Complete the square in the moment-generating function of the standard normal pdf and use (5.4.3) to derive (5.4.4). **Exercise 5.4.12** Let Z be a standard normal random variable, and let relu(x) be as in Exercise **5.3.17**. Show $$E(\text{relu}(Z)) = \frac{1}{\sqrt{2\pi}}.$$ (Use the fundamental theorem of calculus (A.6.2).) **Exercise 5.4.13** [7] Let X_1, X_2, \ldots, X_n be i.i.d. Poisson random variables (5.3.25) with parameter 1, let $S = X_1 + X_2 + \cdots + X_n$, and let $\bar{X}_n = S/n$ be the sample mean. Then the mean of \bar{X}_n is 1, and the variance of \bar{X}_n is 1/n, so $$\bar{Z}_n = \sqrt{n}(\bar{X}_n - 1) = \frac{S - n}{\sqrt{n}}$$ is standard (5.3.35). By the CLT, with Z standard normal, $$E(\text{relu}(\bar{Z}_n)) \to E(\text{relu}(Z)), \qquad n \to \infty$$ Use this to derive Stirling's approximation (A.1.7). (Exercises **5.3.17** and **5.4.12**.) # 5.5 Chi-squared Distribution Let X and Y be independent standard normal random variables. Then (X, Y) is a random point in the plane. What is the probability that the point (X, Y) lies inside a square (Figure 5.28)? Specifically, assume the square is $|X| \leq 1$ and $|Y| \leq 1$. Since X and Y independent, the probability (X,Y) lies in the square is $$Prob(|X| \le 1 \text{ and } |Y| \le 1) = Prob(|X| \le 1) Prob(|Y| \le 1)$$ = $Prob(|X| \le 1)^2 = .685^2 = .469$. What is the probability (X, Y) lies inside the unit disk, $$Prob(X^2 + Y^2 < 1)?$$ Here the answer is not as straightforward, and leads us to introduce the chi-squared distribution. Fig. 5.28 (X,Y) inside the square and inside the disk. A random variable U has a chi-squared distribution with degree 1 if $$M_U(u) = E(e^{uU}) = \frac{1}{\sqrt{1 - 2u}}.$$ To compute the moments of U, we use the binomial theorem (4.1.25) $$(1+x)^p = \sum_{n=0}^{\infty} {p \choose n} x^n = 1 + px + {p \choose 2} x^2 + {p \choose 3} x^3 + \dots$$ to write out $M_U(u)$. Taking p = -1/2 and x = -2u, $$\frac{1}{\sqrt{1-2u}} = (1-2u)^{-1/2} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} (-2u)^n.$$ Since $$\frac{1}{\sqrt{1-2u}} = E\left(e^{uU}\right) = \sum_{n=0}^{\infty} \frac{u^n}{n!} E(U^n),$$ comparing coefficients of $u^n/n!$ shows $$E(U^n) = (-2)^n n! \binom{-1/2}{n}, \qquad n = 0, 1, 2, \dots$$ (5.5.1) Using the definition $$\binom{p}{n} = \frac{p \cdot (p-1) \cdot \dots \cdot (p-n+1)}{n!},$$ $\binom{p}{n}$ makes sense for fractional p (see (A.2.11)). With this, we have $$E(U^n) = (-2)^n n! \frac{(-1/2) \cdot (-1/2 - 1) \cdot \dots \cdot (-1/2 - n + 1)}{n!}$$ = 1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n - 1). But this equals the right side of (5.4.5). Thus the left sides of (5.4.5) and (5.5.1) are equal. This shows #### Chi-squared is the Square of Normal If Z is standard normal, then $U=Z^2$ is chi-squared with degree 1, and $E(U)=1,\,Var(U)=2.$ More generally, we say U is *chi-squared with degree* d if $$U = U_1 + U_2 + \dots + U_d = Z_1^2 + Z_2^2 + \dots + Z_d^2, \tag{5.5.2}$$ with independent standard normal Z_1, Z_2, \ldots, Z_d . By independence, the moment-generating functions multiply ($\S 5.3$), so the moment-generating function for chi-squared with degree d is $$M_U(t) = E(e^{tU}) = \frac{1}{(1 - 2t)^{d/2}}.$$ Going back to the question posed at the beginning of the section, we have X and Y independent standard normal and we want $$Prob(X^2 + Y^2 \le 1).$$ If we set $U=X^2+Y^2$, we want $Prob(U\leq 1)$. Since U is chi-squared with degree d=2, we use chi2.cdf(u,d). Then the code from scipy.stats import chi2 as U d = 2 u = 1 U(d).cdf(u) returns 0.39. Fig. 5.29 Chi-squared distribution with different degrees. $^{^2}$ Geometrically, the p-value Prob(U>1) is the probability that a normally distributed point in d-dimensional space is outside the unit sphere. Figure 5.29 is returned by the code ``` from scipy.stats import chi2 as U from matplotlib.pyplot import * from numpy import * u = arange(0,15,.01) for d in range(1,7): p = U(d).pdf(u) plot(u,p,label="d: " + str(d)) ylim(ymin=0,ymax=.6) grid() legend() show() ``` Let us compute the mean and variance of a chi-squared U with degree d. When d = 1, we already know E(U) = 1 and Var(U) = 2. In general, by (5.5.2) and (5.3.21), $$E(U) = \sum_{k=1}^{d} E(Z_k^2) = \sum_{k=1}^{d} 1 = d,$$ and $$Var(U) = \sum_{k=1}^{d} Var(Z_k^2) = \sum_{k=1}^{d} 2 = 2d.$$ We conclude ## Mean and Variance of Chi-squared If U is chi-squared with degree d, the mean and variance of U are $$E(U) = d$$, and $Var(U) = 2d$. The peak (maximum likelihood point) in the chi-squared density of degree d is not at the mean d. Using polar coordinates, one can show the peak is at d-2 (Figure 5.30). **Fig. 5.30** With degree $d \ge 2$, the chi-squared density peaks at d-2. Because $$\frac{1}{(1-2t)^{d/2}}\frac{1}{(1-2t)^{d'/2}} = \frac{1}{(1-2t)^{(d+d')/2}},$$ we obtain # Independent Chi-squared Variables If U and U' are independent chi-squared with degrees d and d', then U + U' is chi-squared with degree d + d'. To compute distributions for sample variances (below) and chi-squared tests ($\S6.4$), we need to derive chi-squared for correlated normal samples. This is best approached using vector-valued random variables. A vector-valued random variable is a vector $X = (X_1, X_2, \dots, X_d)$ in \mathbf{R}^d whose components are random variables. A vector-valued random variable is also called a random vector. For example, a simple random sample X_1, X_2, \dots, X_n may be collected into a single random vector $$X = (X_1, X_2, \dots, X_n)$$ in \mathbf{R}^n . Random vectors have means, variances, moment-generating functions, and cumulant-generating functions, just like scalar-valued random variables. Moreover we can have simple random samples of random vectors X_1, X_2, \ldots, X_n . If X is a random vector in \mathbf{R}^d , its mean is the vector $$\mu = E(X) = (E(X_1), E(X_2), \dots, E(X_d)) = (\mu_1, \mu_2, \dots, \mu_d).$$ The variance of X is the $d \times d$ matrix Q whose (i,
j)-th entry is $$Q_{ij} = E((X_i - \mu_i)(X_j - \mu_j)), \qquad 1 \le i, j \le d.$$ In the notation of $\S 2.2$, $$Q = E((X - \mu) \otimes (X - \mu)).$$ By (2.2.13), $$w \cdot ((X - \mu) \otimes (X - \mu))w = ((X - \mu) \cdot w)^2,$$ hence $$w \cdot Qw = E\left(((X - \mu) \cdot w)^2\right). \tag{5.5.3}$$ Thus the variance of a random vector is a nonnegative matrix A random vector is standard if $\mu = 0$ and Q = I. If X is standard, then $$E(X \cdot w) = 0, \qquad Var(X \cdot w) = |w|^2.$$ (5.5.4) In §2.2, we defined the mean and variance of a dataset (2.2.18). Then the mean and variance there is the same as the mean and variance defined here, that of a random variable. To see this, we must build a random variable X corresponding to a dataset x_1, x_2, \ldots, x_N . But this was done in (5.3.2). Thus every dataset may be interpreted as a random variable. In §5.3, we considered i.i.d. sequences of scalar random variables. We can also do the same with random vectors. If X_1, X_2, \ldots, X_n is an i.i.d. sequence of random vectors, each with mean μ and variance Q, then the same calculation as in §5.3 shows $$\sqrt{n}\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}-\mu\right) \tag{5.5.5}$$ has mean zero and variance Q. A random vector X is normal with mean μ and variance Q if for every vector w, the scalar random variable $X \cdot w$ is normal with mean $\mu \cdot w$ and variance $w \cdot Qw$. When $\mu = 0$ and Q = I, then X is standard normal. From $\S 5.3$, we see #### Standard Normal Random Vectors $Z_1,\,Z_2,\,\ldots,\,Z_d$ is a simple random sample of standard normal random variables iff $$Z = (Z_1, Z_2, \dots, Z_d)$$ is a standard normal random vector in \mathbf{R}^d . The central limit theorem remains valid for random vectors: If X_1 , X_2 , ..., X_n is an i.i.d. sequence of random vectors with mean μ and variance Q, then (5.5.5) is approximately normal, with mean zero and variance Q, for large n. From (5.5.2), ## Uncorrelated Chi-squared If Z =is a standard normal random vector in \mathbf{R}^d , then $$|Z|^2 \tag{5.5.6}$$ is chi-squared with degree d. If X is a normal random vector with mean zero and variance Q, then, by definition, $X \cdot w$ is normal with mean zero and $Var(X \cdot w) = w \cdot Qw$. Using (5.4.6) with t = 1, $\mu = 0$, and $\sigma^2 = w \cdot Qw$, the moment-generating function of the random vector X is $$M_X(w) = E\left(e^{w \cdot X}\right) = e^{w \cdot Qw/2}.$$ (5.5.7) In Python, the probability density function of a normal random variable with mean μ and variance Q is from numpy import * from scipy.stats import multivariate_normal as Z # mu is mean vector array # Q is variance matrix array ``` # here x.shape == mu.shape Z.pdf(x, mean=mu, cov=Q) ``` If x and y are arrays, then cartesian_product(x,y) is defined by ``` from numpy import * def cartesian_product(x,y): return dstack(meshgrid(x,y)) ``` If x and y have shapes (m,) and (n,) then $xy = cartesian_product(x,y)$ has shape (m,n,2), with xy[i,j,:] = array([x[i],y[j]]). **Fig. 5.31** Normal probability density on \mathbb{R}^2 . Using this, we can plot the probability density function of a normal random vector in ${\bf R}^2,$ ``` %matplotlib ipympl from numpy import * from matplotlib.pyplot import * from scipy.stats import multivariate_normal as Z # standard normal mu = array([0,0]) Q = array([[1,0],[0,1]]) x = arange(-3,3,.01) ``` ``` y = arange(-3,3,.01) xy = cartesian_product(x,y) # last axis of xy is fed into pdf z = Z(mu,Q).pdf(xy) ax = axes(projection='3d') ax.set_axis_off() x,y = meshgrid(x,y) ax.plot_surface(x,y,z, cmap='cool') show() ``` resulting in Figure 5.31. In §5.3 we studied correlation and independence. We saw how independence implies uncorrelatedness, but not conversely. Now we show that, for normal random vectors, they are in fact the same. ### Independence and Correlation If (X, Y) is a normal random vector, then X and Y are uncorrelated iff X and Y are independent. Saying (X, Y) is normal is more than just saying X is normal and Y is normal, This is *joint* normality of X and Y. By subtracting their means, we may assume the means of X and Y are zero. To derive the result, we write down $$E(X \otimes X) = A,$$ $E(X \otimes Y) = B,$ $E(Y \otimes Y) = C.$ Then the variance of (X, Y) is $$Q = \begin{pmatrix} E(X \otimes X) \ E(X \otimes Y) \\ E(Y \otimes X) \ E(Y \otimes Y) \end{pmatrix} = \begin{pmatrix} A \ B \\ B^t \ C \end{pmatrix}$$. From this, we see X and Y are uncorrelated when B=0. With w=(u,v), we write $$w \cdot Qw = \begin{pmatrix} u \\ v \end{pmatrix} \cdot \begin{pmatrix} A & B \\ B^t & C \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = u \cdot Au + u \cdot Bv + v \cdot B^t u + v \cdot Cv.$$ Then $$M_{X,Y}(w) = E\left(e^{w\cdot(X,Y)}\right) = e^{w\cdot Qw/2} = M_X(u) M_Y(v) e^{(u\cdot Bv + v\cdot B^t u)/2}.$$ From this, X and Y are independent when B=0. Thus, for normal random vectors, independence and uncorrelatedness are the same. If Z is a standard normal random vector in \mathbf{R}^d , then (5.5.6) we saw $|Z|^2$ is chi-squared with degree d. Now we generalize this result to correlated normal random vectors. ## Correlated Chi-squared Let X be a normal random vector with mean zero and variance Q. Let r be the rank of Q, and let Q^+ be the pseudo-inverse (§2.3) of Q. Then $$X \cdot Q^+ X \tag{5.5.8}$$ is chi-squared with degree r. To derive this, we use the eigenvalue decomposition (3.2.6) of Q: There is a square diagonal matrix E and a matrix U satisfying $$E = U^t Q U, \qquad Q^+ = U E^+ U^t,$$ and $$E = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \lambda_r & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad E^+ = \begin{pmatrix} 1/\lambda_1 & 0 & 0 & \dots & 0 \\ 0 & 1/\lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1/\lambda_r & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$ Here r, the number of nonzero eigenvalues of Q, is the rank of Q. Then, with $Y = U^t X$, $$X \cdot Q^{+}X = X \cdot (UE^{+}U^{t})X = (U^{t}X) \cdot E^{+}(U^{t}X) = Y \cdot E^{+}Y = \sum_{i=1}^{r} \frac{Y_{i}^{2}}{\lambda_{i}}.$$ Since Y has variance U^tQU (Exercise **5.5.5**), and $U^tQU = E, X \cdot Q^+X$ is chi-squared with degree r (Exercise **5.5.6**). Let μ be a unit vector in \mathbf{R}^d , and let $Q = I - \mu \otimes \mu$. Then Q has rank d-1 (Exercise **2.9.2**). Suppose X is a normal random vector with mean zero and variance Q. Then $$E((X \cdot \mu)^2) = \mu \cdot Q\mu = \mu \cdot (I - \mu \otimes \mu)\mu = \mu - (\mu \cdot \mu)\mu = 0,$$ so $X \cdot \mu = 0$. By Exercise 2.6.7, $Q^+ = Q$. Since $X \cdot \mu = 0$, $$X \cdot Q^+ X = X \cdot QX = X \cdot (X - (X \cdot \mu)\mu) = |X|^2.$$ We conclude ## Singular Chi-squared Let μ be a unit vector, and let X be a normal random vector with mean zero and variance $I - \mu \otimes \mu$. Then $|X|^2$ is chi-squared with degree d-1. We use the above to derive the distribution of the sample variance. Let X_1, X_2, \ldots, X_n be a random sample, and let \bar{X} be the sample mean, $$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$ Let S^2 be the sample variance, $$S^{2} = \frac{(X_{1} - \bar{X})^{2} + (X_{2} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2}}{n - 1}.$$ (5.5.9) Since $(n-1)S^2$ is a sum-of-squares similar to (5.5.2), we expect $(n-1)S^2$ to be chi-squared. In fact this is so, but the degree is n-1, not n. We will show #### Independence of Sample Mean and Sample Variance Let Z_1, Z_2, \ldots, Z_n be independent standard normal random variables, let \bar{Z} be the sample mean, and let S^2 be the sample variance. Then $(n-1)S^2$ is chi-squared with degree n-1, and \bar{Z} and S^2 are independent. To see this, we work with the random vector $Z = (Z_1, Z_2, \dots, Z_n)$ with mean zero and variance I. Let u and v be vectors in \mathbb{R}^n , let $$\mathbf{1} = (1, 1, \dots, 1)$$ be in \mathbb{R}^n , and let $\mu = 1/\sqrt{n}$. Then μ is a unit vector and $$Z \cdot \mu = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} Z_k = \sqrt{n} \,\bar{Z}.$$ Since Z_1, Z_2, \ldots, Z_n are i.i.d standard, $Z \cdot \mu = \sqrt{n}\bar{Z}$ is standard. Now let $U = I - \mu \otimes \mu$ and $$X = UZ = Z - (Z \cdot \mu)\mu = (Z_1 - \bar{Z}, Z_2 - \bar{Z}, \dots, Z_n - \bar{Z}).$$ Then the mean of X is zero. Since Z has variance I, by Exercises **2.2.3** and **5.5.5**, $$Var(X) = U^t I U = U^2 = U = I - \mu \otimes \mu.$$ By singular chi-squared above, $$(n-1)S^2 = |X|^2$$ is chi-squared with degree n-1. Since $Z \cdot \mu$ is standard, $$E(X(Z \cdot \mu)) = E(Z(Z \cdot \mu)) - E((Z \cdot \mu)^2)\mu = \mu - \mu = 0,$$ so X and $Z \cdot \mu$ are uncorrelated. Since X and $Z \cdot \mu$ are normal, X and $Z \cdot \mu$ are independent. Since $(n-1)S^2 = |X|^2$ and $\sqrt{n}\bar{Z} = Z \cdot \mu$, S^2 and \bar{Z} are independent. #### Exercises **Exercise 5.5.1** Let X and Y be independent *uniform* random variables with values in the interval [-1,1]. Then (X,Y) is a point in the square $\{|x| \le 1, |y| \le 1\}$. Let $$B = \begin{cases} 1 & \text{if } X^2 + Y^2 \le 1, \\ 0 & \text{otherwise} \end{cases}$$ be the Bernoulli variable corresponding to (X, Y) being in the unit disk. Then (5.3.10) the mean p = E(B) equals $Prob(X^2 + Y^2 \le 1)$. Show that $p = \pi/4$. (This uses integration with polar coordinates $rdrd\theta$ replacing dxdy.) **Exercise 5.5.2** Let X_1, X_2, \ldots, X_n , and Y_1, Y_2, \ldots, Y_n be independent i.i.d. samples of *uniform* random variables with values in the interval [-1,1]. Then $(X_1,Y_1), (X_2,Y_2), \ldots, (X_n,Y_n)$ are points in the square $\{|x| \leq 1, |y| \leq 1\}$ (Figure 5.28). Let \hat{p}_n be the *proportion* of points (5.3.11) lying in the unit disk $\{x^2 + y^2 \leq 1\}$. Use the LLN to estimate \hat{p}_n for large n. **Exercise 5.5.3** Continuing the previous problem with n = 20, use the CLT to estimate the probability that fewer than 50% of the points
lie in the unit disk. Is this a 1-sigma event, a 2-sigma event, or a 3-sigma event? **Exercise 5.5.4** Let X be a random vector with mean zero and variance Q Show v is a zero variance direction (§2.5) for Q iff $X \cdot v = 0$. **Exercise 5.5.5** Let μ and Q be the mean and variance of a random d-vector X, and let A be any $N \times d$ matrix. Then AX is a random vector with mean $A\mu$ and variance AQA^t . **Exercise 5.5.6** Let Y_1, Y_2, \ldots, Y_r be independent normal random variables with mean zero and variances $\lambda_1, \lambda_2, \ldots, \lambda_r$. Then $$\frac{Y_1^2}{\lambda_1} + \frac{Y_2^2}{\lambda_2} + \dots + \frac{Y_r^2}{\lambda_r}$$ is chi-squared with degree r. **Exercise 5.5.7** If X is a random vector with mean zero and variance Q, then $$E((X \cdot u)(X \cdot v)) = u \cdot Qv.$$ (Insert w = u + v in (5.5.3).) **Exercise 5.5.8** Assume the classes of the Iris dataset are normally distributed with their means and variances (Exercise **2.2.9**), and assume the classes are equally likely. Using Bayes theorem (5.2.14), write a Python function that returns the probabilities (p_1, p_2, p_3) that a given iris $x = (t_1, t_2, t_3, t_4)$ lies in each of the three classes. Feed your function the 150 samples of the Iris dataset. How many samples are correctly classified? # 5.6 Multinomial Probability Let X be a discrete random variable, with values i = 1, 2, ..., d, and probabilities $p = (p_1, p_2, ..., p_d)$. Then each $p_i \ge 0$ and $$p_1 + p_2 + \dots + p_d = 1.$$ Such a vector p is a probability vector. Since the values of X are 1, 2, ..., d, the moment-generating function of X is $$M(t) = E(e^{tX}) = e^t p_1 + e^{2t} p_2 + \dots + e^{dt} p_d.$$ A vector $v = (v_1, v_2, \dots, v_d)$ is one-hot encoded at slot j if all components of v are zero except the j-th component. For example, when d = 3, the vectors are one-hot encoded. At the other extreme, a vector $v = (v_1, v_2, \dots, v_d)$ is *strict* if all components are positive, $v_i > 0$, $i = 1, 2, \dots, d$. A useful alternative to M(t) above is to use one-hot encoding and to define a vector-valued random variable $Y = (Y_1, Y_2, \dots, Y_d)$ by $$Y_i = \begin{cases} 1, & \text{if } X = i, \\ 0, & \text{otherwise} \end{cases}$$ $i = 1, 2, \dots, d.$ This is called *one-hot encoding* since all slots in Y are zero except for one "hot" slot. For example, suppose X has three values 1, 2, 3, say X is the class of a random sample from the Iris dataset. Then Y is \mathbb{R}^3 -valued, and we have $$Y = \begin{cases} (1,0,0), & \text{if } X = 1, \\ (0,1,0), & \text{if } X = 2, \\ (0,0,1), & \text{if } X = 3. \end{cases}$$ With this understood, set $t = (t_1, t_2, t_3)$. Then the moment-generating function of Y is $$M(t) = E(e^{t \cdot Y}) = e^{t_1}p_1 + e^{t_2}p_2 + e^{t_3}p_3.$$ More generally, let X have d values. Then with one-hot encoding, the moment-generating function is $$M(t) = e^{t_1} p_1 + e^{t_2} p_2 + \dots + e^{t_d} p_d,$$ and the cumulant-generating function is $$Z(t) = \log \left(e^{t_1} p_1 + e^{t_2} p_2 + \dots + e^{t_d} p_d \right).$$ In particular, for a fair dice with d sides, the values are equally likely, so the one-hot encoded cumulant-generating function is $$Z(t) = \log \left(e^{t_1} + e^{t_2} + \dots + e^{t_d} \right) - \log d. \tag{5.6.1}$$ In this section, we define $$Z(y) = \log \left(e^{y_1} + e^{y_2} + \dots + e^{y_d} \right), \tag{5.6.2}$$ so we ignore the constant $\log d$ in (5.6.1). Then Z is a function of d variables $y=(y_1,y_2,\ldots,y_d)$. If we insert y=0, we obtain $Z(0)=\log d$. Let $$1 = (1, 1, \dots, 1).$$ Then $$p \cdot \mathbf{1} = \sum_{k=1}^{d} p_k = 1.$$ Because $$Z(y + a\mathbf{1}) = Z(y_1 + a, y_2 + a, \dots, y_d + a) = Z(y) + a,$$ Z is not bounded below and does not have a minimum. The softmax function is the vector-valued function $q = \sigma(y)$ with components $$q_k = \sigma_k(y) = \frac{e^{y_k}}{e^{y_1} + e^{y_2} + \dots + e^{y_d}} = \frac{e^{y_k}}{e^{Z(y)}}, \qquad k = 1, 2, \dots, d.$$ Thus $$q = \sigma(y) = e^{-Z(y)} (e^{y_1}, e^{y_2}, \dots, e^{y_d}).$$ Fig. 5.32 The softmax function takes vectors to probability vectors. By the chain rule, the gradient of the cumulant-generating function is the softmax function, $$\nabla Z(y) = \sigma(y). \tag{5.6.3}$$ When d=2, the vector softmax function reduces to the scalar logistic function (5.2.15), since $$q_1 = \frac{e^{y_1}}{e^{y_1} + e^{y_2}} = \frac{1}{1 + e^{-(y_1 - y_2)}} = \sigma(y_1 - y_2),$$ $$q_2 = \frac{e^{y_2}}{e^{y_1} + e^{y_2}} = \frac{1}{1 + e^{-(y_2 - y_1)}} = \sigma(y_2 - y_1).$$ Because of this, the softmax function is the multinomial analog of the logistic function, and we use the same symbol σ to denote both functions. from scipy.special import softmax y = array([y1,y2,y3]) q = softmax(y) In §4.5, we studied global minimizers of convex functions. As we saw above, Z does not have a global minimizer over unrestricted z. Since $\sigma(y) = \nabla Z(y)$, a critical point y^* of Z must satisfy $\sigma(y^*) = 0$. For Z, a critical point cannot be unique, because $$\sigma(y_1, y_2, \dots, y_d) = \sigma(y_1 + a, y_2 + a, \dots, y_d + a),$$ or $$\sigma(y) = \sigma(y + a\mathbf{1}).$$ We say a vector y is *centered* if y is orthogonal to $\mathbf{1}$, $$y \cdot \mathbf{1} = y_1 + y_2 + \dots + y_d = 0.$$ To guarantee uniqueness of a global minimum of Z, we have to restrict attention to centered vectors y. Suppose y is centered. Since the exponential function is convex, $$\frac{e^Z}{d} = \frac{1}{d} \sum_{k=1}^{d} e^{y_k} \ge \exp\left(\frac{1}{d} \sum_{k=1}^{d} y_k\right) = e^0 = 1.$$ This establishes # Restricted Global Minimum of the Cumulant-generating Function If y is centered, then $Z(y) \ge Z(0) = \log d$. The inverse of the softmax function is obtained by solving $p = \sigma(y)$ for y, obtaining $$y_k = Z + \log p_k, \qquad k = 1, 2, \dots, d.$$ (5.6.4) Define $$\log p = (\log p_1, \log p_2, \dots, \log p_d).$$ Then the inverse of $p = \sigma(z)$ is $$y = Z\mathbf{1} + \log p. \tag{5.6.5}$$ The function $$I(p) = p \cdot \log p = \sum_{k=1}^{d} p_k \log p_k$$ (5.6.6) is the absolute information. Since $0 \le p_k \le 1$, $\log p_k \le 0$, hence $I(p) \le 0$. Since \log is concave, $$\sum_{k=1}^{d} p_k \log(e^{y_k}) \le \log\left(\sum_{k=1}^{d} p_k e^{y_k}\right).$$ This implies $$p \cdot y = \sum_{k=1}^{d} p_k y_k = \sum_{k=1}^{d} p_k \log(e^{y_k})$$ $$\leq \log\left(\sum_{k=1}^{d} p_k e^{y_k}\right) = \log\left(\sum_{k=1}^{d} e^{y_k + \log p_k}\right) = Z(y + \log p).$$ Replacing y by $y - \log p$, this establishes $$I(p) \ge p \cdot y - Z(y). \tag{5.6.7}$$ By (5.6.5), (5.6.7) is an equality when $p = \sigma(y)$. We conclude # Information and Cumulant-Generating Function are Convex Duals For all probability vectors p, $$I(p) = \max_{y} (p \cdot y - Z(y)).$$ For all vectors y, $$Z(y) = \max_{p} (p \cdot y - I(p)).$$ The second equality follows by switching Z and I in (5.6.7), and repeating the same logic used to derive the first equality. Inserting y = 0 in (5.6.7), we have #### Absolute Information is Bounded For all $p = (p_1, p_2, \dots, p_d),$ $$0 \ge I(p) \ge -\log(d). \tag{5.6.8}$$ The absolute entropy, the analog of (4.2.1), is $$H(p) = -I(p) = -\sum_{k=1}^{d} p_k \log(p_k).$$ (5.6.9) Since $$D^2I(p) = \text{diag}\left(\frac{1}{p_1}, \frac{1}{p_2}, \dots, \frac{1}{p_d}\right),$$ we see I(p) is strictly convex, and H(p) is strictly concave. In Python, the entropy is ``` from scipy.stats import entropy p = array([p1,p2,p3]) entropy(p) ``` Here is the multinomial analog of the relation between entropy and cointossing (5.2.4). Suppose a dice has d faces. # Entropy and Dice-Rolling Let $p = (p_1, p_2, \dots, p_d)$ be a probability vector. Roll a d-faced dice n times, and let $\#_n(p)$ be the number of outcomes where the face-proportions are p. Then $\#_n(p)$ is approximately equal to $e^{nH(p)}$ for n large. In more detail, using Stirling's approximation (A.1.7), here is the asymptotic equality, $$\#_n(p) \approx \frac{1}{(2\pi n)^{(d-1)/2}} \cdot \frac{1}{\sqrt{p_1 p_2 \dots p_d}} \cdot e^{nH(p)}, \quad \text{for } n \text{ large.}$$ Asymptotic equality means the ratio of the two sides approaches 1 as $n \to \infty$ (A.7). Now $$\frac{\partial^2 Z}{\partial y_j \partial y_k} = \frac{\partial \sigma_j}{\partial y_k} = \begin{cases} \sigma_j - \sigma_j \sigma_k, & \text{if } j = k, \\ -\sigma_j \sigma_k, & \text{if } j \neq k. \end{cases}$$ Hence we have $$D^{2}Z(y) = \nabla \sigma(y) = \operatorname{diag}(q) - q \otimes q, \qquad q = \sigma(z). \tag{5.6.10}$$ Let $\bar{v} = v \cdot q = \sum q_k v_k$. Since $Q = D^2 Z(z)$ satisfies $$v \cdot Qv = \sum_{k=1}^{d} q_k v_k^2 - (v \cdot q)^2 = \sum_{k=1}^{d} q_k (v_k - \bar{v})^2,$$ which is nonnegative, Q is a variance matrix, and Z is convex. In fact Z is strictly convex along centered directions v, the directions satisfying $v \cdot \mathbf{1} = 0$. If $v \cdot Qv = 0$, then, since $q_k > 0$ for all k, $v = \bar{v}\mathbf{1}$. By Exercise **5.6.1**, if v is centered, this forces v = 0. This shows Z is strictly convex along centered directions. Moreover, Z is proper (4.3.7) on centered vectors. To see this, suppose $y \cdot \mathbf{1} = 0$ and $Z(y) \leq c$. Since $y_j \leq Z(y)$, this implies $$y_j \le c, \qquad j = 1, 2, \dots, d.$$ Given $1 \leq j \leq d$, add the inequalities $y_k \leq c$ over all indices $k \neq j$. Since $y \cdot \mathbf{1} = 0, -y_j = \sum_{k \neq j} y_k$. Hence $$-y_j = \sum_{k \neq j} y_k \le (d-1)c, \quad j = 1, 2, \dots, d.$$ Combining the last two inequalities, $$|y_j| = \max(y_j, -y_j) \le (d-1)c, \quad j = 1, 2, \dots, d,$$ which implies $$|y|^2 = \sum_{k=1}^d y_k^2 \le d(d-1)^2 c^2.$$ Setting $C = \sqrt{d(d-1)c}$, we conclude $$Z(y) \le c$$ and $y \cdot \mathbf{1} = 0$ \Longrightarrow $|y| \le C.$ (5.6.11) By (4.3.7), we have shown ## The Cumulant-generating Function is Proper and Strictly Convex On centered vectors, Z(y) is proper and strictly convex. Let $p = (p_1, p_2, \dots, p_d)$ and $q = (q_1,
q_2, \dots, q_d)$ be probability vectors. The relative information is $$I(p,q) = \sum_{k=1}^{d} p_k \log(p_k/q_k).$$ (5.6.12) Let $$\log q = (\log q_1, \log q_2, \dots, \log q_d).$$ Then $$p \cdot \log q = \sum_{k=1}^{d} p_k \log q_k,$$ and $$I(p,q) = I(p) - p \cdot \log q.$$ (5.6.13) Similarly, the relative entropy is $$H(p,q) = -I(p,q).$$ (5.6.14) In Python, as of this writing, the code ``` from scipy.stats import entropy p = array([p1,p2,p3]) q = array([q1,q2,q3]) entropy(p,q) ``` returns the relative information, not the relative entropy. Always check your Python code's conventions and assumptions. See below for more on this terminology confusion. Here is the multinomial analog of the relation between relative entropy and coin-tossing (5.2.5). Suppose a dice has d faces, and suppose the probability of rolling the i-th face in a single roll is q_i , i = 1, 2, ..., d. Then $q = (q_1, q_2, \dots, q_d)$, the dice's *bias*, is a probability vector, and we expect the long-term *proportions* of faces in n rolls to approximately equal q. Let $p = (p_1, p_2, \dots, p_d)$ be another probability vector. Roll a d-faced dice n times, and let $P_n(p,q)$ be the probability that the face-proportions are $p = (p_1, p_2, \dots, p_d)$, given that the dice's bias is q. If p = q, one's first guess is $P_n(p, p) \approx 1$ for n large. However, this is not correct, because $P_n(p, p)$ is specifying a specific proportion p, predicting specific behavior from the coin tosses. Because this is too specific, it turns out $P_n(p, p) \approx 0$, see Exercise 5.2.8. On the other hand, if $p \neq q$, we expect the proportion of faces to equal p to be unlikely. In other words, we expect $P_n(p,q)$ to be small for large n. In fact, when $p \neq q$, it turns out $P_n(p,q) \to 0$ exponentially, as $n \to \infty$. Using (A.1.2), a straightforward calculation results in #### Relative Entropy and Dice-Rolling Assume a d-faced dice's bias is $q = (q_1, q_2, \dots, q_d)$. Roll the dice n times, and let $P_n(p,q)$ be the probability of obtaining outcomes where the face-proportions are $p = (p_1, p_2, \dots, p_d)$. Then $$P_n(p,q)$$ is approximately equal to $e^{nH(p,q)}$ for n large. More exactly, using Stirling's approximation (A.1.7), here is the asymptotic equality, $$P_n(p,q) \approx \frac{1}{(2\pi n)^{(d-1)/2}} \cdot \frac{1}{\sqrt{p_1 p_2 \dots p_d}} \cdot e^{nH(p,q)}, \quad \text{for } n \text{ large}$$ The relative cumulant-generating function is $$Z(y,q) = \log \left(\sum_{k=1}^{d} e^{y_k} q_k \right),$$ As we saw above, this is the one-hot encoded cumulant-generating function of a d-sided dice with side-probabilities $q = (q_1, q_2, \dots, q_d)$. If we insert $q_k = \exp(\log(q_k))$ in the definition of Z(y,q), one obtains $$Z(y,q) = Z(y + \log q).$$ From this, using the change of variable $y' = y + \log q$, $$\begin{aligned} \max_{y} \left(p \cdot y - Z(y, q) \right) &= \max_{y} \left(p \cdot y - Z(y + \log q) \right) \\ &= \max_{y'} \left(p \cdot \left(y' - \log q \right) - Z(y') \right) \\ &= \max_{y} \left(p \cdot y - Z(y) \right) - p \cdot \log q \\ &= I(p) - p \cdot \log q \\ &= I(p, q). \end{aligned}$$ As before, this shows ## Relative Information and Relative Cumulant-generating Function are Convex Duals For all p and q, $$I(p,q) = \max_{y} (p \cdot y - Z(y,q)).$$ For all y and q, $$Z(y,q) = \max_{p} (p \cdot y - I(p,q)).$$ In logistic regression (§7.6), the output is y, the computed target is $q = \sigma(y)$, the desired target is p, and the information error function is $I(p, \sigma(y))$. To compute the information error, by (5.6.5), $$q = \sigma(y)$$ \Longrightarrow $\log q = y - Z(y)\mathbf{1}$. By (5.6.13), this yields #### **Information Error Identity** For all p and all y, if $q = \sigma(y)$, then $$I(p,q) = I(p) - p \cdot y + Z(y).$$ (5.6.15) This identity is the direct analog of (4.5.21). The identity (4.5.21) is used in linear regression. Similarly, (5.6.15) is used in logistic regression. The cross-information is $$I_{\text{cross}}(p,q) = -\sum_{k=1}^{d} p_k \log q_k,$$ and the *cross-entropy* is $$H_{\text{cross}}(p,q) = -I_{\text{cross}}(p,q) = \sum_{k=1}^{d} p_k \log q_k.$$ In the literature, the terminology is backward: the cross-information is usually erroneously called "cross-entropy," see the discussion at the end of the section. Cross-information and relative information are related by $$I(p,q) = I(p) + I_{cross}(p,q).$$ A probability vector $p=(p_1,p_2,\ldots,p_d)$ is one-hot encoded at slot j if $p_j=1$. When p is one-hot encoded at slot j, then $p_k=0$ for $k\neq j$. When p is one-hot encoded, then I(p) = 0, so $$I(p,q) = I_{\text{cross}}(p,q), \tag{5.6.16}$$ and, from (5.6.15), $$I_{\text{cross}}(p, \sigma(y)) = -p \cdot y + Z(y).$$ From (5.6.3) and (5.6.15), $$\nabla_y I(p, \sigma(y)) = q - p, \qquad q = \sigma(y). \tag{5.6.17}$$ Since $I(p, \sigma(y))$ and $I_{cross}(p, \sigma(y))$ differ by the constant I(p), we also have $$\nabla_y I_{\text{cross}}(p, \sigma(y)) = q - p, \qquad q = \sigma(y),$$ so it doesn't matter whether I(p,q) or $I_{cross}(p,q)$ is used in gradient descent (§7.3). Nevertheless, we stick with I(p,q), because I(p,q) arises naturally as the convex dual of Z(y,q). Let $q = (q_1, q_2, \dots, q_d)$ be a probability vector. The relative softmax function is $$\sigma(y,q) = e^{-Z(y,q)} (e^{y_1}q_1, e^{y_2}q_2, \dots, e^{y_d}q_d).$$ Then the relative version of (5.6.15) is $$I(p, \sigma(y, q)) = I(p, q) - p \cdot y + Z(y, q).$$ This is easily checked using the definitions of I(p,q) and $\sigma(y,q)$. In the literature, in the industry, in Wikipedia, and in Python, the terminology³ is confused: The relative information I(p,q) is almost always called "relative entropy." Since the entropy H is the negative of the information I, this is looking at things upside-down. In other settings, I(p,q) is called the "Kullback–Leibler divergence," which is not exactly intuitive terminology. Also, in machine learning, $I_{\text{cross}}(p,q)$ is called the "cross-entropy," not cross-information, continuing the confusion. Rubbing salt into the wound, in Python, entropy(p) is H(p), which is correct, but entropy(p,q) is I(p,q), which is incorrect, or, at the very least, inconsistent, even within Python. How does one keep things straight? By remembering that it's convex functions that we like to minimize, not concave functions. In more vivid terms, would you rather ski down a convex slope, or a concave slope? In machine learning, loss functions are built to be minimized, and information, in any form, is convex, while entropy, in any form, is concave. Table 5.33 summarizes the situation. | H = -I | Information | Entropy | | |-----------|-------------------------------|-------------------------|--| | Absolute | I(p) | H(p) | | | Cross | $I_{\mathrm{cross}}(p,q)$ | $H_{\text{cross}}(p,q)$ | | | Relative | I(p,q) | H(p,q) | | | Curvature | Convex | Concave | | | Error | $I(p,q)$ with $q = \sigma(z)$ | | | **Table 5.33** The third row is the sum of the first and second rows, and the H column is the negative of the I column. #### Exercises **Exercise 5.6.1** Let v be a centered vector, and suppose v is a multiple of 1. Show v = 0. $^{^3}$ The quantities used here are identical to those in the literature, it's only the naming that is confused. **Exercise 5.6.2** Let p be a probability vector, and v be a vector. Then p+tv is a probability vector for all scalar t iff v is centered. **Exercise 5.6.3** Use strict convexity of $-\log x$ to show I(p,q) is positive if $p \neq q$, and I(p,p) = 0. **Exercise 5.6.4** Let p be a probability vector. Use (5.6.15) to show the information error $I(p, \sigma(y))$ is strictly convex on centered vectors y. **Exercise 5.6.5** Let p be a strict probability vector with $\epsilon = \min p_i > 0$. Use (5.6.15) to show $$I(p,\sigma(q)) \ge I(p) + \epsilon dZ(y)$$ for y centered. Conclude the information error $I(p,\sigma(y))$ is proper on centered vectors y. **Exercise 5.6.6** Let A be a matrix satisfying $A^t \mathbf{1} = 0$, let b be a strict probability vector with $A^t b$ defined, and let $f(x) = I(b, \sigma(Ax))$. Use Exercise **4.3.6** and the two previous exercises to conclude f(x) is proper and strictly convex on the row space of A. Compute $\nabla f(x)$ to show the minimizer x^* in the row space of A is the unique solution of $$A^t \sigma(Ax) = A^t b.$$ This is the logistic analog of the regression equation. # Chapter 6 Statistics #### 6.1 Estimation In statistics, like any science, we start with a guess or an assumption or hypothesis, then we take a measurement, then we accept or modify our guess/assumption based on the result of the measurement. This is common sense, and applies to everything in life, not just statistics. For example, suppose you see a sign on campus saying There is a lecture in room B120. How can you tell if this is true/correct or not? One approach is to go to room B120 and look. Either there is a lecture or there isn't. Problem solved. But then someone might object, saying, wait, what if there is a lecture in room B120 tomorrow? To address this, you go every day to room B120 and check, for 100 days. You find out that in 85 of the 100 days, there is a lecture, and in 15 days, there is none. Based on this, you can say you are 85% confident there is a lecture there. Of course, you can never be sure, it depends on which day you checked, you can only provide a confidence level. Nevertheless, this kind of thinking allows us to quantify the probability that our hypothesis is correct. In general, the measurement is significant if it is *unlikely*. When we obtain a significant measurement, then we are likely to reject our guess/assumption. So significance = 1 - confidence. In practice, our guess/assumption allows us to calculate a p-value, which is the probability that the measurement is not consistent with our assumption. In the above scenario, the p-value is .15, determined by repeatedly sampling the room. This is what statistics is
about, summarized in Figure 6.1. The details may be more or less complicated depending on the problem situation or setup, but this is the central idea. **Fig. 6.1** Statistics flowchart: p-value p and significance α . Here is a geometric example. Grab two vectors in three dimensions at random and measure the angle between them. Is there any pattern to the answer? Doing so twenty times, we see the answer is no, the resulting angle can be any angle. Now grab two vectors in 784 dimensions at random. Then, as we shall see, there is a pattern. The null hypothesis and the alternate hypothesis are - H_0 : The angle between two randomly selected vectors in 784 dimensions is approximately 90° - H_a : The angle between two randomly selected vectors in 784 dimensions is approximately 60° . In $\S A.4$, there is code (A.4) returning the angle Angle(u,v) between two vectors. To test these hypotheses, we run the code ``` from numpy import * from numpy.random import default_rng samples = default_rng().normal mu, sigma, d = 0,1, 784 for _ in range(20): u = samples(mu,sigma,d) v = samples(mu,sigma,d) print(Angle(u,v)) ``` 6.1. ESTIMATION 357 to randomly select u, v twenty times. Here samples(mu, sigma,d) returns a vector in \mathbf{R}^d whose components are selected independently and randomly according to a normal distribution with mean μ and standard deviation σ . This code returns (since the selection is random, your numbers will differ) ``` 86.27806537791886 87.91436653824776 93.00098725550777 92.73766421951748 90.005139015804 87.9964343444482 89.77813370637857 96.09801014394806 90.07032573539982 89.37679070400239 91.3405728939376 86.49851399221568 87.12755619082597 88.87980905998855 89.80377324818076 91.3006921339982 91.43977096117017 88.52516224405458 86.89606919838387 90.49100744167357 ``` and we see strong evidence supporting H_0 . On the other hand, run the code ``` from numpy import * from numpy.random import default_rng samples = default_rng().binomial n, p, d = 1, .5, 784 # one coin toss # n, p, d = 3, .5, 784 # three coin tosses for _ in range(20): u = samples(n,p,d) v = samples(n,p,d) print(Angle(u,v)) ``` to randomly select u, v twenty times. Here samples(n,p,d) returns a vector in \mathbf{R}^d whose components are selected independently and randomly according to the number of heads in n tosses of a coin with bias p. This code returns ``` 59.43464627897324 59.14345748418916 60.31453922165891 ``` ``` 60.38024365702492 59.24709660805488 59.27165957992343 61.21424657806321 60.55756381536082 61.59468919876665 61.33296028237481 60.03925473033243 60.25732069941224 61.77018692842784 60.672901794058326 59.628519516164666 59.41272458020638 58.43172340007064 59.863796136907744 59.45156367988921 59.95835532791699 ``` and we see strong evidence supporting H_1 . The difference between the two scenarios is the distribution. In the first scenario, the components are distributed according to a standard normal. In the second scenario, the components are distributed according to one or three fair coin tosses. To see how the distribution affects things, we bring in the law of large numbers, which is discussed in §5.3. Let X_1, X_2, \ldots, X_d be a simple random sample from some population, and let μ be the population mean. Recall this means X_1, X_2, \ldots, X_d are i.i.d. random variables, with $\mu = E(X)$. The sample mean is $$\bar{X} = \frac{X_1 + X_2 + \dots + X_d}{d}.$$ #### Law of Large Numbers For large sample size d, the sample mean \bar{X} approximately equals the population mean μ , $\bar{X} \approx \mu$. We use the law of large numbers to explain the closeness of the vector angles to specific values. Assume $u = (x_1, x_2, \dots, x_d)$, and $v = (y_1, y_2, \dots, y_d)$ where all components are selected independently of each other, and each is selected according to the same distribution. Let $U = (X_1, X_2, ..., X_d)$, $V = (Y_1, Y_2, ..., Y_d)$, be the corresponding random variables. Then $X_1, X_2, ..., X_d$ and $Y_1, Y_2, ..., Y_d$ are independent and identically distributed (i.i.d.), with population mean $E(X_1) = E(Y_1)$. 6.1. ESTIMATION 359 From this, $X_1Y_1, X_2Y_2, \ldots, X_dY_d$ are i.i.d. random variables with population mean $E(X_1Y_1)$. By the law of large numbers, ¹ $$\frac{X_1Y_1 + X_2Y_2 + \dots + X_dY_d}{d} \approx E(X_1Y_1),$$ so $$U \cdot V = X_1 Y_1 + X_2 Y_2 + \dots + X_d Y_d \approx d E(X_1 Y_1).$$ Similarly, $U \cdot U \approx d E(X_1^2)$ and $V \cdot V \approx d E(Y_1^2)$. Hence (check that the d's cancel) $$\cos(U, V) = \frac{U \cdot V}{\sqrt{(U \cdot U)(V \cdot V)}} \approx \frac{E(X_1 Y_1)}{\sqrt{E(X_1^2)E(Y_1^2)}}.$$ Since X_1 and Y_1 are independent with mean μ and variance σ^2 , $$E(X_1Y_1) = E(X_1)E(Y_1) = \mu^2, \qquad E(X_1^2) = \mu^2 + \sigma^2, \qquad E(Y_1^2) = \mu^2 + \sigma^2.$$ If θ is the angle between U and V, we conclude $$\cos(\theta) = \frac{U \cdot V}{\sqrt{(U \cdot U)(V \cdot V)}} \approx \frac{\mu^2}{\mu^2 + \sigma^2}.$$ When the distribution is standard normal, $\mu = 0$, so the angle is approximately 90°. When the distribution is Bernoulli with parameter p, $$\frac{\mu^2}{\mu^2 + \sigma^2} = \frac{p^2}{p^2 + p(1-p)} = p.$$ For p = .5, this results in an angle of 60° . The general result is #### Random Vectors in High Dimensions Let U and V be two vectors selected randomly. Assume the components of U and V are independent and identically distributed with mean μ and variance σ^2 . Let θ be the angle between them. When the vector dimension is high, $$\cos(\theta)$$ is approximately $\frac{\mu^2}{\mu^2 + \sigma^2}$ $^{^{1}}$ \approx means the ratio of the two sides approaches 1 for large n, see §A.7. ### 6.2 **Z**-test Suppose we want to estimate the proportion of American college students who have a smart phone. Instead of asking every student, we take a sample and make an estimate based on the sample. The population proportion p is the actual proportion of students that in fact have a smart phone. Then 0 . Pick a student, and let $$X = \begin{cases} 1, & \text{if the student has a smartphone,} \\ 0, & \text{if not.} \end{cases}$$ Then X is a Bernoulli random variable with mean p. For example, suppose the population proportion of students that have a smartphone is p=.7, and we sample n=25 students, obtaining a sample proportion \bar{X} . If we repeat the sampling N=1000 times, we will obtain 1000 values for \bar{X} . Figure 6.2 displays the resulting histogram of \bar{X} values. Here is the code ``` from numpy import * from matplotlib.pyplot import * from numpy.random import default_rng samples = default_rng().binomial n, p, N = 25, .7, 1000 v = samples(n,p,N)/n hist(v,edgecolor ='Black') show() ``` Fig. 6.2 Histogram of sampling n=25 students, repeated N=1000 times. 6.2. Z-TEST 361 Let X_1, X_2, \ldots, X_n be a simple random sample of size n. This means n students were selected randomly and independently and whether or not they had smartphones was recorded in the variables X_1, X_2, \ldots, X_n . Each of these variables equals one or zero with probability p or 1-p. The sample mean $(\S5.3)$ is $$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{k=1}^n X_k.$$ Because each X_k is 0 or 1, this is the *sample proportion* of the students in the sample that have smartphones. Like p, \bar{X} is also between zero and one. Because the samples vary, it is impossible to make absolute statements about the population. Instead, as we see below, the best we can do is make statements that come with a *confidence level*. Confidence levels are expressed as percentages, such as a 95% confidence level, or as a proportion, such as a .95 confidence level. Often levels are expressed as *significance levels*. The *significance level* is the corresponding tail probability, so significance level $$= 1 - \text{confidence level}$$. A confidence level of zero indicates that we have *no faith at all* that selecting another sample will give similar results, while a confidence level of 1 indicates that we have *no doubt at all* that selecting another sample will give similar results. When we say p is within $\bar{X} \pm \epsilon$, or $$|p - \bar{X}| < \epsilon,$$ we call ϵ the margin of error. The interval $$(L, U) = (\bar{X} - \epsilon, \bar{X} + \epsilon)$$ is a confidence interval. With the above setup, we have the population proportion p, and the four sample characteristics - \bullet sample size n - sample proportion \bar{X} . - margin of error ϵ , - confidence level α . Suppose we do not know p, but we know n and \bar{X} . We say the margin of error is ϵ , at confidence level α , if $$Prob(|p - \bar{X}| < \epsilon) = \alpha.$$ Here are some natural questions: - 1. Given a sample of size n=20 and sample proportion $\bar{X}=.7$, what can we say about the margin of error ϵ with confidence $\alpha=.95$? - 2. Given a sample proportion $\bar{X}=.7$, what sample size n should we take to obtain a margin of error $\epsilon=.15$ with confidence $\alpha=.95$? - 3. Given a sample proportion $\bar{X} = .7$, what sample size n should we take to obtain a margin of error $\epsilon = .15$ with confidence $\alpha = .99$? - 4. Given a sample of size n = 20 and sample proportion $\bar{X} = .7$, with what confidence level α is the margin of error $\epsilon = .1$? The answers are at the end of the section. Suppose each X_k in the sample X_1, X_2, \ldots, X_n has mean μ and standard deviation σ . From §5.3, we know the mean and standard deviation of \bar{X} are μ and σ/\sqrt{n} . In particular, when X_1, X_2, \ldots, X_n is a Bernoulli sample, the mean and variance of the sample proportion \bar{X} are p and p(1-p)/n. Therefore, the mean and variance of the standardized random variable $$Z = \sqrt{n} \frac{\bar{X} - p}{\sqrt{p(1-p)}}$$ are zero and one. Returning to
our smartphone question, how close is the sample mean \bar{X} to the population mean E(X)=p? Remember, both \bar{X} and p are between 0 and 1. More specifically, given a margin of error ϵ , we want to compute the confidence level $$Prob\left(\left|\bar{X}-p\right|<\epsilon\right).$$ This corresponds to the confidence interval $$L, U = \bar{X} - \epsilon, \bar{X} + \epsilon.$$ The key result is the central limit theorem ($\S5.3$): Z is approximately normal. How large should the sample size n be in order to apply the central limit theorem? When we have $success-failure\ condition$ $$np \ge 10, \qquad n(1-p) \ge 10.$$ For example, p = .7 and n = 50 satisfies the success-failure condition. Let α be the two-tail significance level, say $\alpha = .05$. Assuming Z is exactly normal, let z^* be the z-score corresponding to significance α , $$Prob(|Z| > z^*) = \alpha.$$ Let σ/\sqrt{n} be the standard error. By the central limit theorem, 6.2. Z-TEST 363 $$\alpha \approx Prob\left(\frac{|\bar{X}-p|}{\sqrt{p(1-p)}} > \frac{z^*}{\sqrt{n}}\right).$$ To compute the confidence interval (L, U), we solve $$\frac{|\bar{X} - p|}{\sqrt{p(1-p)}} = \frac{z^*}{\sqrt{n}} \tag{6.2.1}$$ for p. But (6.2.1) may be rewritten as a quadratic equation in p, leading to the approximate solution $$L, U = \bar{X} \pm \epsilon = \bar{X} \pm \frac{z^*}{\sqrt{n}} \cdot \sqrt{\bar{X}(1-\bar{X})}.$$ From here we obtain the margin of error $$\epsilon = \frac{z^*}{\sqrt{n}} \cdot \sqrt{\bar{X}(1 - \bar{X})}.$$ More generally, let z^* be the z-score corresponding to significance level $\alpha,$ so ``` zstar = Z.ppf(alpha) # lower-tail, zstar < 0 zstar = Z.ppf(1-alpha) # upper-tail, zstar > 0 zstar = Z.ppf(1-alpha/2) # two-tail, zstar > 0 ``` Given a population with known standard deviation σ , sample size n, and sample mean \bar{X} , the margin of error is $$\epsilon = z^* \cdot \frac{\sigma}{\sqrt{n}},$$ and the intervals $$(L,U) = \begin{cases} (\bar{X} - \epsilon, \bar{X}), & \text{lower-tail,} \\ (\bar{X}, \bar{X} + \epsilon), & \text{upper-tail,} \\ (\bar{X} - \epsilon, \bar{X} + \epsilon), & \text{two-tail,} \end{cases}$$ are the *confidence intervals* at significance level α . When not specified, a confidence interval is usually taken to be two-tail. In the Python code below, instead of working with the standardized statistic Z, we work directly with the \bar{X} . When σ is not known, we have to replace the normal distribution by the t distribution (§6.3). ``` ############################## # Confidence Interval - Z from numpy import * from scipy.stats import norm as {\bf Z} # significance level alpha def confidence_interval(xbar,sdev,n,alpha,type): Xbar = Z(xbar,sdev/sqrt(n)) if type == "two-tail": U = Xbar.ppf(1-alpha/2) L = Xbar.ppf(alpha/2) elif type == "upper-tail": U = Xbar.ppf(1-alpha) L = xbar elif type == "lower-tail": L = Xbar.ppf(alpha) U = xbar else: print("what's the test type?"); return return L, U # when X is not Bernoulli 0,1, # Z-test assumes sdev is known!!! # when X is Bernoulli, sdev = sqrt(xbar*(1-xbar)) alpha = .02 sdev = 228 n = 35 xbar = 95 L, U = confidence_interval(xbar,sdev,n,alpha,type) print("type: ", type) print("significance, sdev, n, xbar: ", alpha,sdev,n,xbar) print("lower, upper: ",L, U) ``` Now we can answer the questions posed at the start of the section. Here are the answers. - 1. When n = 20, $\alpha = .95$, and $\bar{X} = .7$, we have [L, U] = [.5, .9], so $\epsilon = .2$. - 2. When $\bar{X}=.7$, $\alpha=.95$, and $\epsilon=.15$, we run confidence_interval for $15 \le n \le 40$, and select the least n for which $\epsilon < .15$. We obtain n=36. - 3. When $\bar{X} = .7$, $\alpha = .99$, and $\epsilon = .15$, we run confidence_interval for $1 \le n \le 100$, and select the least n for which $\epsilon < .15$. We obtain n = 62. - 4. When $\bar{X} = .7$, n = 20, and $\epsilon = .1$, we have $$z^* = \frac{\epsilon\sqrt{n}}{\sigma} = .976.$$ 6.2. Z-TEST 365 Since $Prob(Z > z^*) = .165$, the confidence level is 1 - 2 * .165 = .68 or 68%. The speed limit on a highway is $\mu_0 = 120$. Ten automatic speed cameras are installed along a stretch of the highway to measure passing vehicles speeds. Because the cameras aren't perfect, the average speed \bar{X} measured by the cameras may not equal a vehicle's true speed μ . As a consequence, some drivers who were driving at the speed limit may be fined. These drivers are false positives. Suppose the distribution of a vehicle's measured speed is normal with standard deviation 2. What measured speed cutoff μ^* should the authorities use to keep false positives below 1%? Here we are asked for the upper-tail confidence interval $(L, U) = (\mu_0, \mu^*)$ at significance level .01. A driver will be fined if their average measured speed \bar{X} is higher than μ^* . Using the above code, the cutoff μ^* equals 121.47. One use of confidence intervals is hypothesis testing. Here we have two hypotheses, a null hypothesis and an alternate hypothesis. In the above setting where we are estimating a population parameter μ , the null hypothesis is that μ equals a certain value μ_0 , and the alternate hypothesis is that μ is not equal to μ_0 . Hypothesis testing is of three types, depending on the alternate hypothesis: $\mu \neq \mu_0$, $\mu > \mu_0$, $\mu < \mu_0$. These are two-tail, lower-tail, and upper-tail hypotheses. - H_0 : $\mu = \mu_0$ - H_a : $\mu \neq \mu_0$ or $\mu < \mu_0$ or $\mu > \mu_0$. For example, going back to our smartphone setup, if we sample n=20 students, obtaining a mean $\bar{x}=.7$, then $\sigma=\sqrt{\bar{x}(1-\bar{x})}=.46$, and the two-tail 5% confidence interval is then [.5, .9]. If μ_0 lies outside the confidence interval, we reject H_0 and accept H_a , at the 5% level. Otherwise, if μ_0 lies within the interval, we do not reject H_0 . Suppose 35 people are randomly selected and the accuracy of their wrist-watches is checked, with positive errors representing watches that are ahead of the correct time and negative errors representing watches that are behind the correct time. The sample has a mean of 95 seconds and a population standard deviation of 228 seconds. At the 2% significance, can we claim the population mean is $\mu_0 = 0$? Here • H_0 : $\mu = 0$ • H_a : $\mu \neq 0$. Here the significance level is $\alpha = .02$ and $\mu_0 = 0$. To decide whether to reject H_0 or not, compute the standardized test statistic $$z = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma} = 2.465.$$ Since z is a sample from an approximately normal distribution Z, the p-value $$p = Prob(|Z| > z) = .0137.$$ On the other hand, the z-score corresponding to the requested significance level is $z^* = 2.326$, since $$Prob(|Z| > 2.326) = .02.$$ Since p is less than α , or equivalently, since $|z| > z^*$, we reject H_0 . In other words, when the p-value is smaller than the significance level, it is more significant, and we reject H_0 . Equivalently, the 98% confidence interval is $$(\bar{x} - \epsilon, \bar{x} + \epsilon) = (5.3, 184.6)$$. Since $\mu_0 = 0$ is outside this interval, we reject H_0 . #### **Hypothesis Testing** There are three types of alternative hypotheses H_a : $$\mu < \mu_0, \qquad \mu > \mu_0, \qquad \mu \neq \mu_0.$$ These are lower-tail, upper-tail, and two-tail tests. In every case, we have a sample of size n, a statistic \bar{x} , a standard deviation σ , a standardized statistic $$z = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma},$$ a significance level α , the *p*-value $$p = Prob(Z < z),$$ $p = Prob(Z > z),$ $p = Prob(|Z| > z),$ $$\begin{split} p &= Prob(Z < z), \qquad p = Prob(Z > z), \qquad p = Prob(|Z| > z), \\ \text{and the critical cutoff } z^*, \\ Prob(Z < z^*) &= \alpha, \qquad Prob(Z > z^*) = \alpha, \qquad Prob(|Z| > z^*) = \alpha. \end{split}$$ 6.2. Z-TEST 367 Then we reject H_0 whenever z is more significant than z^* , which is the same as saying whenever the p-value p is less than the significance level α . In the Python code below, instead of working with the standardized statistic Z, we work directly with \bar{X} , which is normally distributed with mean μ_0 and standard deviation σ/\sqrt{n} . ``` # Hypothesis Z-test from numpy import * from scipy.stats import norm as Z # significance level alpha def ztest(mu0, sdev, n, xbar,type): Xbar = Z(mu0,sdev/sqrt(n)) print("mu0, sdev, n, xbar: ", mu0, sdev, n, xbar) if type == "lower-tail": p = Xbar.cdf(xbar) elif type == "upper-tail": p = 1 - Xbar.cdf(xbar) elif type == "two-tail": p = 2 * (1 - Xbar.cdf(abs(xbar))) print("type: ",type) print("pvalue: ",p) if p < alpha: print("reject HO")</pre> else: print("do not reject HO") xbar = 122 n = 10 type = "upper-tail" mu0 = 120 sdev = 2 alpha = .01 ztest(mu0, sdev, n, xbar,type) ``` Going back to the driving speed example, the hypothesis test is - H_0 : $\mu = \mu_0$ - H_a : $\mu > \mu_0$ If a driver's measured average speed is $\bar{X} = 122$, the above code rejects H_0 . This is consistent with the confidence interval cutoff we found above. There are two types of possible errors we can make. a *Type I error* is when H_0 is true, but we reject it, and a *Type 2 error* is when H_0 is not true but we fail to reject it. | | H_0 is true | H_0 is false | |---------------------|------------------------|------------------------| | do not reject H_0 | $1-\alpha$ | Type II error: β | | reject H_0 | Type I error: α | Power: $1 - \beta$ | Table 6.3 The error matrix. We reject H_0 when the p-value of Z is less than the significance level α , which happens when $z < z^*$ or $z > z^*$ or $|z| > z^*$. In all cases, the chance of this happening is by definition α . In other words, $$Prob(\text{Type I error}) = Prob(p\text{-value} < \alpha \mid H_0) = \alpha.$$ Thus the probability of a type I error is the significance
level α . We make a Type II error when we do not reject H_0 , but H_0 is false. To compute the probability of a Type II error, suppose the true value of μ is μ_1 . Then we do not reject H_0 if $|z| < |z^*|$, which is when μ_0 lies in the confidence interval $\bar{x} \pm z^* \sigma / \sqrt{n}$, or when \bar{x} lies in the interval $$\mu_0 - \frac{z^*\sigma}{\sqrt{n}} < \bar{x} < \mu_0 + \frac{z^*\sigma}{\sqrt{n}}.$$ But when $\mu = \mu_1$, \bar{X} is $N(\mu_1, \sigma)$, so the probability of this event can be computed. Standardize \bar{X} by subtracting μ_1 and dividing by the standard error. Then we have a Type II error when $$\sqrt{n} \frac{(\mu_0 - \mu_1)}{\sigma} - z^* < z < \sqrt{n} \frac{(\mu_0 - \mu_1)}{\sigma} + z^*.$$ If we set δ to equal the standardized difference in the means, $$\delta = \sqrt{n} \frac{(\mu_0 - \mu_1)}{\sigma},$$ then we have a Type II error when $$\delta - z^* < Z < \delta + z^*.$$ or when $|Z - \delta| < z^*$. Hence $$Prob(\text{Type II error}) = Prob(|Z - \delta| < z^*).$$ 6.2. Z-TEST 369 This calculation was for a two-tail test. When the test is upper-tail or lower-tail, a similar calculation leads to the code ``` # Type1 and Type2 errors - Z from numpy import * from scipy.stats import norm as Z def type2_error(type,mu0,mu1,sdev,n,alpha): print("significance,mu0,mu1, sdev, n: ", alpha,mu0,mu1,sdev,n) print("prob of type1 error: ", alpha) delta = sqrt(n) * (mu0 - mu1) / sdev if type == "lower-tail": zstar = Z.ppf(alpha) type2 = 1 - Z.cdf(delta + zstar) elif type == "upper-tail": zstar = Z.ppf(1-alpha) type2 = Z.cdf(delta + zstar) elif type == "two-tail": zstar = Z.ppf(1 - alpha/2) type2 = Z.cdf(delta + zstar) - Z.cdf(delta - zstar) else: print("what's the test type?"); return print("test type: ",type) print("zstar: ", zstar) print("delta: ", delta) print("prob of type2 error: ", type2) print("power: ", 1 - type2) mu0 = 120 mu1 = 122 sdev = 2 n = 10 alpha = .01 type = "upper-tail" type2_error(type,mu0,mu1,sdev,n,alpha) ``` A type II error is when we do not reject the null hypothesis and yet it's false. The *power* of a test is the probability of rejecting the null hypothesis when it's false (Figure 6.3). If the probability of a type II error is β , then the power is $1 - \beta$. Going back to the driving speed example, what is the chance that someone driving at $\mu_1 = 122$ is not caught? This is a type II error; using the above code, the probability is $$\beta = Prob(\bar{X} = 120 \mid \mu = 122) = 20\%.$$ Therefore this test has power 80% to detect such a driver. #### 6.3 T-test Let X_1, X_2, \ldots, X_n be a simple random sample from a population. We repeat the previous section when we know neither the population mean μ , nor the population variance σ^2 . We only know the sample mean $$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$ and the sample variance $$S^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2}.$$ For example, assume X_1, X_2, \ldots, X_n are Bernoulli random variables with values 0, 1. Then as we've seen before, $$(n-1)S^{2} = \sum_{k=1}^{n} (X_{k} - \bar{X})^{2} = n\bar{X}(1 - \bar{X}).$$ From §5.5, when the population is standard normal, - $(n-1)S^2$ is chi-squared of degree n-1, and \bar{X} and S^2 are independent. A $Student^2$ random variable is a continuous random variable T with probability density function $$p(t) = C \cdot \left(1 + \frac{t^2}{d}\right)^{-(d+1)/2}, \qquad a < t < b.$$ (6.3.1) Here C is a constant to make the total area under the graph equal to one (Figure 6.4). The distribution of a Student random variable T is the Student distribution with degree d, also called the t-distribution with degree d. The Student distribution has pdf (6.3.1), and the probability that T lies in a small interval $^{^2}$ This terminology is due to the statistician R. A. Fisher. 6.3. *T*-TEST 371 $$\frac{Prob(a < T < b)}{b - a} \approx p(t), \qquad a < t < b,$$ When the interval [a, b] is not small, this is not correct. The exact formula for Prob(a < T < b) is the area under the graph (Figure 6.4). This is obtained by integration, $$Prob(a < T < b) = \int_{a}^{b} p(t) dt.$$ (6.3.2) Under this interpretation, this probability corresponds to the area under the graph between the vertical lines at a and at b, and the total area under the graph corresponds to $a = -\infty$ and $b = \infty$. More generally, means of f(T) are computed by integration, $$E(f(T)) = \int_{-\infty}^{\infty} f(t)p(t) dt,$$ with the integral computed via the fundamental theorem of calculus (A.6.2) or Python. Fig. 6.4 Student distribution, against normal (dashed). The Student pdf (6.3.1) approaches the standard normal pdf (5.4.1) as $d \to \infty$ (Exercise 6.3.1). ``` from numpy import * from scipy.stats import t as T, norm as Z from matplotlib.pyplot import * for d in [3,4,7]: t = arange(-3,3,.01) plot(t,T(d).pdf(t),label="d = "+str(d)) plot(t,Z.pdf(t),"--",label=r"d = ∞") grid() legend() show() ``` The main result of this section, derived using calculus, is #### Relation Between Z, U, and T Suppose Z and U are independent, where Z is standard normal, and U is chi-squared with degree d. Then $$T = \frac{Z}{\sqrt{U/d}}$$ is Student with degree d. In the previous section, we normalized a sample mean by subtracting the mean μ and dividing by the standard error σ/\sqrt{n} . Since now we don't know σ , it is reasonable to divide by the sample standard error, obtaining $$\sqrt{n} \cdot \frac{\bar{X} - \mu}{S} = \sqrt{n} \cdot \frac{\bar{X} - \mu}{\sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (X_k - \bar{X})^2}}.$$ If we standardize each variable by $$X_k = \mu + \sigma Z_k$$ then we can verify $$\bar{X} = \mu + \sigma \bar{Z}, \qquad \bar{Z} = \frac{Z_1 + Z_2 + \dots + Z_n}{n},$$ and 6.3. T-TEST 373 $$S^{2} = \sigma^{2} \frac{1}{n-1} \sum_{k=1}^{n} (Z_{k} - \bar{Z})^{2}.$$ From this, we have $$\sqrt{n} \cdot \frac{\bar{X} - \mu}{S} = \sqrt{n} \cdot \frac{\bar{Z}}{\sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (Z_k - \bar{Z})^2}} = \sqrt{n} \cdot \frac{\bar{Z}}{\sqrt{U/(n-1)}}.$$ Using the main result with d = n - 1, we arrive at #### Samples and Student Distributions Let X_1, X_2, \ldots, X_n be independent normal random variables with mean μ . Let \bar{X} be the sample mean, let S^2 be the sample variance, and let $$T = \sqrt{n} \cdot \frac{\bar{X} - \mu}{S}.$$ Then T is a Student random variable with degree (n-1). The takeaway here is we do not need to know the population standard deviations σ of X_1, X_2, \ldots, X_n to compute T. The t-score t^* corresponding³ to significance α is ``` tstar = T(d).ppf(alpha) # lower-tail, tstar < 0 tstar = T(d).ppf(1-alpha) # upper-tail, tstar > 0 tstar = T(d).ppf(1-alpha/2) # two-tail, tstar > 0 ``` Here d is the degree of T. Then we have ³ Geometrically, the *p*-value Prob(T > 1) is the probability that a normally distributed point in (d+1)-dimensional spacetime is inside the light cone. ``` tstar = T(d).ppf(1-alpha/2) L = xbar - tstar * s / sqrt(n) U = xbar + tstar * s / sqrt(n) elif type == "upper-tail": tstar = T(d).ppf(1-alpha) L = xbar U = xbar + tstar* s / sqrt(n) elif type == "lower-tail": tstar = T(d).ppf(alpha) L = xbar + tstar* s / sqrt(n) U = xbar else: print("what's the test type?"); return print("type: ",type) return L, U n = 10 xbar = 120 s = 2 alpha = .01 type = "upper-tail" print("significance, s, n, xbar: ", alpha,s,n,xbar) L,U = confidence_interval(xbar,s,n,alpha,type) print("lower, upper: ", L,U) ``` Going back to the driving speed example from §6.2, instead of assuming the population standard deviation is $\sigma=2$, we compute the sample standard deviation and find it's S=2. Recomputing with T(9), instead of Z, we see (L,U)=(120,121.78), so the cutoff now is $\mu^*=121.78$, as opposed to $\mu^*=121.47$ there. We turn now to hypothesis testing. As before, we have two hypotheses, a null hypothesis and an alternate hypothesis. In the above setting where we are estimating a population parameter, the null hypothesis is that μ equals a certain value μ_0 , and the alternate hypothesis is that μ is not equal to μ_0 . - H_0 : $\mu = \mu_0$ - H_a : $\mu \neq \mu_0$. Here is the code: 6.3. *T*-TEST 375 ``` def ttest(mu0, s, n, xbar,type): d = n-1 print("mu0, s, n, xbar: ", mu0,s,n,xbar) t = sqrt(n) * (xbar - mu0) / s print("t: ",t) if type == "lower-tail": p = T(d).cdf(t) elif type == "upper-tail": p = 1 - T(d).cdf(t) elif type == "two-tail": p = 2 * (1 - T(d).cdf(abs(t))) print("pvalue: ",p) if p < alpha: print("reject HO")</pre> else: print("do not reject HO") xbar = 122 n = 10 type = "upper-tail" mu0 = 120 s = 2 alpha = .01 ttest(mu0, s, n, xbar,type) ``` Going back to the driving speed example, the hypothesis test is - H_0 : $\mu = \mu_0$ - H_a : $\mu > \mu_0$ If a driver's measured average speed is $\bar{X}=122$, the above code rejects H_0 . This is consistent with the confidence interval cutoff we found above. However, the p-value obtained here is greater than the corresponding p-value in §6.2. For Type I and Type II errors, the code is ``` elif type == "upper-tail": tstar = T(d).ppf(1-alpha) type2 = T(d).cdf(delta + tstar) elif type == "two-tail": tstar = T(d).ppf(1 - alpha/2) type2 = T(d).cdf(delta + tstar) - T(d).cdf(delta - tstar) else: print("what's the test type?"); return print("test type: ",type) print("tstar: ", tstar) print("delta: ", delta) print("prob of type2 error: ", type2) print("power: ", 1 - type2) type2_error(type,mu0,mu1,n,alpha) ``` Going back to the driving speed example, if a driver's measured average speed is $\bar{X}=122$, what is the chance they will not be fined? From the code, the probability of this Type II error is 37%, and the power to detect such a driver is 63%. #### Exercises **Exercise 6.3.1** Use the compound-interest formula (A.3.9) to show the Student pdf (6.3.1) equals the standard normal pdf (5.4.1) when $d = \infty$. Since the formula for the constant C is not
given, ignore C in your calculation. #### 6.4 Chi-Squared Tests Let X_1, X_2, \ldots, X_n be i.i.d. random variables, where each X_k is categorical. This means each X_k is a discrete random variable (§5.3), taking values in one of d categories. For simplicity, assume the categories are $$i = 1, 2, \dots, d$$. When d = 2, this reduces to the Bernoulli case. When d=2 and $X_k=0,1$, the sample mean \bar{X} is a proportion \hat{p} , the population mean is $p=Prob(X_k=1)$, the population standard deviation is $\sqrt{p(1-p)}$, and the sample standard deviation is $\sqrt{\bar{X}(1-\bar{X})}=\sqrt{\hat{p}(1-\hat{p})}$. By the central limit theorem, the test statistic $$Z = \sqrt{n} \cdot \frac{\hat{p} - p}{\sqrt{p(1-p)}} \tag{6.4.1}$$ is approximately standard normal for large enough sample size, and consequently $U=Z^2$ is approximately chi-squared with degree one. The chi-squared test generalizes this from d=2 categories to d>2 categories. Given a category i, let $\#_i$ denote the number of times $X_k = i$, $1 \le k \le n$, in a sample of size n. Then $\#_i$ is the *count* that $X_k = i$, and $\hat{p}_i = \#_i/n$ is the *observed frequency*, in a sample of size n. Let p_i be the *expected frequency*, $$p_i = Prob(X_k = i).$$ Then $p = (p_1, p_2, \dots, p_d)$ is the *probability vector* associated to X. Since X_k are identically distributed, this does not depend on k. By the central limit theorem, $$\sqrt{n}(\hat{p}_i - p_i) = \sqrt{n} \left(\frac{\#_i}{n} - p_i \right),$$ are approximately normal for large n. Based on this, we have the #### Goodness-Of-Fit Test Let $\hat{p} = (\hat{p}_1, \hat{p}_2, \dots, \hat{p}_d)$ be the observed frequencies corresponding to samples X_1, X_2, \dots, X_n , and let $p = (p_1, p_2, \dots, p_d)$ be the expected frequencies. Then, for large sample size n, the statistic $$n\sum_{i=1}^{d} \frac{(\hat{p}_i - p_i)^2}{p_i} \tag{6.4.2}$$ is approximately chi-squared with degree d-1. By clearing denominators, (6.4.2) may be rewritten in terms of counts as follows, $$\sum_{i=1}^{d} \frac{(\#_i - np_i)^2}{np_i} = \sum_{i=1}^{d} \frac{(observed_i - expected_i)^2}{expected_i}.$$ When d = 2, this statistic reduces to Z^2 , where Z is given by (6.4.1). Here is the code. ``` from numpy import * from scipy.stats import chi2 as U def goodness_of_fit(observed,expected): # assume len(observed) == len(expected) d = len(observed) ``` Suppose a dice is rolled n = 120 times, and the observed counts are $$O_1 = 17, O_2 = 12, O_3 = 14, O_4 = 20, O_5 = 29, O_6 = 28.$$ Notice $$O_1 + O_2 + O_3 + O_4 + O_5 + O_6 = 120.$$ If the dice is fair, the expected counts are $$E_1 = 20, E_2 = 20, E_3 = 20, E_4 = 20, E_5 = 20, E_6 = 20.$$ Based on the observed counts, at 5% significance, what can we conclude about the dice? Here there are d=6 categories, $\alpha=.05$, and the statistic (6.4.2) equals $$u = 12.7.$$ The dice is fair if u is not large and the dice is unfair if u is large. At significance level α , the large/not-large cutoff u^* is ``` from scipy.stats import chi2 as U d = 6 ustar = U(d-1).ppf(1-alpha) ``` Since this returns $u^* = 11.07$ and $u > u^*$, we can conclude the dice is not fair To derive the goodness-of-fit test, let X be a discrete random variable, taking values in 1, 2, ..., d, with distribution $p = (p_1, p_2, ..., p_d)$. We vectorize (§1.3) X by defining the one-hot encoded (§2.4) vector-valued random variable $V = (V_1, V_2, ..., V_d)$ as follows, $$V_{i} = \begin{cases} \frac{1}{\sqrt{p_{i}}} & \text{if } X = i, \\ 0 & \text{if } X \neq i. \end{cases}$$ $$(6.4.3)$$ For future reference, we denote $V = \text{vect}_p(X)$. Then $$E(V_i) = \frac{1}{\sqrt{p_i}} \operatorname{Prob}(X = i) = \frac{p_i}{\sqrt{p_i}} = \sqrt{p_i},$$ and $$E(V_i V_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$ for i, j = 1, 2, ..., d. If $$\mu = (\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_d}),$$ we conclude $$E(V) = \mu, \qquad E(V \otimes V) = I.$$ From this, $$E(V) = \mu, \qquad Var(V) = I - \mu \otimes \mu. \tag{6.4.4}$$ Now define $$V_k = \operatorname{vect}_p(X_k), \qquad k = 1, 2, \dots, n.$$ Since X_1, X_2, \ldots, X_n are i.i.d, V_1, V_2, \ldots, V_n are i.i.d. By (5.5.5), we conclude the random vector $$Z = \sqrt{n} \left(\frac{1}{n} \sum_{k=1}^{n} V_k - \mu \right)$$ has mean zero and variance $I - \mu \otimes \mu$. Since V_1, V_2, \ldots, V_n are i.i.d, by the central limit theorem, we also conclude Z is approximately normal for large n. Since $$|\mu|^2 = (\sqrt{p_1})^2 + (\sqrt{p_2})^2 + \dots + (\sqrt{p_d})^2 = p_1 + p_2 + \dots + p_d = 1,$$ μ is a unit vector. By the singular chi-squared result in §5.5, $|Z|^2$ is approximately chi-squared with degree d-1. Since $$Z_i = \sqrt{n} \left(\frac{\hat{p}_i}{\sqrt{p_i}} - \sqrt{p_i} \right), \tag{6.4.5}$$ we write $|Z|^2$ out, $$|Z|^2 = \sum_{i=1}^d Z_i^2 = n \sum_{i=1}^d \left(\frac{\hat{p}_i}{\sqrt{p_i}} - \sqrt{p_i}\right)^2 = n \sum_{i=1}^d \frac{(\hat{p}_i - p_i)^2}{p_i},$$ obtaining (6.4.2). Suppose X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n are samples measuring two possibly related effects. Suppose the X variables take on d categories, $i = 1, 2, \ldots, d$, and the Y variables take on N categories, $j = 1, 2, \ldots, N$. Let $$p_i = Prob(X_k = i), \qquad q_i = Prob(Y_k = j),$$ and set $p = (p_1, p_2, \dots, p_d)$, $q = (q_1, q_2, \dots, q_N)$. The goal is test whether the two effects are independent or not. Let $$r_{ij} = Prob(X_k = i \text{ and } Y_k = j).$$ Then r is a $d \times N$ matrix. The effects are independent when $$r_{ij} = p_i q_j,$$ or $r = p \otimes q$. For example, suppose 300 people are polled and the results are collected in a *contingency table* (Figure 6.5). | | Democrat | Republican | Independent | Total | |-------|----------|------------|-------------|-------| | Women | 68 | 56 | 32 | 156 | | Men | 52 | 72 | 20 | 144 | | Total | 120 | 128 | 52 | 300 | **Table 6.5** $2 \times 3 = d \times N$ contingency table [30]. Is a person's gender correlated with their party affiliation, or are the two variables independent? To answer this, let \hat{p} and \hat{q} be the observed frequencies $$\hat{p}_i = \frac{\#\{k: X_k = i\}}{n}, \qquad \hat{q}_j = \frac{\#\{k: Y_k = j\}}{n},$$ and let \hat{r} be the joint observed frequencies $$\hat{r}_{ij} = \frac{\#\{k : X_k = i \text{ and } Y_k = j\}}{n}.$$ Then \hat{r} is also a $d \times N$ matrix. When the effects are independent, $r=p\otimes q,$ so, by the law of large numbers, we should have $$\hat{r} \approx \hat{p} \otimes \hat{q}$$ for large sample size. The chi-squared independence test quantifies the difference of the two matrices r and \hat{r} . #### Chi-squared Independence Test If X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n are independent, then, for large sample size n, the statistic $$n\sum_{i,j=1}^{d,N} \frac{(\hat{r}_{ij} - \hat{p}_i\hat{q}_j)^2}{\hat{p}_i\hat{q}_j}$$ (6.4.6) is approximately chi-squared with degree (d-1)(N-1). Only sample data is used to compute the statistic (6.4.6), knowledge of p and q is not needed. Conversely, the test says nothing about p and q, and only queries independence. By clearing denominators, (6.4.6) may be rewritten in terms of counts as follows, $$\begin{split} \sum_{i,j=1}^{d,N} \frac{\left(n\#_{ij}^{XY} - \#_i^X \#_j^Y\right)^2}{n\#_i^X \#_j^Y} &= -n + n \sum_{i,j=1}^{d,N} \frac{\left(\#_{ij}^{XY}\right)^2}{\#_i^X \#_j^Y} \\ &= -n + n \sum_{i,j=1}^{d,N} \frac{(observed)^2}{expected}. \end{split}$$ The code ``` from numpy import * from scipy.stats import chi2 as U # table is dxN numpy array def chi2_independence(table): n = sum(table) # total sample size d = len(table) N = len(table.T) rowsum = array([sum(table[i,:]) for i in range(d)]) colsum = array([sum(table[:,j]) for j in range(e)]) expected = outer(rowsum,colsum) # tensor product u = -n + n*sum([[table[i,j]**2/expected[i,j] for j in range(N)] → for i in range(d)]) deg = (d-1)*(N-1) pvalue = 1 - U(deg).cdf(u) return pvalue table = array([[68,56,32],[52,72,20]]) ``` #### chi2_independence(table) returns a p-value of 0.0401, so, at the 5% significance level, the effects are not independent. The derivation of the independence test is similar to the goodness-of-fit test. There are two differences. First, because there are two indices $X_k = i$, $Y_k = j$, we work with matrices, not vectors. Second, we appeal to the law of large numbers to replace p_i by \hat{p}_i and q_j by \hat{q}_j for large n. Let Z be the $d \times N$ matrix $$Z_{ij} = \sqrt{n} \left(\frac{\hat{r}_{ij} - \hat{p}_i \hat{q}_j}{\sqrt{\hat{p}_i} \sqrt{\hat{q}_j}} \right). \tag{6.4.7}$$ Then (see (2.2.16)) $$||Z||^2 = \operatorname{trace}(Z^t Z) = \sum_{i,j=1}^{d,N} Z_{ij}^2$$ equals (6.4.6). Let u_1, u_2, \ldots, u_d and v_1, v_2, \ldots, v_N be orthonormal bases for \mathbf{R}^d and \mathbf{R}^N respectively. By (2.9.8), $$||Z||^2 = \operatorname{trace}(Z^t Z) = \sum_{i,j=1}^{d,N} (u_i \cdot Z v_j)^2.$$ (6.4.8) We will show $||Z||^2$ is asymptotically chi-squared of degree (d-1)(N-1). To achieve this, we show Z is asymptotically normal. Let X and Y be discrete random variables with probability vectors $p = (p_1, p_2, \ldots, p_d)$ and $q = (q_1, q_2, \ldots, q_N)$, and assume X and Y are independent. Let $$\mu = (\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_d}), \qquad \nu = (\sqrt{q_1}, \sqrt{q_2}, \dots, \sqrt{q_N}).$$ Then μ and ν are unit vectors. Following (6.4.3), define $$M = (\text{vect}_n(X) - \mu) \otimes (\text{vect}_n(Y) - \nu). \tag{6.4.9}$$ Then M is a $d \times N$ matrix-valued random variable, and $$u \cdot Mv = (\text{vect}_p(X) \cdot u - \mu \cdot u)(\text{vect}_q(Y) \cdot v - \nu \cdot v).$$ If u and v are unit vectors in \mathbf{R}^d and \mathbf{R}^N respectively, by (6.4.4), $$E(\text{vect}_p(X) \cdot u) = \mu \cdot u, \qquad Var(\text{vect}_p(X) \cdot u) = 1 - (\mu \cdot u)^2,$$ and $$E(\operatorname{vect}_q(Y) \cdot v) = \nu \cdot v, \qquad
Var(\operatorname{vect}_q(Y) \cdot v) = 1 - (\nu \cdot v)^2.$$ By independence of X and Y, the mean of $u \cdot Mv$ is zero, and $$Var(u \cdot Mv) = \left(1 - (\mu \cdot u)^2\right) \left(1 - (\nu \cdot v)^2\right).$$ In particular, when the unit vectors u or v are orthogonal to μ and ν respectively, $u \cdot Mv$ is a standard random variable, i.e. has mean zero and variance one. This also shows $u \cdot M\nu = 0$, $\mu \cdot Mv = 0$ for any u and v. More generally (Exercise **6.4.3**) $u \cdot Mv$ and $u' \cdot Mv'$ are uncorrelated when $u \perp u'$ and $v \perp v'$. Our goal is to show for large n, Z has the same mean and variance as that of M. If we also show $u \cdot Zv$ and $u' \cdot Zv'$ are independent for large n when $u \perp u'$ and $v \perp v'$, then (6.4.8) leads to the result. Now to the details. Let $W = W_n$ be a random variable that depends on n. We write $$W \approx 0$$ if all probabilities of W converge to zero for n large. In this case, we say W is asymptotically zero (see §A.7 for more information). Let W' be another random variable depending on n. We write $W \approx W'$, and we say W is asymptotically equal to W', if all probabilities of W and W' agree asymptotically for n large. In particular, when $W \approx W'$, $$E(W) \approx E(W'), \qquad Var(W) \approx Var(W').$$ If $W \approx W'$ and W' is a normal random variable not depending on n, we write $W \approx$ normal, and we say W is asymptotically normal. If $W \approx W'$ and $W' \approx$ normal, then $W \approx$ normal. Let M_k correspond to X_k and Y_k , k = 1, 2, ..., n, and let $$Z^{CLT} = \sqrt{n} \left(\frac{1}{n} \sum_{k=1}^{n} M_k - E(M_k) \right) = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} M_k.$$ Then, by independence, and the central limit theorem, - the mean and variance of Z^{CLT} are the same as those of M, - $u \cdot Z^{CLT} \nu = 0$, $\mu \cdot Z^{CLT} v = 0$ for any u and v, and, - $Z^{CLT} \approx \text{normal}$. Although Z and Z^{CLT} are not equal, we will show $Z \approx Z^{CLT}$. To this end, multiplying out the expression (6.4.9) for each $M = M_k$, and summing over $k = 1, 2, \ldots, n$, we see $$Z_{ij}^{CLT} = \sqrt{n} \left(\frac{\hat{r}_{ij}}{\sqrt{p_i}\sqrt{q_j}} - \frac{\hat{p}_i\sqrt{q_j}}{\sqrt{p_i}} - \frac{\hat{q}_j\sqrt{p_i}}{\sqrt{q_j}} + \sqrt{p_i q_j} \right). \tag{6.4.10}$$ By the law of large numbers, $\hat{p}_i \approx p_i$ and $\hat{q}_j \approx q_j$ so $$\frac{\hat{q}_j - q_j}{\sqrt{\hat{p}_i}\sqrt{\hat{q}_j}} \approx 0.$$ As we saw before (6.4.5), by the central limit theorem, $$\sqrt{n} (\hat{p}_i - p_i) \approx \text{normal}.$$ Hence⁴ the product $$\sqrt{n} \cdot \frac{(p_i - \hat{p}_i)(\hat{q}_j - q_j)}{\sqrt{\hat{p}_i}\sqrt{\hat{q}_j}} \approx 0. \tag{6.4.11}$$ Similarly, $\hat{p}_i \approx p_i$ and $\hat{q}_j \approx q_j$, so $$Z_{ij}^{CLT} \left(\frac{\sqrt{p_i}\sqrt{q_j}}{\sqrt{\hat{p}_i}\sqrt{\hat{q}_j}} - 1 \right) \approx 0.$$ (6.4.12) Adding (6.4.10), (6.4.11), and (6.4.12), we obtain (6.4.7), hence $$Z \approx Z^{CLT}$$. We conclude - the mean and variance of Z are asymptotically the same as those of M, - $u \cdot Z\nu \approx 0$, $\mu \cdot Z\nu \approx 0$ for any u and v, and, - $Z \approx \text{normal}$. In particular, since $u \cdot Zv$ and $u' \cdot Zv'$ are asymptotically uncorrelated when $u \perp u'$ and $v \perp v'$, and Z is asymptotically normal, we conclude $u \cdot Zv$ and $u' \cdot Zv'$ are asymptotically independent when $u \perp u'$ and $v \perp v'$. Now choose the orthonormal bases with u_1 and v_1 equal to μ and ν respectively. Then $$u_i \cdot Zv_j$$, $i = 1, 2, 3, \dots, d, j = 1, 2, 3, \dots, N$ are independent normal random variables with mean zero, asymptotically for large n, and variances according to the listing ⁴ The theoretical basis for this intuitively obvious result is *Slutsky's theorem* [8]. $$\begin{vmatrix} \mu \cdot Z\nu & \mu \cdot Zv_2 & \dots & \mu \cdot Zv_{N-1} & \mu \cdot Zv_N \\ u_2 \cdot Z\nu & u_2 \cdot Zv_2 & \dots & u_2 \cdot Zv_{N-1} & u_2 \cdot Zv_N \\ \dots & \dots & \dots & \dots \\ u_{d-1} \cdot Z\nu & u_{d-1} \cdot Zv_2 & \dots & u_{d-1} \cdot Zv_{N-1} & u_{d-1} \cdot Zv_N \\ u_d \cdot Z\nu & u_d \cdot Zv_2 & \dots & u_d \cdot Zv_{N-1} & u_d \cdot Zv_N \end{vmatrix} \approx \begin{vmatrix} 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 1 & 1 \\ \dots & \dots & \dots & \dots \\ 0 & 1 & \dots & 1 & 1 \\ 0 & 1 & \dots & 1 & 1 \end{vmatrix}$$ From this, only (d-1)(N-1) terms are nonzero in (6.4.8), hence $||Z||^2$ is chi-squared with degree (d-1)(N-1), completing the proof. #### Exercises **Exercise 6.4.1** Let V be the vectorization (6.4.3) of the discrete random variable X, and let μ be the mean of V. Then $V \cdot \mu = 1$. Exercise 6.4.2 Verify (6.4.10). **Exercise 6.4.3** Let M be as in (6.4.9). Then $u \cdot Mv$ and $u' \cdot Mv'$ are uncorrelated when $u \perp u'$ and $v \perp v'$. **Exercise 6.4.4** Verify the goodness-of-fit test statistic (6.4.2) is the square of (6.4.1) when d=2. **Exercise 6.4.5** [30] Among 100 vacuum tubes tested, 41 had lifetimes of less than 30 hours, 31 had lifetimes between 30 and 60 hours, 13 had lifetimes between 60 and 90 hours, and 15 had lifetimes of greater than 90 hours. Are these data consistent with the hypothesis that a vacuum tube's lifetime is exponentially distributed (Exercise **5.3.23**) with a mean of 50 hours? At what significance? Here $p = (p_1, p_2, p_3, p_4)$. Exercise 6.4.6 [30] A study was instigated to see if southern California earthquakes of at least moderate size are more likely to occur on certain days of the week than on others. The catalogs yielded the data in Figure 6.6. Test, at the 5 percent level, the hypothesis that an earthquake is equally likely to occur on any of the 7 days of the week. | Day | Sun | Mon | Tues | Wed | Thurs | Fri | Sat | Total | |-----------------------|-----|-----|------|-----|-------|-----|-----|-------| | Number of Earthquakes | 156 | 144 | 170 | 158 | 172 | 148 | 152 | 1100 | Table 6.6 Earthquake counts. Exercise 6.4.7 [30] In a famous article (S. Russell, "A red sky at night..." Metropolitan Magazine London, 61, p. 15, 1926) the following dataset of frequencies of sunset colors and whether each was followed by rain was presented. Test the hypothesis that whether it rains tomorrow is independent of the color of today's sunset. | Sky Color | Number of Observations | Number Followed by Rain | |----------------|------------------------|-------------------------| | Red | 61 | 26 | | Mainly red | 194 | 52 | | Yellow | 159 | 81 | | Mainly yellow | 188 | 86 | | Red and yellow | 194 | 52 | | Gray | 302 | 167 | Table 6.7 Sunset and rain counts. Exercise 6.4.8 [30] A sample of 300 cars having mobile phones and one of 400 cars without phones were tracked for 1 year. The following table gives the number of these cars involved in accidents over that year. Use the above to test the hypothesis that having a mobile phone in your car and being involved in an accident are independent. Use the 5 percent level of significance. | | Accident | No Accident | |--------------|----------|-------------| | Mobile phone | 22 | 278 | | No phone | 26 | 374 | Table 6.8 Phone and accident counts. # Chapter 7 Machine Learning In this chapter, we go over the structure of neural networks, in enough detail to write weight gradient code. Here the neural networks need not be layered, they are allowed any topology. Then we study gradient descent methods, and use them to train neural networks. We also analyze stochastic gradient descent, and gradient descent with momentum. The aim here is to consider only model cases where the analysis flows smoothly. There are many variations, both theoretical and implementation issues, that improve real-life performance, see [3] and [37]. Here we avoid these variations in order to highlight the main ideas. #### 7.1 Overview This first section is an overview of neural network training. Here is a summary of the structure of neural networks. - A graph consists of nodes and edges (§3.3). - If each edge has a direction, the graph is directed. - If each edge has a weight, the graph is weighed. - A directed graph has input nodes, output nodes, and hidden nodes. - A node with an activation function f is a neuron (§4.4). - Each neuron has inputs and an output. The output is the result of inserting the inputs into f. - A network is a weighed directed graph where all hidden nodes are neurons. - A neural network is a network where each activation function is a function of the *weighed sum* of the inputs (§7.2). The goal is to train a neural network. To *train* a neural network means to find weights W so that the input-output behavior of the network is as close as possible to a given dataset of source-target sample pairs $(x, y) = (x_k, y_k)$, k = 1, 2, ..., N. To do this, we must have an error measure J between outputs and targets. Since outputs depend on sources and weights, so does J = J(x, y, W). Here is a summary of how neural networks are trained (§7.4). - 1. Start with a source-target pair (x, y) and a weight matrix W. - 2. Inject source x at the input nodes. - 3. Compute the output x at all nodes (forward propagation). - 4. Inject the derivative δ of J at the output nodes. - 5. Compute the derivative δ of J at all nodes (back propagation). - 6. Compute the error J between output and target. - 7. Compute the weight gradient is $\nabla_W J = x \otimes \delta$. - 8. Update W using gradient descent (§7.3), $W^+ = W t\nabla_W J$ (§7.4). - 9. Repeat steps 1-8 over all sample pairs (x_k, y_k) , k = 1, 2, ..., N (§7.4). - 10. Repeat step 9 until convergence. Steps 1-8 is an *iteration*, and step 9 is an *epoch*. An iteration uses a single sample (more generally a batch of samples), and an epoch uses the entire dataset. The *mean loss* or *mean error* over the dataset is $$J(W) = \frac{1}{N} \sum_{k=1}^{N} J(x_k, y_k, W).$$ With the dataset given, the mean loss is a function of the weights. A
weight matrix W^* is optimal if it is a minimizer of the mean error, $$J(W^*) \le J(W)$$, for all W . Convergence means W is close to W^* . Throughout the chapter, numpy is implicitly imported in all code. #### 7.2 Neural Networks In §4.4, we saw two versions of forward and back propagation. In this section we see a third version. We begin by reviewing the definition of graph and network as given in §3.3 and §4.4. A graph consists of nodes and edges. Nodes are also called vertices, and an edge is an ordered pair (i, j) of nodes. Because the ordered pair (i, j) is not the same as the ordered pair (j, i), our graphs are directed. The edge (i, j) is *incoming* to node j and *outgoing* from node i. If a node j has no outgoing edges, then j is an *output node*. If a node i has no incoming edges, then i is an *input node*. If a node is neither an input nor an output, it is a *hidden node*. We assume our graphs have no cycles: every forward path terminates at an output node in a finite number of steps, and every backward path terminates at an input node in a finite number of steps. A graph is weightd if a scalar weight w_{ij} is attached to each edge (i, j). If (i, j) is not an edge, we set $w_{ij} = 0$. If a graph has d nodes, the nodes are labeled 0, 1, 2, ..., d-1, and the edges are completely specified by the $d \times d$ weight matrix $W = (w_{ij})$. A node with an attached activation function f_j is a neuron. A network is a directed weighed graph where nodes are input nodes, output nodes, or neurons. In the next paragraph, we define a special kind of network, a neural network. We attach to each node j an *outgoing signal* recursively as follows. - At each input node j, the outgoing signal x_j is obtained from a dataset sample. - At each neuron j, the outgoing signal x_j is obtained by evaluating the activation function f_j on the outgoing signals of all nodes. - At each output node j, there is no outgoing signal, and $x_j = None$. Explicitly, at each neuron j, the *incoming list* is $$x_i^- = (w_{0j}x_0, w_{1j}x_1, \dots, w_{(d-1)j}x_{d-1}).$$ Because $w_{ij} = 0$ if (i, j) is not an edge, the nonzero entries in the incoming list to node j correspond to the edges incoming to node j. Then $$x_j = f_j(x_j^-).$$ This is the setup for networks generally. Now we specialize to neural networks. A *neural network* is a network where every activation function is the *sum* of the entries of the incoming list, $$x_j = f_j \left(\sum_{i \to j} w_{ij} x_i \right).$$ Here the sum is over all edges (i, j) incoming to node j. All the networks in this section are neural networks, but the network in Figure 4.16 is not a neural network. In a neural network, if j is not an input node, we set $$x_j^- = \sum_{i \to j} w_{ij} x_i. (7.2.1)$$ Then x_j^- is the *incoming signal* to node j. For general networks, as in the previous paragraph or as in §4.4, x_j^- was a vector. In this chapter, x_j^- is the scalar given by (7.2.1). The outgoing signal from node j is $$x_j = f_j(x_j^-). (7.2.2)$$ When j is an input node, $x_j^- = \text{None}$. When j is an output node, $x_j = \text{None}$. If the network has d nodes, the *outgoing vector* is $$x = (x_0, x_1, \dots, x_{d-1}),$$ and the *incoming vector* is $$x^- = (x_0^-, x_1^-, \dots, x_{d-1}^-).$$ Let W be the weight matrix. If the network has d nodes, the activation vector is $$f = (f_0, f_1, \dots, f_{d-1}).$$ where f_j is the source on input nodes, and f_j =None on output nodes. Then a neural network may be written in vector-matrix form $$x = f(W^t x).$$ However, this representation is more useful when the network has structure, for example in a dense shallow layer (7.2.13). Fig. 7.1 A perceptron: weights, incoming signals, and outgoing signals. A perceptron is a network of the form $$y = f(w_0x_0 + w_1x_1 + \dots + w_{d-1}x_{d-1}) = f(w \cdot x)$$ (Figure 7.1). This is the simplest neural network. If we set $y^- = w \cdot x$, then y^- is the incoming signal, and $y = f(y^-)$ is the outgoing signal. Thus a perceptron is a linear function followed by an activation function. By our definition of neural network, # Neural Network Every neural network is a combination of perceptrons. When one of the inputs x_0 is fixed to equal 1, $x_0 = 1$, the corresponding weight w_0 is called a *bias*, and the perceptron is $$y = f(w_0 + w_1x_1 + w_2x_2 + \dots + w_dx_d) = f(w \cdot x + w_0).$$ The role of the bias is to shift the threshold in the activation function. Fig. 7.2 A perceptron with bias: weights and outgoing signals. If x_1, x_2, \ldots, x_N is a dataset, then $(x_1, 1), (x_2, 1), \ldots, (x_N, 1)$ is the *augmented* dataset. If the original dataset is in \mathbf{R}^d , then the augmented dataset is in \mathbf{R}^{d+1} . In this regard, Exercise **7.2.2** is relevant. By passing to the augmented dataset, a neural network with bias and d input features can be thought of as a neural network without bias and d+1 input features. In (5.2.19), Bayes theorem is used to express a conditional probability in terms of a perceptron, $$Prob(H \mid x) = \sigma(w \cdot x + w_0).$$ This is a basic example of how a perceptron computes probabilities. Perceptrons gained wide exposure after Minsky and Papert's famous 1969 book [22], from which Figure 7.3 is taken. Fig. 7.3 Perceptrons in parallel (R in the figure is the retina) [22]. Here is a listing of common activation functions. • The identity function, $$id(z) = z$$ and its derivative id' = 1. • The binary output, $$bin(z) = \begin{cases} 1 & \text{if } z > 0, \\ 0 & \text{if } z < 0, \end{cases}$$ and its derivative bin' = 0, $z \neq 0$, and bin'(0) undefined. • The logistic or sigmoid function (Figure 5.10) $$\sigma(z) = \frac{1}{1 + e^{-z}}$$ and its derivative $\sigma' = \sigma(1 - \sigma)$. • The hyperbolic tangent function $$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$ and its derivative $\tanh' = 1 - \tanh^2$. • The rectified linear unit relu, $$\operatorname{relu}(z) = \begin{cases} z & \text{if } z \ge 0, \\ 0 & \text{if } z < 0, \end{cases}$$ and its derivative relu' = bin. Here is the code ``` # activation functions def relu(z): return 0 if z < 0 else z def bin(z): return 0 if z < 0 else 1 def sigmoid(z): return 1/(1+exp(-z)) def id(z): return z # tanh already part of numpy def one(z): return 1 def zero(z): return 0 # derivative of relu is bin # derivative of bin is zero # derivative of s=sigmoid is s*(1-s) # derivative of id is one # derivative of tanh is 1-tanh**2 def D_relu(z): return bin(z) def D_bin(z): return 0 {\tt def \ D_sigmoid(z): \ return \ sigmoid(z)*(1-sigmoid(z))} def D_id(z): return 1 def D_relu(z): return bin(z) def D_tanh(z): return 1 - tanh(z)**2 der_dict = { relu:D_relu, id:D_id, bin:D_bin, sigmoid:D_sigmoid, \hookrightarrow tanh: D_tanh} ``` Fig. 7.4 Neural network: weights. The neural network in Figure 7.4 has nodes 0, 1, 2, 3, 4, 5, 6, 7 and activation functions f_2 , f_3 , f_4 , f_5 . Here 0 and 1 are input nodes, 2, 3, 4, 5 are neurons, and 6, 7 are output nodes. Figures 7.5 and 7.6 show the incoming and outgoing signals. Fig. 7.5 Neural network: incoming signals. This network has incoming and outgoing signals $$x^- = (\text{None}, \text{None}, x_2^-, x_3^-, x_4^-, x_5^-, x_6^-, x_7^-),$$ $x = (x_0, x_1, x_2, x_3, x_4, x_5, \text{None}, \text{None}).$ Fig. 7.6 Neural network: outgoing signals. In Exercise 7.2.4, this network is modified to include biases. In a neural network, we insert the activation functions along the diagonal of the weight matrix. We also indicate the bias input node i by setting the diagonal entry $w_{ii} =$ "b". The resulting matrix is the network weight matrix. When the nonzero weights are all equal to 1, the matrix is the *network* adjacency matrix. We have seen four types of graph matrices: • adjacency matrix, - weight matrix, - network weight matrix, - network adjacency matrix. A neural network is completely characterized by its network adjacency matrix. Here are the network weight matrix and network adjacency matrix for the network in Figure 7.4. In the current section, we run code with the specific network weight matrix The code for the network adjacency matrix in Figure 7.4 is ``` # dtype = "object" because entries # are floats, functions, and strings # network adjacency matrix w = zeros((8,8),dtype="object") w[0][2] = w[1][2] = w[0][3] = w[1][3] = w[2][4] = 1 w[2][5] = w[3][4] = w[3][5] = w[4][6] = w[5][7] = 1 w[2][2] = relu w[3][3] = id w[4][4] = sigmoid w[5][5] = tanh ``` If input node 0 were a bias, we would indicate this by adding ``` w[o][o] = "b" ``` Here are the incoming and outgoing signals in Figures 7.5 and 7.4. | Node | Incoming | Outgoing | |-------|---------------------------------|-----------------------| | 0 | $x_0^- = \mathtt{None}$ | x_0 | | 1 | $x_1^- = \mathtt{None}$ | x_1 | | f_2 | $x_2^- = w_{02}x_0 + w_{12}x_1$ | $x_2 = f_2(x_2^-)$ | | f_3 | $x_3^- = w_{03}x_0 + w_{13}x_1$ | $x_3 = f_3(x_3^-)$ | | f_4 | $x_4^- = w_{24}x_2 + w_{34}x_3$ | $x_4 = f_4(x_4^-)$ | | f_5 | $x_5^- = w_{25}x_2 + w_{35}x_3$ | $x_5 = f_5(x_5^-)$ | | 6 | $x_6^- = w_{46}x_4 + w_{56}x_5$ | $x_6 = \mathtt{None}$ | | 7 | $x_7^- = w_{47}x_4 + w_{57}x_5$ | $x_7 = \mathtt{None}$ | Table 7.7 Incoming and Outgoing signals. The nodes may be labeled in any order. Network structure is recovered from the network adjacency matrix or network weight matrix using the code ``` def edges(w): W = full(w.shape,False) W[w != 0] = True fill_diagonal(W,False) return W def outputs(w): return invert(bool(sum(edges(w),axis=1))) # these are the non-bias inputs def inputs(w): vector = invert(bool(sum(edges(w),axis=0))) return where(diagonal(w) == "b", False, vector) # bias inputs are here ``` ``` def biases(w): vector = full(len(w),False) return where(diagonal(w) == "b", True, vector) def neurons(w): vector = full(len(w),True) vector = where(diagonal(w) == 0, False, vector) return where(diagonal(w) == "b", False, vector) ``` Then ``` print(inputs(w))
print(outputs(w)) print(biases(w)) print(neurons(w)) ``` returns ``` [True True False False False False False] [False False False False False True True] [False False False False False False False] [False False True True True False False] ``` In the code that follows we add and multiply weights and outgoing signals only over edges. The function edges (w) above encapsulates this condition. Related functions num_edges, num_inputs, num_outputs, num_biases, num_neurons are in Exercise 7.2.1. In §7.4, we train a neural network using gradient descent: We repeatedly modify the network weight matrix W until we obtain an optimal network weight matrix W^* . Since we do not know the optimal weight W^* , we may as well start network training with any W. In practice, to avoid effects resulting from specific choices, one starts with a random W, as follows ``` from numpy.random import default_rng samples = default_rng().random # w is a network weight matrix def initial_weights(w,random = "no"): W = w.copy() if random == "yes": W[edges(w)] = samples(w.shape)[edges(w)] ``` ``` return W W = initial_weights(w,random = "yes") ``` This code returns a random W. The default is random = "no"; this returns a copy of the input weight matrix. The following code injects an input source at the input nodes, ``` # insert source values at input nodes # also insert 1 at bias nodes def inject_source(source,w): x = full(len(w),None) xminus = full(len(w),None) x[inputs(w)] = source x[biases(w)] = 1 return xminus, x source = array([1.5,2.5]) xminus, x = inject_source(source,w) ``` This returns ``` x^- = (\text{None}, \text{None}, \text{None}, \text{None}, \text{None}, \text{None}, \text{None}), x = (1.5, 2.5, \text{None}, \text{None}, \text{None}, \text{None}, \text{None}, \text{None}). ``` By (7.2.1) and (7.2.2), the code for incoming and outgoing signals is Then forward propagation is coded as follows. The code doesn't depend on the node ordering. To see this, uncomment rng.shuffle(nodes) below. ``` from numpy.random import default_rng rng = default_rng() def forward_prop(xminus,x,w): nodes = arange(len(w)) # rng.shuffle(nodes) for j in nodes: xminus[j] = incoming(xminus,x,w,j) x[j] = outgoing(xminus,x,w,j) return xminus, x ``` After injecting the sample at the input nodes, we propagate x to all nodes, ``` xminus, x = inject_source(source,w) xminus, x = forward_prop(xminus,x,w) print(xminus) print(x) ``` This returns the incoming and outgoing signals Let $J(x^-,t)$ be a function of x^- and the target t, measuring the error between the target outputs t and the actual outputs x^- . We consider two error functions. The first case is mean square error or mean square loss. For Figure 7.4, mean square error is $$J(x^{-},t) = \frac{1}{2}(x_{6}^{-} - t_{0})^{2} + \frac{1}{2}(x_{7}^{-} - t_{1})^{2}, \tag{7.2.6}$$ The code for mean square error is ``` # mean square loss def J(xminus,target,w): return sum((xminus[outputs(w)] - target)**2) / 2 target = array([.427,-.288]) J(xminus,target,w) ``` With sources, targets, and weights as above, $J(x^-,t) = 0.266$. This code works for any configuration of output nodes. The second case is mean logistic error or mean logistic loss. Logistic error assumes the targets are probability vectors p. For Figure 7.4, mean logistic error is $$\sigma(a,b) = \left(\frac{e^a}{e^a + e^b}, \frac{e^b}{e^a + e^b}\right), (q_0, q_1) = \sigma(x_6^-, x_7^-), \qquad (p_0, p_1) = (t_0, t_1), J(x^-, t) = I(p, q) = p_0 \log\left(\frac{p_0}{q_0}\right) + p_1 \log\left(\frac{p_1}{q_1}\right).$$ (7.2.7) Here σ and I(p,q) are the softmax function and the relative information (§5.6). First σ squashes the output signal x^- into a probability vector q, then I(p,q) compares q with the target probability vector p. The code for mean logistic loss is ``` from scipy.special import softmax as sigma from scipy.stats import entropy as I # mean logistic loss def J(xminus,target,w): qminus = xminus[outputs(w)].astype("float") q = sigma(qminus) p = target return I(p,q) ``` This code works for any configuration of output nodes. Note the target p must be a probability vector, since I(p,q) is only defined for probability vectors. To match the actual outputs with the targets as closely as possible, in both cases, we seek weights that minimize J. When there is no error, J=0. For mean square error, J=0 implies the target t equals the output x^- at the output nodes. For mean logistic error, J=0 implies the target p equals the squashed output $\sigma(x^-)$ at the output nodes. The rest of the section deals only with mean square error. A network using mean logistic error is in Exercise 7.2.6. Mean square error is the basis for linear regression, §7.5. Mean logistic error is the basis for logistic regression §7.6. For Figure 7.4, since $x_6^- = w_{46}x_4$ and $x_7^- = w_{57}x_5$, we have $$J = \frac{1}{2}(w_{46}x_4 - t_0)^2 + \frac{1}{2}(w_{57}x_5 - t_1)^2,$$ $$x_5 = f_5(x_5^-) = f_5(w_{25}x_2 + w_{35}x_3),$$ $$x_4 = f_4(x_4^-) = f_4(w_{24}x_2 + w_{34}x_3),$$ $$x_3 = f_3(x_3^-) = f_3(w_{03}x_0 + w_{13}x_1),$$ $$x_2 = f_2(x_2^-) = f_2(w_{02}x_0 + w_{12}x_1).$$ Therefore J is a function of the weights w_{46} , w_{57} , w_{25} , w_{35} , w_{24} , w_{34} , w_{03} , w_{13} , w_{02} , w_{12} . For gradient descent, we will need the derivatives of J with respect to these weights. Let $$\delta_3 = \frac{\partial J}{\partial x_3^-}, \qquad \delta_4 = \frac{\partial J}{\partial x_4^-}, \qquad \delta_5 = \frac{\partial J}{\partial x_5^-},$$ and let $$loc_3 = \frac{\partial x_3}{\partial x_3^-} = f_3'(x_3^-), \qquad loc_5 = \frac{\partial x_5}{\partial x_5^-} = f_5'(x_5^-).$$ Since w_{13} appears in x_3^- , by the chain rule, $$\frac{\partial J}{\partial w_{13}} = \frac{\partial J}{\partial x_3^-} \cdot \frac{\partial x_3^-}{\partial w_{13}} = x_1 \cdot \delta_3.$$ Since x_3 appears in x_4^- and x_5^- , by the chain rule, $$\delta_3 = \frac{\partial J}{\partial x_3^-} = \frac{\partial J}{\partial x_4^-} \frac{\partial x_4^-}{\partial x_3} \frac{\partial x_3}{\partial x_3^-} + \frac{\partial J}{\partial x_5^-} \frac{\partial x_5^-}{\partial x_3} \frac{\partial x_3}{\partial x_3^-}.$$ Since $x_4^- = w_{34}x_3 + w_{24}x_2$ and $x_5^- = w_{35}x_3 + w_{25}x_2$, we obtain $$\delta_3 = \delta_4 w_{34} loc_3 + \delta_5 w_{35} loc_3 = (\delta_4 w_{34} + \delta_5 w_{35}) \cdot loc_3.$$ Similarly $$\frac{\partial J}{\partial w_{25}} = x_2 \cdot \delta_5,$$ and $$\delta_5 = \delta_7 w_{57} \cdot loc_5.$$ The goal is to code these formulas in general, see (7.2.11) and (7.2.12), to be used in gradient descent network training. We already know how to compute the outgoing signals x using forward propagation. To code the derivatives δ , we use back propagation. Fig. 7.8 Downstream, local, and upstream derivatives at node i. Since J is a function of all nodes, at each node j, we have the derivatives $$\frac{\partial J}{\partial x_j^-}, \qquad f_j'(x_j^-), \qquad \frac{\partial J}{\partial x_j}.$$ (7.2.8) These are the downstream derivative, local derivative, and upstream derivative at node j. The terminology reflects the fact that derivatives are computed backward. From (7.2.2), $$\frac{\partial x_j}{\partial x_j^-} = f_j'(x_j^-). \tag{7.2.9}$$ By the chain rule and (7.2.9), the key relation between these derivatives is $$\frac{\partial J}{\partial x_i^-} = \frac{\partial J}{\partial x_i} \cdot f_i'(x_i^-), \tag{7.2.10}$$ or $downstream = upstream \times local.$ ``` def local(xminus,x,w,i): if neurons(w)[i]: return der_dict(w[i][i])(incoming(xminus,x,w,i)) else: return None ``` For x, x^- , and W as above, the local derivatives are (None, None, 1, 1, 0.115, 0.089, None, None). Let $$\delta_i = \frac{\partial J}{\partial x_i^-}, \qquad i = 0, 1, \dots, d - 1.$$ If i is an input node, δ_i is None. Then we have the downstream gradient vector $\delta = (\delta_0, \delta_1, \dots, \delta_{d-1})$. Strictly speaking, we should write δ_i^- for the downstream derivatives. However, in §7.4, we don't need upstream derivatives. Because of this, we will write δ_i . Fig. 7.9 Neural network: downstream derivatives. Once we have the incoming vector x^- and outgoing vector x, we can differentiate J and compute the downstream derivatives with respect to each output node. For example, in Figure 7.4, there are two output nodes 6, 7, and we compute $$\delta_6 = \frac{\partial J}{\partial x_6^-}, \qquad \delta_7 = \frac{\partial J}{\partial x_7^-}$$ as follows. Using (7.2.5) and (7.2.6), $$\frac{\partial J}{\partial x_6^-} = (x_6^- - t_0) = -0.294.$$ Similarly, $$\delta_7 = \frac{\partial J}{\partial x_7^-} = (x_7^- - t_1) = -0.666.$$ The code for this is ``` # returns downstream derivatives of J at output nodes # mean square loss def inject_target(xminus,target,w): delta = full(len(w),None) qminus = xminus[outputs(w)] p = target delta[outputs(w)] = qminus - p return delta ``` This returns $$\begin{split} &\delta = (\delta_0, \delta_1, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6, \delta_7) \\ &\delta = (\texttt{None}, \texttt{None}, \texttt{None}, \texttt{None}, \texttt{None}, -0.294, -0.666), \end{split}$$ The above code inject_target is for mean square error. For mean logistic error, based on (5.6.17), or Exercise 7.2.5, the code is ``` from scipy.special import softmax as sigma # returns downstream derivatives of J at output nodes # mean logistic loss def inject_target(xminus,target,w): delta = full(len(w),None) qminus = xminus[outputs(w)].astype("float") q = sigma(qminus) p = target delta[outputs(w)] = q - p return delta ``` We compute δ recursively via back propagation as in §4.4. From (7.2.1) and (7.2.9), $$\frac{\partial J}{\partial x_i^-} = \sum_{i \to j} \frac{\partial J}{\partial x_j^-} \cdot \frac{\partial x_j^-}{\partial x_i} \cdot \frac{\partial x_i}{\partial x_i^-} = \left(\sum_{i \to j} \frac{\partial J}{\partial x_j^-} \cdot w_{ij}\right) \cdot f_i'(x_i^-).$$ This yields the downstream derivative
at node i, $$\delta_i = \left(\sum_{i \to j} \delta_j \cdot w_{ij}\right) \cdot f_i'(x_i^-). \tag{7.2.11}$$ The code is Using this, we have the third version of back propagation, ``` def backward_prop(xminus,x,delta,w): nodes = arange(len(w)) for i in nodes: delta[i] = downstream(xminus,x,delta,w,i) ``` return delta With W, sources and targets as above, the code ``` delta = inject_target(xminus,target,w) delta = backward_prop(xminus,x,delta, w) print(delta) ``` returns $$\delta = (\mathtt{None}, \mathtt{None}, 0.0279, -0.020, -0.033, -0.059, -0.294, -0.666).$$ Note x must be computed prior to δ : first forward then backward propagation. Above we computed the upstream, downstream, and local derivatives of J at a given node (7.2.8). Since the incoming signals x_j^- depend also on the weights w_{ij} , J also depends on w_{ij} . By (7.2.1), $$\frac{\partial x_j^-}{\partial w_{ij}} = x_i,$$ see also Table 7.7. From this, $$\frac{\partial J}{\partial w_{ij}} = \frac{\partial J}{\partial x_j^-} \cdot \frac{\partial x_j^-}{\partial w_{ij}} = \delta_j \cdot x_i.$$ We have shown # Weight Gradient of Output If (i, j) is an edge, then $$\frac{\partial J}{\partial w_{ij}} = x_i \cdot \delta_j. \tag{7.2.12}$$ This result is key for neural network training $(\S7.4)$. Perceptrons can be assembled in parallel (Figure 7.3). If a network has only one layer of neurons, the network is shallow (Figure 7.10). A shallow network is *dense* if all input nodes point to all neurons. A shallow network can always be assumed dense by inserting zero weights at missing edges. Neural networks can also be assembled in series, with each component a *layer* (Figure 7.11). Usually each layer is a dense shallow network. For example, Figure 7.4 consists of two dense shallow networks in layers. We say a network is *deep* if there are two or more neuron layers. Fig. 7.10 A shallow dense layer with a bias input. The weight matrix W (7.2.3) is 8×8 , while the weight matrices W_1 , W_2 of each of the two dense shallow network layers in Figure 7.4 are 2×2 . In Figure 7.10, there are 4 input nodes, 3 neurons, 3 output nodes, and a bias input. If x and z are the layer's incoming and outgoing signal vectors, then x and z are in \mathbf{R}^4 and \mathbf{R}^3 respectively. It is assumed weights are only on edges incoming to the neurons, and the weights on outgoing edges are fixed equal to 1. Let $W = (w_{ij})$ be the weight matrix along the edges joining the four inputs to the three neurons, and let $b = (b_1, b_2, b_3)$ be the weights along the edges joining the bias input to the three neurons. Then W is a 4×3 matrix and b, the bias vector, is in \mathbb{R}^3 . Our convention is w_{ij} denotes the weight on the edge from node i to node j. With this convention, the formulas (7.2.1), (7.2.2) reduce to the matrix multiplication formulas $$z^{-} = W^{t}x + b, \qquad z = f(W^{t}x + b).$$ (7.2.13) From this point of view, a dense shallow network is a vector-valued perceptron, and the layered network in Figure 7.11 is a composition of vector-valued perceptrons in series. Fig. 7.11 Layered neural network [11]. # Exercises Exercise 7.2.1 Write code num_inputs(w) returning the number of inputs. Similarly write num_edges(w), num_outputs(w), num_biases(w), num_neurons(w). **Exercise 7.2.2** Show that a dataset x_1, x_2, \ldots, x_N lies in a hyperplane (4.5.6) in \mathbf{R}^d iff the augmented dataset $(x_1, 1), (x_2, 1), \ldots, (x_N, 1)$ does not span \mathbf{R}^{d+1} (see §2.7). **Exercise 7.2.3** With the nodes in Figure 7.4 re-ordered from 0, 1, 2, 3, 4, 5, 6, 7 to 4, 0, 3, 7, 1, 6, 5, 2, rebuild the network matrix. Fig. 7.12 Neural network with biases Exercise 7.2.4 Compute the incoming signals x^- , outgoing signals x, and downstream derivatives δ for the network in Figure 7.12, using sources, targets, weights, and activations as in the text. Here J is mean square loss (7.2.6). Fig. 7.13 A network with six neurons, two outputs, and one input. **Exercise 7.2.5** Suppose we have a neuron followed by an output node as in Figure 7.14. Fix a target probability $0 \le p \le 1$, and let J be the relative information I(p,q) (4.2.9). If σ is the logistic function (5.2.15), show the upstream, local, and downstream derivatives at the neuron are $$\frac{\partial J}{\partial q} = \frac{q-p}{q(1-q)}, \qquad \sigma' = \sigma(1-\sigma), \qquad \delta = \frac{\partial J}{\partial q^-} = q-p.$$ Fig. 7.14 Downstream, local, and upstream derivatives at termination. **Exercise 7.2.6** In Figure 7.13, $f(x) = \tanh(x)$, the source is 1.0, the target is (.427, .573), and all weights are +1. Assume J is mean logistic loss (7.2.7). Compute the incoming signals x^- , outgoing signals x, and downstream derivatives δ . #### 7.3 Gradient Descent Let f(w) be a scalar function of a vector $w = (w_1, w_2, \dots, w_d)$ in \mathbf{R}^d . A basic problem is to minimize f(w), that is, to find or compute a w^* satisfying $$f(w) \ge f(w^*),$$ for every w . Such a w is a minimizer. This goal is so general, that any insight one provides towards this goal is widely useful in many settings. The setting we have in mind is f = J, where J is the mean error from §7.1. Usually f(w) is a measure of cost or lack of compatibility. Because of this, f(w) is called the loss function or error function. A neural network is a black box with inputs x and outputs y, depending on unknown weights w. To train the network is to select weights w in response to training data (x,y). The optimal weights w^* are selected as minimizers of a loss function f(w) measuring the error between predicted outputs and actual outputs, corresponding to given training inputs. For neural network training, the most common loss functions are the mean square loss (7.5.3) and the mean logistic loss (7.6.3). From §4.3, if the loss function f(w) is continuous and proper, there is a global minimizer w^* . If f(w) is in addition strictly convex, w^* is unique (§4.5). When this happens, if the gradient of the loss function is $g = \nabla f(w)$, then w^* is the unique point satisfying $g^* = \nabla f(w^*) = 0$. Let g(w) be any function of a scalar variable w. From the definition of derivative (4.1.3), if b is close to a, we have the approximation $$\frac{g(b) - g(a)}{b - a} \approx g'(a).$$ Inserting a = w and $b = w^+$, $$g(w^{+}) \approx g(w) + g'(w)(w^{+} - w).$$ Assume w^* is a root of g(w) = 0, so $g(w^*) = 0$. If w^+ is close to w^* , then $g(w^+)$ is close to zero, so $$0 \approx g(w) + g'(w)(w^+ - w).$$ Solving for w^+ , $$w^+ \approx w - \frac{g(w)}{g'(w)}.$$ Since the global minimizer w^* satisfies $f'(w^*) = 0$, we insert g(w) = f'(w) in the above approximation, $$w^+ \approx w - \frac{f'(w)}{f''(w)}.$$ This leads to Newton's method of computing approximations w_0, w_1, w_2, \ldots of w^* using the recursion $$w_{n+1} = w_n - \frac{f'(w_n)}{f''(w_n)}, \qquad n = 1, 2, \dots$$ Because calculating f''(w) is computationally expensive, first-order descent methods replace the second derivative terms $f''(w_n)$ by constants, known as learning rates. In the multi-variable case, Newton's method becomes $$w_{n+1} = w_n - D^2 f(w_n)^{-1} \nabla f(w_n), \qquad n = 1, 2, \dots,$$ and the second-derivative term is even more expensive to compute. These first-order methods, collectively known as *gradient descent*, are the subject of this chapter. Here is code for Newton's method. ``` from numpy import * def newton(loss,grad,curv,w,num_iter): g = grad(w) c = curv(w) trajectory = array([[w],[loss(w)]]) for _ in range(num_iter): w -= g/c trajectory = column_stack([trajectory,[w,loss(w)]]) g = grad(w) c = curv(w) if allclose(g,0): break return trajectory ``` When applied to the function $$f(w) = w^4 - 6w^2 + 2w,$$ the code returns trajectory ``` def loss(w): return w**4 - 6*w**2 + 2*w # f(w) def grad(w): return 4*w**3 - 12*w + 2 # f'(w) def curv(w): return 12*w**2 - 12 # f''(w) u0 = -2.72204813 w0 = 2.45269774 num_iter = 20 ``` ``` trajectory = newton(loss,grad,curv,w0,num_iter) ``` which can be plotted using the code ``` from matplotlib.pyplot import * def plot_descent(a,b,loss,curv,delta,trajectory): w = arange(a,b,delta) plot(w,loss(w),color='red',linewidth=1) plot(w,curv(w),"--",color='blue',linewidth=1) plot(*trajectory,color='green',linewidth=1) scatter(*trajectory,s=10) title("num_iter= " + str(len(trajectory.T))) grid() show() ``` Fig. 7.15 Double well newton descent. Then ``` ylim(-15,10) delta = .01 plot_descent(u0,w0,loss,curv,delta,trajectory) ``` returns Figure 7.15. A descent sequence is a sequence w_0, w_1, w_2, \ldots where the loss function decreases $$f(w_0) \ge f(w_1) \ge f(w_2) \ge \dots$$ In a descent sequence, the point after the current point $w = w_n$ is the successive point $w^+ = w_{n+1}$, and the point before the current point is the previous point $w^- = w_{n-1}$. Then $(w^-)^+ = w = (w^+)^-$. Recall (§4.3) the gradient $\nabla f(w)$ at a given point w is the direction of greatest increase of the function, starting from w. Because of this, it is natural to construct a descent sequence by moving, at any given w, in the direction $-\nabla f(w)$ opposite to the gradient. A gradient descent sequence is a descent sequence w_0, w_1, w_2, \ldots where each successive point w^+ is obtained from the previous point w by moving in the direction opposite to the gradient $\nabla f(w)$ at w, ## Basic Gradient Descent Step (GD) $$w^+ = w - t\nabla f(w). \tag{7.3.1}$$ The step size t, which determines how far to go in the direction opposite to the gradient, is the *learning rate* or *time step*. Starting with an initial weight w_0 , this generates a descent sequence as follows, $$w_{1} = (w_{0})^{+} = w_{0} - t_{1} \nabla f(w_{0}),$$ $$w_{2} = (w_{1})^{+} = w_{1} - t_{2} \nabla f(w_{1}),$$ $$w_{3} = (w_{2})^{+} = w_{2} - t_{3} \nabla f(w_{2}),$$ $$\dots = \dots$$ $$(7.3.2)$$ The learning rate may vary with the steps,
t_1, t_2, \ldots , or the learning rate may be a fixed number t. Under reasonable assumptions, a gradient descent sequence with a constant learning rate t converges to a minimizer. However, for stochastic gradient descent, to obtain convergence to w^* , the learning rate must vary, see below. Let us unpack (7.3.1), so we understand how it applies to weights in networks (§4.4). In a neural network, weights w_1, w_2, \ldots are attached to edges, and the final outputs are combined into a loss function. As a result, the loss function is a function of the weights, $$f(w) = f(w_1, w_2, \dots).$$ In (7.3.1), $w = (w_1, w_2, ...)$ is the weight vector, consisting all of weights combined into a single vector. By the gradient formula (4.3.2), (7.3.1) is equivalent to $$w_1^+ = w_1 - t \frac{\partial f}{\partial w_1},$$ $$w_2^+ = w_2 - t \frac{\partial f}{\partial w_2},$$ = In other words, ## Each Weight is Updated Separately To update a weight in a specific edge using gradient descent, one needs only the derivative of the loss function relative to the weight on that specific edge. In practice, the learning rate is selected by trial and error. Which learning rate does the theory recommend? Given an initial point w_0 , the sublevel set at w_0 (see §4.5) consists of all points w where $f(w) \leq f(w_0)$. Only the part of the sublevel set that is connected to w_0 counts. In Figure 7.16, the sublevel set at w_0 is the interval $[u_0, w_0]$. The sublevel set at w_1 is the interval $[b, w_1]$. Notice we do not include any points to the left of b in the sublevel set at w_1 , because points to the left of b are separated from w_1 by the gap at the point b. Suppose the second derivative $D^2 f(w)$ is never greater than a constant L on the sublevel set. This means $$D^2 f(w) \le L$$, on $f(w) \le f(w_0)$, (7.3.3) in the sense the eigenvalues of $D^2 f(w)$ are never greater than L. For example, if $f(w) = w \cdot Qw/2$, then we can take L equal to the top eigenvalue λ of Q. By choosing $Q = A^t A$, for $f(w) = |Aw|^2/2$, we can take L equal to the square σ^2 of the top singular value σ of A. Because the second derivative is the derivative of the first derivative, $D^2f(w)$ measures how fast the gradient $\nabla f(w)$ changes from point to point. From this point of view, $D^2f(w)$ is a measure of the curvature of the function f(w), and (7.3.3) says the rate of change of the gradient is never greater than L. Given such a bound L on the curvature, If the learning rate t is no larger than 1/L, we say we are doing *short step* gradient descent. Then we have # Short Step Gradient Descent Let L be as above and w^+ as in (7.3.1). If $t \leq 1/L$, then $$f(w^+) \le f(w) - \frac{t}{2} |\nabla f(w)|^2.$$ (7.3.4) Fig. 7.16 Double well function and sublevel sets at w_0 and at w_1 . To see this, fix w and let S be the sublevel set $\{w': f(w') \leq f(w)\}$. Since the gradient pushes f down, for t > 0 small, w^+ stays in S. Insert $x = w^+$ and a = w into the right half of (4.5.14) and simplify. This leads to $$f(w^+) \le f(w) - t|\nabla f(w)|^2 + \frac{t^2L}{2}|\nabla f(w)|^2.$$ Since $tL \le 1$ when $0 \le t \le 1/L$, we have $t^2L \le t$. This derives (7.3.4). The curvature of the loss function and the learning rate are inversely proportional. Where the curvature of the graph of f(w) is large, the learning rate 1/L is small, and gradient descent proceeds in small time steps. When the sublevel set is bounded, there is a bound L satisfying (7.3.3). From §4.3, the sublevel set is bounded when f(w) is proper: Large |w| implies high cost f(w). The graphs in Figures 4.3, 4.4, 7.16, are proper. In practice, when the loss function is not proper, it is modified by an extra term that forces properness. This is called *regularization*. If the extra term is proportional to $|w|^2$, it is *ridge* regularization, and if the extra term is proportional to |w|, it is *LASSO* regularization. Now let w_0 w_1 , w_2 ... be a short step gradient descent sequence, with short step learning rates t_n all equal to 1/L. By (7.3.4), w_n remains in the sublevel set $f(w) \leq f(w_0)$. If this sublevel set is bounded, w_n subconverges to a limit w^* (§A.8). Inserting $w^+ = w_n$, $t = t_n$, $w = w_{n-1}$ in (7.3.4), $$f(w_n) \le f(w_{n-1}) - \frac{t_n}{2} |\nabla f(w_{n-1})|^2.$$ Since $f(w_n)$ and $f(w_{n+1})$ both converge to $f(w^*)$ and $\nabla f(w_n)$ converges to $\nabla f(w^*)$, $$f(w^*) \le f(w^*) - \frac{1}{2L} |\nabla f(w^*)|^2.$$ Since this implies $\nabla f(w^*) = 0$, we have derived the following. ## Gradient Descent Converges to a Critical Point Fix any initial weight w_0 and let L be as above. If the short step gradient descent sequence starting from w_0 , with constant learning rate t = 1/L, converges to some point w^* , then w^* is a critical point of the loss function. In particular, if the loss function is proper, the short step gradient descent sequence starting from w_0 converges to a critical point of the loss function. For example, let $f(w) = w^4 - 6w^2 + 2w$ (Figures 7.15, 7.16, 7.17). Then $$f'(w) = 4w^3 - 12w + 2,$$ $f''(w) = 12w^2 - 12.$ Thus the inflection points (where f''(w) = 0) are ± 1 and, in Figure 7.16, the critical points are a, b, c. Let u_0 and w_0 be the points satisfying f(w) = 5 as in Figure 7.17. Then $u_0 = -2.72204813$ and $w_0 = 2.45269774$, so $f''(u_0) = 76.914552$ and $f''(w_0) = 60.188$. Thus we may choose L = 76.914552. With this L, the short step gradient descent starting at w_0 is guaranteed to converge to one of the three critical points. In fact, the sequence converges to the right-most critical point c (Figure 7.17). This exposes a flaw in basic gradient descent. Gradient descent may converge to a local minimizer, and miss the global minimizer. In §7.9, modified gradient descent will address some of these shortcomings. The code for gradient descent is ``` from numpy import * from matplotlib.pyplot import * def gd(loss,grad,w,learning_rate,num_iter): g = grad(w) trajectory = array([[w],[loss(w)]]) ``` ``` for _ in range(num_iter): w -= learning_rate * g trajectory = column_stack([trajectory,[w,loss(w)]]) g = grad(w) if allclose(g,0): break return trajectory ``` Fig. 7.17 Double well gradient descent. When applied to the double well function f(w), ``` u0 = -2.72204813 w0 = 2.45269774 L = 76.914552 learning_rate = 1/L num_iter = 100 trajectory = gd(loss,grad,w0,learning_rate,num_iter) ylim(-15,10) delta = .01 plot_descent(u0,w0,loss,curv,delta,trajectory) ``` the code returns Figure 7.17. We now turn to an important modification of gradient descent, *stochastic* gradient descent (SGD). Here the loss function depends not only on a weight w, but also on a source-target sample vector v. In this setting, given a dataset v_1, v_2, \ldots, v_N , the goal is, following §7.1, to minimize the mean loss $$f(w) = \frac{1}{N} \sum_{k=1}^{N} F(w, v_k).$$ (7.3.5) The mean loss f(w) is an average of sampled loss functions $F(w, v_k)$. To apply gradient descent to (7.3.5), we must compute the gradient $$\nabla f(w) = \frac{1}{N} \sum_{k=1}^{N} \nabla F(w, v_k).$$ (7.3.6) However, in practice, the computational cost of evaluating the sums (7.3.5) and (7.3.6) is high. For example, for the MNIST dataset, N = 60,000. When training neural networks, these sums must be evaluated repeatedly, at each weight updating, resulting in prohibitive cost. Because of this, a more feasible approach is to avoid evaluating these sums, select samples v_1, v_2, \ldots randomly from the dataset, and generate a descent sequence according to $$w_n = w_{n-1} - t_n \nabla F(w_{n-1}, v_n), \qquad n = 1, 2, \dots$$ (7.3.7) It turns out that with the correct tuning of learning rates, this modified descent sequence does converge to a minimizer of the mean loss (7.3.5). This is a reflection of the robustness of gradient descent: Even if an approximate or noisy gradient is used to compute a descent sequence, under appropriate assumptions, there is convergence to a minimizer. However, because the gradient in (7.3.7) is only an approximation to the true gradient $\nabla f(w)$, the convergence here is slower. The theoretical basis for this convergence was established in the 1951 paper of Robbins-Monroe [29]. Their result is a type of law of large numbers for randomly sampled minimization problems. To view this with the proper perspective, by the discussion (5.3.2), the mean loss (7.3.5) is an expectation of a random variable: If V is a random variable with equally likely values v_1, v_2, \ldots, v_N , then the mean loss is an expectation $$f(w) = E(F(w, V)).$$ Let V_1, V_2, \ldots be an i.i.d. sequence of samples of V, fix an initial weight w_0 , and generate a descent sequence by $$W_n = W_{n-1} - t_n \nabla F(W_{n-1}, V_n), \qquad W_0 = w_0. \tag{7.3.8}$$ Because V_n are random variables, so are W_n . Here we take the simplest possible example, that of minimizing a parabola. In §7.8, we derive SGD for strongly convex mean loss functions. Fix a scalar w^* . We assume the samples v are scalars, and the sampled loss $$F(w,v) = \frac{1}{2}(w - w^* - v)^2. \tag{7.3.9}$$ is a scalar parabola minimized at $w^* + v$. Then $$f(w) = E(F(w,V)) = \frac{1}{2}(w - w^*)^2 - (w - w^*)E(V) + \frac{1}{2}E(V^2).$$ If V has mean zero and variance one, then $f(w) = (w - w^*)^2/2 + 1/2$, and f(w) is minimized at w^* . Here is the SGD result. #### Stochastic Gradient Descent (SGD) for Parabolas Assume V is a standard scalar random variable. If V_1, V_2, \ldots is an i.i.d. sequence of samples of V, let W_1, W_2, \ldots be given by (7.3.8), where F(w, v) is given by (7.3.9). If the learning rates satisfy $$t_1 + t_2 + \dots = \infty$$, and $t_1^2 + t_2^2 + \dots < \infty$, (7.3.10) then $$E(|W_n - w^*|^2) \to 0, \qquad n \to \infty. \tag{7.3.11}$$ Again, the point of SGD is to converge to the minimizer without evaluating the expectation in the mean loss. The
standard learning rates for SGD are the harmonic learning rates $$t_1 = \frac{\alpha}{1+\beta}, \quad t_2 = \frac{\alpha}{2+\beta}, \quad t_3 = \frac{\alpha}{3+\beta}, \quad \dots,$$ (7.3.12) where α and β are constants. Using standard manipulations, these learning rates satisfy (7.3.10), see Exercises A.7.4 and A.7.6. To derive the SGD convergence result for parabolas, start by computing the gradient $$\nabla F(w, v) = F'(w, v) = w - w^* - v.$$ Then (7.3.8) becomes $$W_n = W_{n-1} - t_n(W_{n-1} - w^* - V_n),$$ which simplifies to a convex combination $$W_n - w^* = (1 - t_n)(W_{n-1} - w^*) + t_n V_n. \tag{7.3.13}$$ Taking expectations, since $E(V_n) = 0$, $$E(W_n) - w^* = (1 - t_n) (E(W_{n-1}) - w^*).$$ Iterating this equality leads to $$E(W_n) - w^* = p_n \cdot (w_0 - w^*), \qquad n = 1, 2, \dots,$$ with p_n the product $$p_n = \prod_{k=1}^n (1 - t_k) = (1 - t_1)(1 - t_2)\dots(1 - t_n). \tag{7.3.14}$$ By Exercise A.7.7 with m=1/2 and L=0, p_n converges to zero, hence the means $E(W_n)$ converge to w^* as $n \to \infty$. Since W_{n-1} depends only on $V_1, V_2, \ldots, V_{n-1}$, the random variables W_{n-1} and V_n are independent. Taking variances in (7.3.13), and using $Var(W_n) = Var(W_n - w^*)$, $$Var(W_n) = (1 - t_n)^2 Var(W_{n-1}) + t_n^2 Var(V_n).$$ Assume $t_n \leq 1$. Since $Var(V_n) = 1$, $$Var(W_n) \le (1 - t_n) Var(W_{n-1}) + t_n^2$$. Since $Var(W_0) = Var(w_0) = 0$, iterating this inequality leads to $$Var(W_n) \le s_n, \qquad n = 1, 2, \dots,$$ with s_n the sum $$s_n = \sum_{k=1}^n t_k^2 \cdot \frac{p_n}{p_k}.$$ To show $s_n \to 0$, use the second condition in (7.3.10), as follows. Since $$\sum_{k=1}^{\infty} t_k^2 = \lim_{N \to \infty} \sum_{k=1}^{N} t_k^2$$ is finite, the limit of the error $$e_N = \sum_{k=N+1}^{\infty} t_k^2 = \sum_{k=1}^{\infty} t_k^2 - \sum_{k=1}^{N} t_k^2,$$ as $N \to \infty$, is zero. Now fix a cut-off N and break s_n into two parts, $n \le N$ and n > N, $$s_n = \sum_{k=1}^{N} t_k^2 \cdot \frac{p_n}{p_k} + \sum_{k=N+1}^{n} t_k^2 \cdot \frac{p_n}{p_k}.$$ ¹ By (7.3.10), $t_n \to 0$, so this holds for n large. Since $p_n \leq p_k$ when $n \geq k$, $$s_n \le \left(\sum_{k=1}^N \frac{t_k^2}{p_k}\right) p_n + \sum_{k=N+1}^n t_k^2 \le \left(\sum_{k=1}^N \frac{t_k^2}{p_k}\right) p_n + e_N.$$ With N fixed, let $n \to \infty$. Since $p_n \to 0$, $$0 \le s_{\infty} = \lim_{n \to \infty} s_n \le e_N.$$ By choosing N large enough, we can make e_N arbitrarily small. Hence $s_\infty = 0$, and $Var(W_n) \to 0$. Using the triangle inequality, combine $E(W_n) \to w^*$ and $Var(W_n) \to 0$ to complete the proof of (7.3.11). In §7.8, we examine GD and SGD in the context of strongly convex loss functions. #### **Exercises** **Exercise 7.3.1** Let A be a matrix and b a vector with the residual $$f(w) = |Aw - b|^2$$ well-defined. Starting with w_0 in the row space of A, show gradient descent, with constant short step learning rate, converges to a unique w^* in the row space of A. (Exercise **4.3.4**) **Exercise 7.3.2** Continuing the previous exercise, starting with any w_0 , show gradient descent converges to a unique w^* with $w^* - w_0$ in the row space of A. **Exercise 7.3.3** Let $f(w) = \frac{1}{2}aw^2 + bw + c$, a > 0, be a convex parabola. Then f'(w) = aw + b, and the minimizer w^* satisfies $f'(w^*) = 0$, so $aw^* + b = 0$. If w_0 is any starting weight, and t > 0 is the learning rate, the gradient descent sequence (7.3.1) is $$w_{n+1} = w_n - tf'(w_n), \qquad n = 0, 1, 2, \dots$$ Show by direct calculation $$w_{n+1} - w^* = (1 - at)(w_n - w^*), \qquad n = 0, 1, 2, \dots,$$ so $$w_n - w^* = (1 - at)^n (w_0 - w^*), \qquad n = 1, 2, \dots$$ If the learning rate t is small enough so that $at \leq 1$, this shows w_n converges to w^* as $n \to \infty$. # 7.4 Network Training A neural network with network matrix W defines an input-output map $$source \rightarrow target.$$ Here the inputs are the sources at the input nodes, and the outputs are the targets at the output nodes. Given sources x and targets y, we seek to modify W so that the output propagated through the network starting from x equals y. This is network training. The weights are modified using gradient descent (§7.3). If J measures the error between the network outputs and the targets, W is updated to W^+ using (7.3.1), ## Weight Gradient Descent If t is the learning rate, the updating equation is $$W^{+} = W - t\nabla_{W}J. \tag{7.4.1}$$ How do we compute $\nabla_W J$? From (7.2.12), # The Weight Gradient is a Tensor Product The weight derivative is $$\frac{\partial J}{\partial w_{ij}} = x_i \delta_j,$$ or $$\nabla_W J = x \otimes \delta. \tag{7.4.2}$$ Fig. 7.18 Neural network: weight gradients. For the network in Figure 7.4, the weight gradients are as in Figure 7.18. To write the code for the weight gradient, first we code the tensor product ``` def tensor(x,delta): x[x == None] = 0 delta[delta == None] = 0 return outer(x,delta) ``` then we combine the input source and output target into a single vector ``` vector = hstack([source, target]) ``` We do this to handle datasets with multiple samples below. The weight gradient code is ``` def single_weight_gradient(vector,w): num_in = num_inputs(w) num_out = num_outputs(w) source, target = vector[:num_in], vector[-num_out:] xminus, x = inject_source(source,w) xminus, x = forward_prop(xminus,x,w) delta = inject_target(xminus,target,w) delta = backward_prop(xminus,x,delta,w) loss = J(xminus,target) # gradJ has same shape as w gradJ = tensor(x,delta) # cast loss to array same shape as w loss = full(w.shape,loss) return array([loss, gradJ]) ``` In this code, for convenience below, the scalar loss is cast to an array with shape w.shape: If the shape of w is (d,d), then the shape of gradJ is (d,d) and the shape of single_weight_gradient(vector,w) is (2,d,d). After this, weights are updated as in (7.4.1), ``` # update only weights on edges def update_weights(w,gradJ,learning_rate): w[edges(w)] -= learning_rate * gradJ[edges(w)] return w ``` To save space, below lr is the learning rate, and bs is the batch size. Below random = "no" determines whether or not to randomize the initial W (see §7.2 for initial_weights). ``` def single_sample_training(vector,w,lr,iters,random = "no"): W = initial_weights(w,random = random) trajectory = [] for iter in range(iters): loss, gradJ = single_weight_gradient(vector,W) W = update_weights(W,gradJ,lr) # recover scalar loss loss = loss[0,0] trajectory.append(loss) if isclose(0,loss): break return W, trajectory ``` Here iters is the maximum number of iterations, and the iterations terminate if the loss J is close to zero. Fig. 7.19 Loss decay as learning rate varies: single sample training. Starting with the network weight matrix (7.2.4), the code ``` source = array([1.5, 2.5]) target = array([0.427, -0.288]) vector = hstack([source, target]) lr = .045 iters = 100 wstar, trajectory = single_sample_training(vector,w,lr,iters) ``` stops after len(trajectory)= 45 iterations, and returns an optimal weight matrix W^* . Forward propagation using W^* results in outputs ``` x_6^- = 0.4269028859959264, x_7^- = -0.28799475228709476, ``` in close agreement with target = array([0.427,-0.288]). Since you may be starting your network training with a different W, your results may be different. The loss trajectory can be plotted using the code ``` from matplotlib.pyplot import * for lr in [.025,.035, .045,.047]: wstar, trajectory = single_sample_training(vector,w,lr,iters) n = len(trajectory) label = str(n) + ", " + str(lr) plot(range(n),trajectory,label=label) title("single sample loss function decay") grid() legend() show() ``` resulting in Figure 7.19. The convergence here is surprisingly easy to attain. However, this is a mirage. It is a reflection of overfitting, in the sense that we trained the weights to obtain the input-output map corresponding to a single sample: There is no reason the trained weights reproduce the input-output map for other samples. To make this point explicit, focus on the output node at top right in Figure 7.18, and let $$x_4 = x, \qquad w_{46} = w, \qquad y_6 = y.$$ Then $$x_6^- = wx, \qquad \delta_6 = \frac{\partial J}{\partial x_6^-} = wx - y, \qquad \frac{\partial J}{\partial w_{46}} = x(wx - y).$$ Starting with weight w and learning rate t, the updated weight is $$w^{+} = w - tx(wx - y) = w(1 - tx^{2}) + txy.$$ Since $f_4 = \sigma$, x is close to 1 as soon as there is a substantial incoming x_4^- . If we start the training with the network adjacency matrix, then all weights equal 1 and $x_4^- = 8$, leading to x_4 close to 1. Taking t = 1 yields $w^+ = y$, which implies we have convergence in two iterations. Only the weight w played a substantial role, the weights at the other edges were minimally involved. When we train against several samples, we must match several equations, and all weights must contribute. Only after we train the weights repeatedly against all samples in a training dataset, can we hope to achieve training with some predictive power. We repeat weight gradient descent when the loss function is the sum J of loss functions $J(x_k^-, y_k)$ over all samples x_1, x_2, \ldots, x_N in a dataset, with corresponding targets y_1, y_2, \ldots, y_N . To this end, we set $$J = \frac{1}{N} \sum_{k=1}^{N} J(x_k^-, y_k).$$ By (7.3.6), the weight gradient $\nabla_W J$ equals the average of the weight gradients $\nabla_W J(x_k^-, y_k)$. As with single sample training, we assume dataset consists of sample-target vectors. We use map to parallelize the computation. ``` def batch_weight_gradient(dataset,w): gradient_map = lambda vector: single_weight_gradient(vector,w) weight_gradients = array(list(map(gradient_map, dataset))) return mean(weight_gradients, axis = 0) ``` Here the shape of weight_gradients is (N, 2, d, d), with N the number of samples in the dataset, and the shape of batch_weight_gradient(dataset, w) is (2, d, d), as before. If the
dataset consists of a single sample array([vector]), then ``` batch_weight_gradient(dataset,w) ``` is identical to ``` single_weight_gradient(vector,w). ``` An *iteration* is the updating of the weight matrix against a single sample. An *epoch* is the updating of the weight matrix against all samples in the dataset. The distinction will become clearer below. ``` def batch_sample_training(dataset,w,lr,epochs,random="no"): W = initial_weights(w,random=random) trajectory = [] for epoch in range(epochs): loss, gradJ = batch_weight_gradient(dataset,W) W = update_weights(W,gradJ,lr) ``` ``` # recover scalar loss loss = loss[0,0] trajectory.append(loss) if isclose(0,loss): break return W, trajectory ``` Fig. 7.20 Loss decay as learning rate varies: batch sample training. The code for Figure 7.20 is ``` sources = array([[1.5, 2.5], [1.2,3.1], [7.1,8.2]]) targets = array([[0.427, -0.288], [1.1,-.4], [1.2,3.4]]) dataset = hstack([sources, targets]) epochs = 60 from matplotlib.pyplot import * for lr in [.05,.06,.07,.08]: wstar, trajectory = batch_sample_training(dataset,w,lr,epochs) n = len(trajectory) label = str(n) + ", " + str(lr) plot(range(n),trajectory,label=label) title("batch sample loss function decay") grid() legend() show() ``` In batch sample training, we updated the weight gradients only after evaluating the gradients against all samples in the dataset. An alternate approach is to use stochastic gradient descent (§7.3) and update the weights with each sample. To prevent cycles, this is coupled with a random shuffling of the dataset at the start of each epoch. This leads to the code ``` from numpy.random import default_rng rng = default_rng() def stochastic_sample_training(dataset,w,lr,epochs,random="no"): W = initial_weights(w,random = random) trajectory = [] for n,epoch in enumerate(range(epochs),start=1): losses = [] rng.shuffle(dataset) for vector in dataset: loss, gradJ = single_weight_gradient(vector,W) W = update_weights(W,gradJ,lr/n) # append scalar loss losses.append(loss[0,0]) loss = mean(losses) trajectory.append(loss) if isclose(0,loss): break return W, trajectory ``` The above two dataset training approaches, batch sample and stochastic sample, are two extremes. A third approach, intermediate between the two, is to divide the dataset into minibatches, each with minibatch size s, and do batch sample training on each minibatch. This is $minibatch\ sample\ training$. Here is the code. ``` from numpy.random import default_rng rng = default_rng() def minibatch_sample_training(dataset,w,lr,s,epochs,random="no"): W = initial_weights(w,random=random) trajectory = [] N = len(dataset) for n,epoch in enumerate(range(epochs),start=1): losses = [] rng.shuffle(dataset) minibatches = arange(0,N,bs) for start in minibatches: end = start + s minibatch = dataset[start:end] loss, gradJ = batch_weight_gradient(minibatch,W) W = update_weights(W,gradJ,lr/n) ``` ``` # append scalar loss losses.append(loss[0,0]) loss = mean(losses) trajectory.append(loss) if isclose(0,loss): break return W, trajectory ``` Note the code records the loss function once each epoch. In batch sample training, the weights are updated once each pass over the dataset, so 1 iteration equals 1 epoch. In stochastic sample training, the weights are updated with each sample, so 1 epoch equals N iterations, where N is the number of samples in the dataset. In minibatch sample training, the weights are updated with each batch, so 1 epoch equals N/s iterations. When s=1, minibatch sample training is stochastic sample training, and when s=N, minibatch sample training is batch sample training. As of the current writing of this text, minibatch sample training is the standard training algorithm for neural networks. When generalized to the general gradient descent setting of §7.3, stochastic sample training is stochastic gradient descent. For stochastic gradient descent, as explained in §7.3, the learning rates t_n must vary according to something close to $t_n = t/n$. This is reflected in the stochastic sample training and minibatch sample training codes. #### Exercises Exercise 7.4.1 Train the network in Figure 7.18, starting with the network adjacency matrix. Do this with mean square loss and for a single sample, then for three samples. Find the learning rates leading to the fewest number of iterations. Exercise 7.4.2 With the nodes in Figure 7.4 re-ordered as in Exercise 7.2.3, verify the training code returns the same results. **Exercise 7.4.3** Train the network in Figure 7.12 using mean square loss and the three samples and three targets above. Start with a random W. Exercise 7.4.4 Train the network in Figure 7.13 against the dataset ``` [0.87709524, 1.], [-0.61427175, 0.], , 0. [0.53202877, 1. , 0. [1.10156379, 1. [0.51760267, 1. , 0.], [-1.30845517, 0. , 1. ٦. [0.47808674, [-1.13024748, 0.]]) ``` This dataset consists of normally distributed scalar sources with mean +1 or -1 according to whether the one-hot encoded targets are (1,0) or (0,1). The code for dataset is ``` from numpy.random import default_rng rng = default_rng() mu, N = 0, 50 # sdev = 0.5, 1.0, 2.0, 10.0 sdev = 0.5 n, p = 1, 0.5 targets = rng.binomial(n,p,N) # source mean equals pm1 according to target=1 or 0 sources = rng.normal(mu,sdev,N) + (2*targets - 1) # one-hot encoded targets targets = array([targets,1-targets]).T dataset = column_stack([sources, targets]) ``` Here J is mean logistic loss (7.2.7). Start with the network adjacency matrix W and do batch sample training with 100 epochs and learning rate 0.2. Using the resulting optimal weight W^* , compare predicted targets with actual targets, for sdev = 0.5, 1.0, 2.0, 10.0. What is your percentage success rate as sdev varies? # 7.5 Linear Regression Let x_1, x_2, \ldots, x_N be a dataset, with corresponding labels or targets y_1, y_2, \ldots, y_N . As in §7.1, the loss function is $$J(W) = \frac{1}{N} \sum_{k=1}^{N} J(x_k, y_k, W).$$ (7.5.1) In this section, we focus on a single-layer perceptron (Figure 7.21), $$J(x, y, W) = J(z, y), \qquad z = W^t x.$$ Here x is the input, W is the weight matrix, z is the network computed output, and y is the desired output or target. The loss function (7.5.1) has no bias inputs. When there are bias inputs b, the loss function is $$J(W,b) = \frac{1}{N} \sum_{k=1}^{N} J(x_k, y_k, W, b),$$ (7.5.2) and we focus on a single-layer perceptron $$J(x, y, W, b) = J(z, y), \qquad z = W^{t}x + b.$$ Here b is the $bias\ vector$. A basic attribute of a neural network is its trainability. Can a given network be trained to achieve desired input-output behavior? As stated, this question is imprecise and not clearly defined. In fact, for deep networks, it is not at all clear how to turn this vague idea into an actionable definition. In the case of a single-layer perceptron, the situation is straightforward enough to be able to both make the question precise, and to provide actionable criteria that guarantee trainability. This we do in the two cases - linear regression, and - logistic regression. With any loss function J, the goal is to minimize J. With this in mind, from §4.5, we recall #### **Ideal Loss Function** If a loss function J(W) is strictly convex and proper, then J has a unique optimal weight W^* , $$J(W^*) \le J(W),$$ characterized as the unique weight W^* satisfying $\nabla_W J(W^*) = 0$. Often, in machine learning, J is neither convex nor proper. Nevertheless, this result is an important benchmark to start with. Lack of properness is often addressed by regularization, which is the modification of J by a proper forcing term. Lack of convexity is addressed by using some type of accelerated gradient descent. It is natural to say a loss function is trainable if it is proper $(\S4.3)$, because this guarantees the existence of optimal weights. In the case of a single-layer perceptron, strict convexity is easy to pin down, leading to the uniqueness of optimal weights. Because of this, for a single-layer perceptron, we say the regression is trainable if the loss function (7.5.1) (without bias) or the loss function (7.5.2) (with bias) is proper and strictly convex. In this and the next section, we determine conditions on the dataset that guarantee trainability in the above two cases. We do this when there are no bias inputs, and when there are bias inputs, so there are four cases in all. Fig. 7.21 Linear regression neural network with bias. For linear regression without bias, the loss function is (7.5.1) with $$J(x, y, W) = \frac{1}{2}|y - z|^2, \qquad z = W^t x.$$ (7.5.3) For linear regression with bias, the loss function is (7.5.2) with $$J(x, y, W) = \frac{1}{2}|y - z|^2, \qquad z = W^t x + b.$$ (7.5.4) Then (7.5.1) and (7.5.2) are the mean square error or mean square loss, and the problem of minimizing (7.5.1) and (7.5.2) is linear regression (Figure 7.21). We use the identities (2.2.10) and (2.2.15) to compute the gradient of J(x, y, W). Let V be a weight matrix, and let $v = V^t x$, $z = W^t x$. Then $(W + sV)^t x = z + sv$, and the directional derivative is $$\frac{d}{ds}J(x,y,W+sV) = \frac{d}{ds}\frac{1}{2}|z+sv-y|^{2}$$ $$= v \cdot (z+sv-y) = (V^{t}x) \cdot (z+sv-y)$$ $$= \operatorname{trace}\left((V^{t}x) \otimes (z+sv-y)\right)$$ $$= \operatorname{trace}\left(V^{t}(x \otimes (z+sv-y))\right).$$ (7.5.5) By (4.3.6), inserting s=0, (7.5.5) implies the weight gradient for mean square loss is $$G = \nabla_W J(x, y, W) = x \otimes (z - y), \qquad z = W^t x. \tag{7.5.6}$$ Note this result is a special case of (7.4.2). Differentiating (7.5.5) with respect to s and inserting s = 0, $$\left. \frac{d^2}{ds^2} \right|_{s=0} J(x, y, W + sV) = |v|^2 = |V^t x|^2.$$ (7.5.7) Since this is nonnegative, by (4.5.10), J(x, y, W) is a convex function of W. Since J(W) is the average of J(x, y, W) over all samples, J(W) is convex. To check strict convexity of J(W), suppose $$\left. \frac{d^2}{ds^2} \right|_{s=0} J(W + sV) = 0.$$ Then (7.5.7) vanishes for all samples $x = x_k$
, $y = y_k$, which implies $$V^t x_k = 0, \qquad k = 1, 2, \dots, N.$$ (7.5.8) Recall the sample space is the vector space of all inputs x, and (§2.9) a dataset is full-rank if the span of the dataset is the entire sample space. When this happens, (7.5.8) implies V = 0. By (4.5.11), J(W) is strictly convex. To check properness of J(W), by definition (4.3.7), given a level c, we show there is a bound C with $$J(W) \le c \implies ||W|| \le C.$$ Here ||W|| is the norm of the matrix W (2.2.16). Let w_1, w_2, \ldots, w_d be the rows of W. Equivalently to the above definition, given a level c, we show there is a bound C with $$J(W) \le c \qquad \Longrightarrow \qquad |w_i| \le C, \qquad i = 1, 2, \dots, d. \tag{7.5.9}$$ Indeed, if the former is valid with bound C, then the latter is valid with bound C. Conversely, if the latter is valid with bound C, then, by definition of ||W||, the former is valid with bound $C\sqrt{d}$. The exact formula for the bound C, which is not important for our purposes, depends on the level c and the dataset. Assume $J(W) \leq c$. By (7.5.1), (7.5.3), and the triangle inequality, $$|W^t x_k| \le \sqrt{2cN} + |y_k|, \qquad k = 1, 2, \dots, N.$$ If x is in the span of the dataset, then x is a linear combination of samples x_k . Hence there is a bound C(x), depending on x but not on W, such that $$|W^t x| < C(x). (7.5.10)$$ Let e_1, e_2, \ldots, e_d be the one-hot encoded basis in \mathbf{R}^d . Then the rows of W are $W^t e_i$, $i = 1, 2, \ldots, d$. If the dataset is full-rank, then e_1, e_2, \ldots, e_d are in the span of the dataset. Let C be the largest of $C(e_1), C(e_2), \ldots, C(e_d)$. Inserting $x = e_i$ in (7.5.10), we obtain $|w_i| = |W^t e_i| \leq C$. Since this establishes (7.5.9), we have ## Trainability: Linear Regression Without Bias Suppose the dataset x_1, x_2, \ldots, x_N is full-rank. Then linear regression without bias is trainable on weights W. For linear regression with bias, we augment the dataset x_1, x_2, \ldots, x_N to $(x_1, 1), (x_2, 1), \ldots, (x_N, 1)$. Then linear regression with bias for the dataset x_1, x_2, \ldots, x_N is equivalent to linear regression without bias for the dataset $(x_1, 1), (x_2, 1), \ldots, (x_N, 1)$. For the augmented dataset, the weight matrix is $$\begin{pmatrix} W \\ b^t \end{pmatrix}$$. Appealing to Exercise 7.2.2, we obtain #### Trainability: Linear Regression With Bias Suppose the dataset x_1, x_2, \ldots, x_N does not lie in a hyperplane. Then linear regression with bias is trainable on weights (W, b). These are simple, clear geometric criteria for convergence of gradient descent to the global minimum of J, valid for linear regression with or without bias inputs. # 7.6 Logistic Regression A dataset is a two-class dataset if it is composed of two disjoint classes. More generally, a dataset is a multi-class dataset if it is composed of $d \ge 2$ disjoint classes. Separability of two-class datasets was first discussed in §4.5. Recall (§5.3) a vector $p = (p_1, p_2, \dots, p_d)$ is a probability vector if each component p_1, p_2, \dots, p_d is nonnegative (positive or zero), and the components sum to one, $p_1 + p_2 + \dots + p_d = 1$. A probability vector p is *strict* if the components are all positive (none are zero). A probability vector p is *one-hot encoded* if one of the components is one. When this is the i-th component, we say p is *one-hot encoded at slot* i. When this happens, all other components are zero. Let x_1, x_2, \ldots, x_N be a dataset with corresponding labels or targets p_1, p_2, \ldots, p_N . In logistic regression, we assume the targets are probability vectors. Such a dataset is a *soft-class* dataset. In a multi-class dataset, we can assign targets to classes as follows. If a sample x_k lies in class i, the target p_k assigned to x_k is the probability vector that is $one-hot\ encoded$ at slot i. For example, if there are three classes, as in the Iris dataset, the probability vector p_k is one of according to the class of the sample x_k . On the other hand, in a soft-class dataset, we can assign classes to targets: Given a probability vector $p = (p_1, p_2, \dots, p_d)$, let $$\max p = \max(p_1, p_2, \dots, p_d).$$ Then the *i*-th class may be defined as the samples with targets satisfying $p_i = \max p$. Alternatively, the *i*-th class may be defined as the samples with targets satisfying $p_i > 0$. When classes are assigned to targets, they need not be disjoint. Because of this, they are called *soft* classes. Summarizing, a *soft-class dataset* is a dataset x_1, x_2, \ldots, x_N with targets p_1, p_2, \ldots, p_N consisting of probability vectors. Let x_1, x_2, \ldots, x_N be a dataset, with corresponding labels or targets p_1, p_2, \ldots, p_N consisting of probability vectors. The loss function is $$J(W) = \frac{1}{N} \sum_{k=1}^{N} J(x_k, p_k, W), \tag{7.6.1}$$ in the case without bias inputs, and $$J(W) = \frac{1}{N} \sum_{k=1}^{N} J(x_k, p_k, W, b),$$ (7.6.2) in the case with bias inputs. Fig. 7.22 Logistic regression neural network with bias. In this section, we focus on a single-layer perceptron $$J(x, p, W) = I(p, q), \qquad q = \sigma(y), \qquad y = W^{t}x, \tag{7.6.3}$$ and $$J(x, p, W, b) = I(p, q),$$ $q = \sigma(y),$ $y = W^{t}x + b.$ (7.6.4) Here x is the input, W, b are the weights, y is the network computed output, and p is the desired target. Also, $q = \sigma(y)$ is the softmax function (§5.6), squashing the network's output y into the probability q, and I(p,q) is the relative information. Then (7.6.1) and (7.6.2) are the mean logistic error or mean logistic loss, and the problem of minimizing (7.6.1) and (7.6.2) is logistic regression (Figure 7.22). In §5.6, $I(p, \sigma(y))$ is called the information error (5.6.15). We start with logistic regression without bias inputs. When p is one-hot encoded, by (5.6.16), $$J(x, p, W) = I_{\text{cross}}(p, \sigma(W^t x)).$$ Because of this, in the literature, in the one-hot encoded case, (7.6.2) is called the "cross-entropy loss" (not cross-information, see remarks at end of §5.6). Since we will be considering both strict and one-hot encoded probabilities, we work with I(p,q) rather than $I_{cross}(p,q)$. Table 5.33 is a useful summary of the various information and entropy concepts. In §5.6, we defined $\mathbf{1} = (1, 1, \dots, 1)$, and a vector v was centered if $v \cdot \mathbf{1} = 0$. Here we define a matrix W as *centered* if all rows of W are centered. Then W is centered iff $W\mathbf{1} = 0$. Also, if W is centered, and $y = W^t x$, then y is centered. We compute the gradient $\nabla_W J(x, p, W)$. By (5.6.3) and (5.6.15), $$\nabla_y I(p, \sigma(y)) = \nabla_y Z(y) - p = q - p, \qquad q = \sigma(y), \tag{7.6.5}$$ and, by (5.6.10), $$D_y^2 I(p, \sigma(y)) = D^2 Z(y) = \operatorname{diag}(q) - q \otimes q, \qquad q = \sigma(y). \tag{7.6.6}$$ Let V be a centered weight matrix, and let $v = V^t x$, $y = W^t x$. Then $(W + sV)^t x = y + sv$, and, by (7.6.5), the directional derivative is $$\frac{d}{ds}\Big|_{s=0} J(x, y, W + sV) = \frac{d}{ds}\Big|_{s=0} I(p, \sigma(y + sv))$$ $$= v \cdot (q - p) = (V^t x) \cdot (q - p)$$ $$= \operatorname{trace}\left((V^t x) \otimes (q - p)\right)$$ $$= \operatorname{trace}\left(V^t (x \otimes (q - p))\right).$$ By (4.3.6), this shows the gradient for log loss is $$G = \nabla_W J(x, p, W) = x \otimes (q - p), \qquad q = \sigma(W^t x). \tag{7.6.7}$$ As before, this result is a special case of (7.4.2). Since q and p are probability vectors, $p \cdot \mathbf{1} = 1 = q \cdot \mathbf{1}$, hence the gradient G is centered. Recall (§5.6) we have strict convexity of Z(y) along centered vectors y. Since $y = W^t x$, $y \cdot \mathbf{1} = x \cdot W \mathbf{1}$. Hence, to force $y \cdot \mathbf{1} = 0$, it is natural to assume W is centered. If we initiate gradient descent with a centered weight matrix W, since the gradient G is also centered, all successive weight matrices will be centered. Turning to convexity, we establish # Strict Convexity: Logistic Regression Without Bias Suppose the dataset x_1, x_2, \ldots, x_N is full-rank. Then the logistic loss J(W) without bias is strictly convex on centered weights W. To see this, given a vector v and probability vector q, set $\bar{v} = \sum_{j=1}^{d} v_j q_j$. Then $$\sum_{j=1}^{d} v_j^2 q_j - \left(\sum_{j=1}^{d} v_j q_j\right)^2 = \sum_{j=1}^{d} (v_j - \bar{v})^2 q_j.$$ If either side is zero, and q is strict, then $v = \bar{v}\mathbf{1}$, so v is a multiple of 1. From this identity, and by (4.5.10) and (7.6.6), the second derivative of $I(p, \sigma(y))$ in the direction of a vector v is $$\frac{d^2}{ds^2}\Big|_{s=0} I(p, \sigma(y+sv)) = \sum_{j=1}^d (v_j - \bar{v})^2 q_j, \qquad q = \sigma(y).$$ Let V be a centered weight matrix and let $v = V^t x$. Then $v \cdot \mathbf{1} = x \cdot V \mathbf{1} = 0$, so v is centered, and $$(W + sV)^t x = y + sv.$$ If $y = W^t x$, it follows the second derivative of J(x, p, W) in the direction of V is $$\frac{d^2}{ds^2}\Big|_{t=0} J(x, p, W + sV) = \sum_{j=1}^d (v_j - \bar{v})^2 q_j, \qquad v = V^t x.$$ (7.6.8) This shows the second derivative of J(x, p, W) is nonnegative, establishing the convexity of J(x, p, W). Since J(W) is the sum of J(x, p, W) over all samples, we conclude J(W) is convex. Moreover, if (7.6.8) vanishes, then, by the previous paragraph, since $q = \sigma(y)$ is strict, v is a multiple of 1. Since v is centered, it follows v = 0 (Exercise 5.6.1). Since $v = V^t x$, the vanishing of (7.6.8) implies $V^t x = 0$. If $$\frac{d^2}{ds^2}\bigg|_{s=0} J(W+sV) = \frac{1}{N} \sum_{k=1}^{N} \frac{d^2}{ds^2}\bigg|_{s=0} J(x_k, p_k, W+sV)$$ vanishes, then, since the summands are nonnegative, (7.6.8) vanishes, for every sample $x = x_k$, $p = p_k$, hence $$V^t x_k = 0, \qquad k = 1, 2, \dots, N.$$ When the dataset is full-rank, this implies V=0. This establishes strict convexity of J(W) on centered weights. Now we turn to properness of J(W).
Here is the result. #### Properness: Logistic Regression Without Bias Let x_1, x_2, \ldots, x_N be a dataset with corresponding targets p_1, p_2, \ldots, p_N . For each class i, let K_i be the *convex hull* of the samples x whose corresponding targets $p = (p_1, p_2, \ldots, p_d)$ satisfy $p_i > 0$. If the span of the intersection $K_i \cap K_j$ is full-rank for every class i and class j, then the logistic loss J(W) without bias is proper on centered weights W. The convex hull is discussed in §4.5, see Figures 4.25 and 4.26. If K_i were just the samples x whose corresponding targets p satisfy $p_i > 0$ (with no convex hull), then the intersection $K_i \cap K_j$ may be empty. For example, if p were one-hot encoded, then x belongs to at most one K_i . Thus taking the convex hull in the definition of K_i is crucial. This is clearly seen in Figure 7.34: The samples never intersect, but the convex hulls may do so. Let w_1, w_2, \ldots be the rows of W. To establish properness of J(W), as we did for linear regression, we show for each level c, there is a bound C satisfying $$W\mathbf{1} = 0$$ and $J(W) \le c$ \Longrightarrow $|w_k| \le C$, $k = 1, 2, \dots$ (7.6.9) The exact formula for the bound C, which is not important for our purposes, depends on the level c and the dataset. For notational simplicity, assume the level is c/N. Suppose $J(W) \leq c/N$, with $W\mathbf{1} = 0$ and let $q = \sigma(y)$. Then $I(p,q) = J(x,p,W) \leq c$ for every sample x and corresponding target p. Let x be a sample, let $y = W^t x$, and suppose the corresponding target p satisfies $p_i \ge \epsilon$, for some class i, and some $\epsilon > 0$. If $j \ne i$, then $$\epsilon(y_j - y_i) \le \epsilon(Z(y) - y_i) \le p_i(Z(y) - y_i) \le \sum_{k=1}^d p_k(Z(y) - y_k) = Z(y) - p \cdot y.$$ By (5.6.15), $$Z(y) - p \cdot y = I(p, \sigma(y)) - I(p) \le c + \log d$$ Combining the last two inequalities, $$\epsilon(y_i - y_i) \le c + \log d.$$ By definition of K_i , $p_i > 0$ for all targets p corresponding to samples x in K_i . Therefore there is a positive ϵ_i such that $p_i \geq \epsilon_i$ for all targets p corresponding to samples x in K_i . Let ϵ be the least of $\epsilon_1, \epsilon_2, \ldots, \epsilon_d$. Then $$\epsilon(y_j - y_i) \le c + \log d, \quad j \ne i, \text{ for samples } x \text{ in } K_i.$$ By taking convex combinations of samples x in K_i , the last inequality remains valid for all x in K_i , so $$\epsilon(y_j - y_i) \le c + \log d, \quad j \ne i, \text{ for all } x \text{ in } K_i.$$ Repeating the same argument for x in K_j , $$\epsilon(y_i - y_j) \le c + \log d, \quad j \ne i, \text{ for all } x \text{ in } K_j.$$ Combining the last two inequalities, $$\epsilon |y_i - y_j| \le c + \log d, \qquad j \ne i, \text{ for all } x \text{ in } K_i \cap K_j.$$ (7.6.10) Now suppose x is in $span(K_i \cap K_j)$ for all i and j, and let $y = W^t x$. By (7.6.10), there is a constant C(x) such that $$|y_i - y_j| \le C(x), \qquad \text{for all } j \ne i. \tag{7.6.11}$$ Since $y \cdot \mathbf{1} = 0$, $y_i = -\sum_{j \neq i} y_j$. Summing (7.6.11) over $j \neq i$, $$d|y_i| = \epsilon |(d-1)y_i + y_i| = \left| \sum_{j \neq i} (y_i - y_j) \right| \le (d-1)C(x),$$ hence $$|y_i| \le C(x), \qquad i = 1, 2, \dots, d.$$ Summing over classes $i = 1, 2, \dots, d$, $$|W^t x| \le dC(x). \tag{7.6.12}$$ Let e_1, e_2, \ldots be the one-hot encoded basis in \mathbf{R}^d . Since $span(K_i \cap K_j)$ is full-rank for all i and j, inserting $x = e_k$ in (7.6.12) yields $|w_k| = |W^t e_k| \le dC(e_k)$, for $k = 1, 2, \ldots$ If we let C be the largest of $dC(e_1), dC(e_2), \ldots$, this establishes (7.6.9), hence establishes properness of J. When p is a strict probability vector, one can directly show $I(p, \sigma(y))$ is proper and strictly convex on centered vectors y (Exercise **5.6.5**). If the span of $K_i \cap K_j$ is full-rank, then the span of the dataset itself is full-rank. Putting the last two results together, we conclude #### Trainability: Logistic Regression Without Bias Let x_1, x_2, \ldots, x_N be a dataset with corresponding targets p_1, p_2, \ldots, p_N . For each class i, let K_i be the *convex hull* of the samples x whose corresponding targets $p = (p_1, p_2, \ldots, p_d)$ satisfy $p_i > 0$. If the span of the intersection $K_i \cap K_j$ is full-rank for every class i and class j, then logistic regression without bias is trainable on centered weights W. By the definition of K_i here, the union of K_i over classes i = 1, 2, ..., d contains the whole dataset. This is not necessarily the case in the results below As a special case, let K be the samples whose corresponding targets are strict. Then $K \subset K_i$ for all classes i. If the span of K is full-rank, then $span(K_i \cap K_i)$ is full-rank. This derives the first consequence, #### Trainability: Strict Logistic Regression Without Bias Let x_1, x_2, \ldots, x_N be a dataset, with corresponding targets p_1, p_2, \ldots, p_N . Let K be the *convex hull* of the samples whose corresponding targets are strict. If the span of K is full-rank, then logistic regression without bias is trainable on centered weights W. If a target p is one-hot encoded at slot i, then $p_i = 1 > 0$. This derives the second consequence, # Trainability: One-hot Encoded Logistic Regression Without Bias Let x_1, x_2, \ldots, x_N be a dataset with corresponding targets p_1, p_2, \ldots, p_N . For each class i, let K_i be the *convex hull* of the samples whose corresponding targets are one-hot encoded at slot i. If the span of the intersection $K_i \cap K_j$ is full-rank for every i and j, then logistic regression without bias is trainable on centered weights W. Here not all samples need be one-hot encoded: The requirement is that there is sufficient overlap between the targets that are one-hot encoded. For logistic regression with bias, the loss function is given by (7.6.3) and (7.6.4). In keeping with our prior convention, we call the weight (W, b) centered if W is centered and b is centered. Then y is centered. If the columns of W are $(w_1, w_2, ..., w_d)$, and $b = (b_1, b_2, ..., b_d)$, then $y = W^t x + b$ is equivalent to levels corresponding to d hyperplanes (§4.5) $$y_1 = w_1 \cdot x + b_1,$$ $y_2 = w_2 \cdot x + b_2,$... = ... $y_d = w_d \cdot x + b_d.$ (7.6.13) The scalars y_1, y_2, \ldots, y_d are the outputs corresponding to the sample x and weight (W, b). Let x_1, x_2, \ldots, x_N be a dataset, and suppose (W, b) is a weight with vanishing outputs $y_k = 0, k = 1, 2, \ldots, N$. If $W \neq 0$, then at least one of the columns w_j is nonzero, hence the dataset lies in the hyperplane $w_j \cdot x + b_j = 0$. On the other hand, if the dataset lies in a hyperplane, then there is a weight (W, b) with $W \neq 0$ such that the outputs vanish (Exercise 7.6.1). Because of this, we call a weight (W, b) satisfying $W \neq 0$ a hyperplane weight. Let x_1, x_2, \ldots, x_N be a soft-class dataset with associated target probability vectors p_1, p_2, \ldots, p_N . Suppose there are d possibly overlapping classes, and suppose for each sample x in class i, the corresponding target p satisfies $p_i > 0$. This assumption covers the two cases, strict and one-hot encoded, discussed above. We leave strict convexity of the loss function to Exercise **7.6.6**, and we focus on properness of the loss function. In §4.5, we defined separating hyperplanes and separable two-class datasets. There are at least two generalizations of separability to soft-class datasets. They are strong separability ("all-against-all"), and weak separability ("someagainst-some"). Let y_1, y_2, \ldots, y_d be the outputs (7.6.13). A dataset is *strongly separable* if there is a hyperplane separating class i from the rest of the dataset, for every i = 1, 2, ..., d. By Exercise **7.6.3**, this is the same as saying there is a weight (W, b) such that $$y_i \ge 0$$, for x in class i , $y_i \le 0$, for x in class j , for every $i = 1, 2, ..., d$ and every $j \ne i$. (7.6.14) Here again the hyperplanes are decision boundaries. On the other hand, a dataset is weakly separable if there is a hyperplane separating some class i and some class $j \neq i$. By Exercise 7.6.2, this is the same as saying there is a weight (W, b) such that $$y_i \ge 0$$, for x in class i , $y_i \le 0$, for x in class j , for some $i = 1, 2, ..., d$ and some $j \ne i$. (7.6.15) Clearly strong separability implies weak separability. In a two-class dataset, strong separability equals weak separability and both equal separability as defined in (4.5.5). If a dataset lies in a hyperplane (4.5.6), the dataset is separable, in both strong and weak senses. Thus the question of separability is only interesting when the dataset does not lie in a hyperplane. Recall (§4.5) a set K has interior if there is a ball B in K. For each i = 1, 2, ..., d, let K_i be the convex hull of the samples in class i. Then K_i has interior iff class i does not lie in a hyperplane (Exercise 4.5.15). By hyperplane separation II (4.5.7) with K_i and K_j replacing K_0 and K_1 , we have #### Weak Separability and Interiors Assume none of the classes of a soft-class dataset lie in a hyperplane, and let K_i be the convex hull of class i. Then the dataset is weakly separable iff $K_i \cap K_j$ has no interior for some i and some $j \neq i$. Equivalently, the dataset is not weakly separable iff $K_i \cap K_j$ has interior for every i and every $j \neq i$. We use this to derive the main result # Trainability: Logistic Regression With Bias If the soft-class dataset is strongly separable, logistic regression with bias is not trainable. If none of the classes lie in a hyperplane and the soft-class dataset is not weakly separable, logistic regression with bias is trainable on centered weights (W, b). As special cases, there are corresponding results for strict targets and onehot encoded
targets. To begin the proof, suppose (W, b) satisfies (7.6.14). Then (Exercise **7.6.4**) $$y_i \ge 0,$$ for x in K_i , $y_j \le 0,$ for x in K_i and every $j \ne i$, for every $i = 1, 2, ..., d$, (7.6.16) From this, one obtains $I(p, \sigma(y)) \leq \log d$ for every sample x and $q = \sigma(y)$ (Exercise 7.6.5), which implies $J(W, b) \leq \log d$. Since (W, b) satisfies (7.6.14) implies (tW, tb) satisfies (7.6.14) for all t > 0, this establishes $J(tW, tb) \le \log d$ for all t > 0, which shows the loss function is not proper, hence not trainable. For the other direction, for trainability, by Exercise **7.6.6**, it is enough to check properness. To establish properness of the loss function, suppose none of the classes lie in a hyperplane and the dataset is not weakly separable. Then $K_i \cap K_j$ has interior for all i and all $j \neq i$. Let x_{ij}^* be the centers of balls in $K_i \cap K_j$ for each $i \neq j$. By making the balls small enough, we may assume the radii of the balls equal the same r > 0. Let $\epsilon_i > 0$ be the minimum of p_i over all probability vectors p corresponding to samples x in class i. Let ϵ be the least of $\epsilon_1, \epsilon_2, \ldots, \epsilon_d$. Then ϵ is positive. Suppose $J(W, b) \leq c/N$ for some level c, with $W = (w_1, w_2, \ldots, w_d)$, $b = (b_1, b_2, \ldots, b_d)$ centered. We establish properness of the loss function by showing $$|w_i| + |b_i| \le \frac{c + \log d}{r\epsilon} \left(1 + r + \frac{1}{d-1} \sum_{j \ne i} |x_{ij}^*| \right), \qquad i = 1, 2, \dots, d.$$ $$(7.6.17)$$ The exact form of the right side of (7.6.17) doesn't matter. What matters is the right side is a constant depending only on the dataset, the targets, the number of categories d, and the level c. If $J(W, b) \le c/N$, then $I(p, q) \le c$ for each sample x. As before, this leads to (7.6.10). Let v be a unit vector, and let $$x^{\pm} = x_{ij}^* \pm rv, \qquad y_i^{\pm} = w_i \cdot x^{\pm} + b_i, \qquad y_j^{\pm} = w_j \cdot x^{\pm} + b_j.$$ Since x^{\pm} are in $K_i \cap K_j$, by (7.6.10), $$2r\epsilon|(w_i - w_j) \cdot v| = \epsilon|(y_i^+ - y_j^+) - (y_i^- - y_j^-)| \le 2(c + \log d).$$ Optimizing over all v, or choosing $v = (w_i - w_i)/|w_i - w_i|$, we obtain $$r\epsilon |w_i - w_j| \le c + \log d.$$ Let $$y_i = w_i \cdot x_{ij}^* + b_i, \qquad y_j = w_j \cdot x_{ij}^* + b_j.$$ Since x_{ij}^* is in $K_i \cap K_j$, by (7.6.10), $$\begin{aligned} |r\epsilon|b_i - b_j| &\leq r\epsilon |y_i - y_j| + r\epsilon |(w_i - w_j) \cdot x_{ij}^*| \\ &\leq r(c + \log d) + r\epsilon |w_i - w_j| |x_{ij}^*| \leq (c + \log d) \left(r + |x_{ij}^*|\right). \end{aligned}$$ Hence $$|r\epsilon|w_i - w_i| + r\epsilon|b_i - b_i| \le (c + \log d) \cdot (1 + r + |x_{i,i}^*|).$$ (7.6.18) Since W is centered, $$dw_i = (d-1)w_i + w_i = (d-1)w_i - \sum_{j \neq i} w_j = \sum_{j \neq i} (w_i - w_j).$$ Similarly, since b is centered, $$db_i = \sum_{j \neq i} (b_i - b_j).$$ Hence $$|w_i| + |b_i| \le \frac{1}{d} \sum_{j \ne i} |w_i - w_j| + |b_i - b_j|.$$ Combining this with (7.6.18) results in (7.6.17), and establishes properness of the loss function. This completes the proof of the main result. A very special case is a two-class dataset. In this case, the result is compelling: #### Trainability: Two-Class Logistic Regression With Bias Assume neither class lies in a hyperplane. Then logistic regression with bias is trainable iff the two-class dataset is not separable. To highlight this result, a two-class dataset is either separable or it is not. If it is separable, then a support vector machine [17] computes an optimal decision boundary. If it is not separable, then (assuming neither class lies in a hyperplane) logistic regression with bias computes an optimal decision boundary. Such a decision boundary is an LR hyperplane. We end the section by comparing the three regressions: linear, strict logistic, and one-hot encoded logistic. In classification problems, it is one-hot encoded logistic regression that is relevant. Because of this, in the literature, logistic regression often defaults to the one-hot encoded case. In linear regression, not only do J(W) and J(W,b) have minima, but so does J(z,y). Properness ultimately depends on properness of a quadratic $|z|^2$. In strict logistic regression, by (7.6.5), the critical point equation $$\nabla_{u}J(y,p)=0$$ can always be solved, so there is at least one minimum for each J(y, p). Here properness ultimately depends on properness of Z(y). In one-hot encoded regression, $J(y,p) = I(p,\sigma(y))$ and $\nabla_y J(y,p) = 0$ can never be solved, because $q = \sigma(y)$ is always strict and p is one-hot encoded, see (7.6.7). Nevertheless, trainability of J(W) and J(W,b) is achievable if there is sufficient overlap between the sample categories. In linear regression, the minimizer is expressible in terms of the regression equation, and thus can be solved in principle using the pseudo-inverse. In practice, when the dimensions are high, gradient descent may be the only option for linear regression. In logistic regression, the minimizer cannot be found in closed form, so we have no choice but to apply gradient descent, even for low dimensions. # **Exercises** **Exercise 7.6.1** Show a dataset x_1, x_2, \ldots, x_N lies in a hyperplane iff there is a weight (W, b) with $W \neq 0$ such that the outputs y_1, y_2, \ldots, y_N are all zero. **Exercise 7.6.2** Show a dataset x_1, x_2, \ldots, x_N is weakly separable iff (7.6.15) holds. **Exercise 7.6.3** Show a dataset x_1, x_2, \ldots, x_N is strongly separable iff (7.6.14) holds. **Exercise 7.6.4** Show a dataset x_1, x_2, \ldots, x_N is strongly separable iff (7.6.16) holds. **Exercise 7.6.5** Let (W, b) be strongly separating, and let $y = W^t x + b$. Using (5.6.15) and (7.6.16), show $I(p, \sigma(y)) \le \log d$ for every sample x and $q = \sigma(y)$. **Exercise 7.6.6** Let J(W, b) be the logistic loss function with bias inputs. Then J(W, b) is convex. If the dataset does not lie in a hyperplane, then J(W, b) is strictly convex. **Exercise 7.6.7** Suppose the multi-class dataset does not lie in a hyperplane. Then the means of the classes agree iff there is an optimal weight (W, b) with W = 0. (Do two-class first.) # 7.7 Regression Examples Let (x_k, y_k) , k = 1, 2, ..., N, be a dataset in the plane. The simplest regression problem is to determine the line y = mx + b minimizing the residual $$J(m,b) = \frac{1}{N} \sum_{k=1}^{N} (y_k - mx_k - b)^2.$$ (7.7.1) This line is the *regression line*. For the dataset in Figure 7.23, the regression line is in Figure 7.24. | GNP.deflator | GNP | Unemployed | Armed Forces | Population | Year | Employed | |--------------|---------|------------|--------------|------------|------|----------| | 83 | 234.289 | 235.6 | 159 | 107.608 | 1947 | 60.323 | | 88.5 | 259.426 | 232.5 | 145.6 | 108.632 | 1948 | 61.122 | | 88.2 | 258.054 | 368.2 | 161.6 | 109.773 | 1949 | 60.171 | | 89.5 | 284.599 | 335.1 | 165 | 110.929 | 1950 | 61.187 | | 96.2 | 328.975 | 209.9 | 309.9 | 112.075 | 1951 | 63.221 | | 98.1 | 346.999 | 193.2 | 359.4 | 113.27 | 1952 | 63.639 | | 99 | 365.385 | 187 | 354.7 | 115.094 | 1953 | 64.989 | | 100 | 363.112 | 357.8 | 335 | 116.219 | 1954 | 63.761 | | 101.2 | 397.469 | 290.4 | 304.8 | 117.388 | 1955 | 66.019 | | 104.6 | 419.18 | 282.2 | 285.7 | 118.734 | 1956 | 67.857 | | 108.4 | 442.769 | 293.6 | 279.8 | 120.445 | 1957 | 68.169 | | 110.8 | 444.546 | 468.1 | 263.7 | 121.95 | 1958 | 66.513 | | 112.6 | 482.704 | 381.3 | 255.2 | 123.366 | 1959 | 68.655 | | 114.2 | 502.601 | 393.1 | 251.4 | 125.368 | 1960 | 69.564 | | 115.7 | 518.173 | 480.6 | 257.2 | 127.852 | 1961 | 69.331 | | 116.9 | 554.894 | 400.7 | 282.7 | 130.081 | 1962 | 70.551 | Table 7.23 Longley Economic Data [20]. Fig. 7.24 Population versus employed: linear regression. More generally, given a dataset x_1, x_2, \ldots, x_N in \mathbf{R}^d , and scalar targets y_1, y_2, \ldots, y_N , we want to minimize $$J(w, w_0) = \frac{1}{N} \sum_{k=1}^{N} (y_k - w \cdot x_k - w_0)^2$$ over all weight vectors w in \mathbf{R}^d and scalars w_0 . Here we are fitting a regression hyperplane $$0 = w_0 + w \cdot x = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d.$$ This corresponds to (7.5.1), where W is the $d \times 1$ matrix W = w, and b is the scalar w_0 . For example, Figure 7.23 is a dataset and Figure 7.24 is a plot of population versus employed, with the mean and the regression line shown. Let X be the $N \times d$ matrix with rows x_1, x_2, \ldots, x_N , and let Y be the vector (y_1, y_2, \ldots, y_N) . Then we can rewrite the residual as $$J(w) = \frac{1}{N}|Xw - Y|^2. \tag{7.7.2}$$ From §2.3, any weight w^* minimizing (7.7.2) is a solution the regression equation $$X^t X w^* = X^t Y. (7.7.3)$$ Since the pseudo-inverse provides a solution of the regression equation, we have # Linear Regression The weight $w^* = X^+Y$ minimizes the residual (7.7.2) and solves the regression equation (7.7.3). We work out the regression equation in the plane, when both features x and y are scalar. In this case, w = (m, b) and $$X = \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \dots \\ x_N & 1 \end{pmatrix}, \qquad Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{pmatrix}.$$ In the scalar case, the regression equation (7.7.3) is 2×2 . To simplify the computation of X^tX , let $$\bar{x} = \frac{1}{N} \sum_{k=1}^{N} x_k, \qquad \bar{y} = \frac{1}{N} \sum_{k=1}^{N} y_k.$$ Then (\bar{x}, \bar{y}) is the mean of the dataset. Also, let x and y denote the vectors (x_1, x_2, \ldots, x_N) and (y_1, y_1, \ldots, y_N) , and let, as in §1.4, $$cov(x,y) = \frac{1}{N} \sum_{k=1}^{N} (x_k - \bar{x})(y_k - \bar{y}) = \frac{1}{N} x \cdot y - \bar{x}\bar{y}.$$ Then cov(x, y) is the covariance between x and y, $$X^tX = N \begin{pmatrix} x \cdot x \ \bar{x} \\ \bar{x} \end{pmatrix}, \qquad X^tY = N \begin{pmatrix} x \cdot y \\ \bar{y} \end{pmatrix}.$$ With w = (m, b), the regression
equation reduces to $$(x \cdot x)m + \bar{x}b = x \cdot y,$$ $$m\bar{x} + b = \bar{y}.$$ The second equation says the regression line passes through the mean (\bar{x}, \bar{y}) . Multiplying the second equation by \bar{x} and subtracting the result from the first equation cancels the b and leads to $$cov(x, x)m = (x \cdot x - \bar{x}^2)m = (x \cdot y - \bar{x}\bar{y}) = cov(x, y).$$ This derives ## Linear Regression in the Plane The regression line in two dimensions passes through the mean (\bar{x}, \bar{y}) and has slope $$m = \frac{cov(x, y)}{cov(x, x)}.$$ Now we use linear regression to do polynomial regression. Starting with the dataset (x_k, y_k) in \mathbf{R}^2 (Figure 7.24), we can expand or "lift" the dataset from \mathbf{R}^2 to \mathbf{R}^6 by working with the vectors $(1, x_k, x_k^2, x_k^3, x_k^4, y_k)$ instead of (x_k, y_k) . Assuming the data is given by Figure 7.23, we build the code for Figures 7.24 and 7.25. We begin by assuming the data is given as arrays, from numpy import * from pandas import read_csv ``` df - read_csv("longley.csv") X = df["Population"].to_numpy() Y = df["Employed"].to_numpy() ``` Fig. 7.25 Polynomial regression: Degrees 2, 4, 6, 8, 10, 12. After this, we compute the optimal weight w^* and construct the polynomial. The regression equation is solved using the pseudo-inverse (§2.3). Then we standardize the data ``` X = X - mean(X) Y = Y - mean(Y) varx = sum(X**2)/len(X) vary = sum(Y**2)/len(Y) X = X/sqrt(varx) Y = Y/sqrt(vary) ``` ``` from scipy.linalg import pinv # polynomial function - degree d-1 def poly(x,d): A = column_stack([X**i for i in range(d)]) # Nxd Aplus = pinv(A) b = Y # Nx1 wstar = dot(Aplus,b) return sum([x**i*wstar[i] for i in range(d)],axis=0) ``` Then we plot the data and the polynomial in six subplots. ``` from matplotlib.pyplot import * xmin,ymin = amin(X), amin(Y) xmax, ymax = amax(X), amax(Y) figure(figsize=(12,12)) # six subplots rows, cols = 3,2 # x interval x = arange(xmin, xmax, .01) for i in range(6): d = 3 + 2*i \# degree = d-1 subplot(rows, cols,i+1) plot(X,Y,"o",markersize=2) plot([0],[0],marker="o",color="red",markersize=4) plot(x,poly(x,d),color="blue",linewidth=.5) title("degree = " + str(d-1)) grid() show() ``` Running this code with degree 1 returns Figure 7.24. Taking too high a power can lead to overfitting, for example for degree 12. | x | p | x | p | x | p | x | p | x | p | |------|---|------|---|------|---|------|---|-----|---| | 0.5 | 0 | .75 | 0 | 1.0 | 0 | 1.25 | 0 | 1.5 | 0 | | 1.75 | 0 | 1.75 | 1 | 2.0 | 0 | 2.25 | 1 | 2.5 | 0 | | 2.75 | 1 | 3.0 | 0 | 3.25 | 1 | 3.5 | 0 | 4.0 | 1 | | 4.25 | 1 | 4.5 | 1 | 4.75 | 1 | 5.0 | 1 | 5.5 | 1 | Table 7.26 Hours studied and outcomes. Here is an example of a simple logistic regression problem. A group of students takes an exam. For each student, we know the amount of time x they studied, and the outcome p, whether or not they passed the exam. More generally, we may only know the amount of study time x, and the probability p that the student passed, where now $0 \le p \le 1$. For example, the data may be as in Figure 7.26, where p_k equals 1 or 0 according to whether they passed or not. As stated, the samples of this dataset are scalars, and the dataset is one-dimensional (Figure 7.27). Fig. 7.27 Exam dataset: x. Plotting the dataset on the (x, p) plane, the goal is to fit a curve $$p = \sigma(m^*x + b^*) (7.7.4)$$ as in Figure 7.28. Since this is logistic regression with bias, we can apply the two-class result from the previous section: The dataset is one-dimensional, so a hyperplane is just a point, a threshold. Neither class lies in a hyperplane, and the dataset is not separable (Figure 7.27). Hence logistic regression with bias is trainable, and gradient descent is guaranteed to converge to an optimal weight (m^*, b^*) . Here is the descent code. ``` # gradient descent w = array([0,0]) # starting m,b g = gradient(*w) t = .01 # learning rate while not allclose(g,0): wplus = w - t * g if allclose(w,wplus): break else: w = wplus g = gradient(*w) print("descent result: ",w) print("gradient: ",gradient(*w)) ``` This code returns $$m^* = 1.49991537, b^* = -4.06373862.$$ These values are used to graph the sigmoid in Figure 7.28. **Fig. 7.28** Exam dataset: (x, p) [35]. Even though we are done, we take the long way and apply logistic regression without bias by incorporating the bias, to better understand how things work. To this end, we incorporate the bias and write the augmented dataset $$(x_1, 1), (x_2, 1), \dots, (x_N, 1), \qquad N = 20,$$ resulting in Figure 7.29. Since these vectors are not parallel, the dataset is full-rank in \mathbb{R}^2 , hence J(m,b) is strictly convex. In Figure 7.29, the shaded area is bounded by the vectors corresponding to the overlap between passing and failing students' hours. Fig. 7.29 Exam dataset: (x, x_0) . Let $\sigma(z)$ be the sigmoid function (5.2.15). Then, as in the previous section, the goal is to minimize the loss function $$J(m,b) = \frac{1}{N} \sum_{k=1}^{N} I(p_k, q_k), \qquad q_k = \sigma(mx_k + b),$$ (7.7.5) Once we have the minimizer (m^*, b^*) , we have the best-fit curve (7.7.4). If the targets p are one-hot encoded, the dataset is as follows. | x | p | x | p | x | p | x | p | x | p | |------|-------|------|-------|------|-------|------|-------|-----|-------| | 0.5 | (1,0) | .75 | (1,0) | 1.0 | (1,0) | 1.25 | (1,0) | 1.5 | (1,0) | | 1.75 | (1,0) | 1.75 | (0,1) | 2.0 | (1,0) | 2.25 | (0,1) | 2.5 | (1,0) | | 2.75 | (0,1) | 3.0 | (1,0) | 3.25 | (0,1) | 3.5 | (1,0) | 4.0 | (0,1) | | 4.25 | (0,1) | 4.5 | (0,1) | 4.75 | (0,1) | 5.0 | (0,1) | 5.5 | (0,1) | Table 7.30 Hours studied and one-hot encoded outcomes. Each sample (x, 1) in the dataset is in \mathbb{R}^2 , and each target is one-hot encoded as (p, 1-p). Since the weight matrix satisfies $W\mathbf{1}=0$, we have $$W = \begin{pmatrix} b & -b \\ m & -m \end{pmatrix}.$$ Since $z = W^t x$, the outputs must satisfy $z_1 = z$ and $z_2 = -z$. This leads to a neural network with two inputs and two outputs (Figure 7.31). Since here d=2, the networks in Figures 7.31 and 7.32 are equivalent. In Figure 7.31, σ is the softmax function, I is given by (5.6.6), and p, q are probability vectors. In Figure 7.32, σ is the sigmoid function, I is given by (4.2.2), and p, q are probability scalars. Fig. 7.31 Neural network for student exam outcomes. Figure 7.28 is a plot of x against p. However, the dataset, with the bias input included, has two inputs x, 1 and one output p, and should be plotted in three dimensions (x, 1, p). Then (Figure 7.33) samples lie on the line (x, 1) in the horizontal plane, and p is on the vertical axis. Fig. 7.32 Equivalent neural network for student exam outcomes. Fig. 7.33 Exam dataset: (x, x_0, p) . The horizontal plane in Figure 7.33, which is the plane in Figure 7.29, is feature space. The convex hulls K_0 and K_1 are in feature space, so the convex hull K_0 of the samples corresponding to p = 0 is the line segment joining (.5, 1, 0) and (3.5, 1, 0), and the convex hull K_1 of the samples corresponding to p = 1 is the line segment joining (1.75, 1, 0) and (5.5, 1, 0). In Figure 7.33, K_0 is the line segment joining the green points, and K_1 is the projection onto feature space of the line segment joining the red points. Since $K_0 \cap K_1$ is the line segment joining (1.75, 1, 0) and (3.5, 1, 0), the span of $K_0 \cap K_1$ is all of feature space. By the results of the previous section, J(w) is proper. Fig. 7.34 Convex hulls of Iris classes in \mathbb{R}^2 . The Iris dataset consists of 150 samples divided into three groups, leading to three convex hulls K_0 , K_1 , K_2 in \mathbf{R}^4 . If the dataset is projected onto the top two principal components, then the projections of these three hulls do not pair-intersect (Figure 7.34). It follows we have no guarantee the mean logistic loss is proper. On the other hand, the MNIST dataset consists of 60,000 samples divided into ten groups. If the MNIST dataset is projected onto the top two principal components, the projections of the ten convex hulls K_0, K_1, \ldots, K_9 onto \mathbb{R}^2 , do intersect (Figure 7.35). This does not guarantee that the ten convex hulls K_0, K_1, \ldots, K_9 in \mathbb{R}^{784} intersect, but at least this is so for the 2d projection of the MNIST dataset. Therefore the mean logistic loss of the 2d projection of the MNIST dataset is proper. Fig. 7.35 Convex hulls of MNIST classes in \mathbb{R}^2 . # 7.8 Strong Convexity In this section, we work with loss functions that are strongly convex. While this is not always the case, this assumption is a base case against which we can test different optimization or training models. By strongly convex, we mean there are positive constants m and L satisfying $$m \le D^2 f(w) \le L$$, for every w . (7.8.1) Recall this means the eigenvalues of the symmetric matrix $D^2 f(w)$ are between L and m. In this situation, the condition number² r = m/L is between zero and one: $0 < r \le 1$. In §7.3, we saw that basic gradient descent converged to a critical point. If f(w) is strongly convex, then f(w) is proper and there is exactly one critical point, the global minimum w^* . Let w_0, w_1, w_2, \ldots be a gradient descent sequence. Recall the learning rates t_n are short step if they satisfy $t_n \leq 1/L$. Then from §7.3 we have #### Gradient Descent on a Strongly Convex Function Every gradient descent sequence with constant short step learning rate converges to the global minimum w^* . The simplest example of a strongly convex loss function is the *quadratic* case $^{^2}$ In the literature, the condition number is often defined as L/m. $$f(w) = \frac{1}{2}w \cdot Qw - b \cdot w. \tag{7.8.2}$$ Here Q is a symmetric matrix with positive eigenvalues, and m and L are the least and greatest eigenvalues of Q. By (4.3.5), the gradient for this example is Qw - b. Hence the minimizer is
the unique solution $w^* = Q^{-1}b$ of the linear system Qw = b. Thus gradient descent is a natural tool for solving linear systems and computing inverses, at least for variance matrices Q. Let f(w) be a loss function satisfying (7.8.1). By (4.5.17), f(w) lies between two quadratics, $$\frac{m}{2}|w - w^*|^2 \le f(w) - f(w^*) \le \frac{L}{2}|w - w^*|^2.$$ (7.8.3) How far we are from our goal w^* can be measured by the error $|w - w^*|^2$. Another measure of error is $f(w) - f(w^*)$. The goal is to drive the error between w and w^* to zero. When f(w) is strongly convex, the estimate (7.8.3) shows these two error measures are equivalent. We use both measures below. Suppose the learning rate t satisfies $tL \leq 1$. Inserting x = w and $a = w^*$ in the left half of (4.5.19) and using $\nabla f(w^*) = 0$ implies $$f(w) \le f(w^*) + \frac{1}{2m} |\nabla f(w)|^2.$$ (7.8.4) Let $f_1(w) = f(w) - f(w^*)$. Combining this inequality with the short step inequality (7.3.4) leads to $$f_1(w^+) \le (1 - mt)f_1(w).$$ (7.8.5) Now assume t = 1/L and set r = m/L. Iterating this implies $$f_1(w_2) \le (1-r)f_1(w_1) \le (1-r)(1-r)f_1(w_0) = (1-r)^2 f_1(w_0).$$ Continuing in this manner leads to the basic gradient descent result GD-I. #### Gradient Descent I (GD-I) Let r = m/L and set $f_1(w) = f(w) - f(w^*)$. Then the descent sequence w_0, w_1, w_2, \ldots given by basic gradient descent (7.3.1) with learning rate $$t = \frac{1}{L}$$ converges to w^* at the rate $$f_1(w_n) \le (1-r)^n f_1(w_0), \qquad n = 1, 2, \dots$$ (7.8.6) It turns out (7.8.6) extends naturally to the case of variable learning rates t_1, t_2, \ldots . For gradient descent, there is no need for this, since constant short step learning rates provide adequate convergence (7.8.6). However, for stochastic gradient descent below, learning rates must be tuned to converge to zero with the time step. Because of this, we generalize (7.8.6) to the setting of varying learning rates t_1, t_2, \ldots converging to zero. In this case, a natural condition on the learning rates is $$t_1 + t_2 + t_3 + \dots = \infty. (7.8.7)$$ This condition enables the gradient descent sequence to reach a minimizer w^* , no matter how far w^* is from the initial weight w_0 . As we saw in $\S7.3$, the simplest learning rates converging to zero and satisfying (7.8.7) are the harmonic learning rates (7.3.12). Assume the learning rates t_n are short step, $t_n \leq 1/L$, for n = 1, 2, ..., and let p_n be the product $$p_n = \prod_{k=1}^n (1 - mt_k) = (1 - mt_1)(1 - mt_2) \dots (1 - mt_n).$$ (7.8.8) Then $p_n \geq (1-r)^n$, n = 1, 2, ... By repeating the calculation leading to (7.8.6), we obtain $$f_1(w_n) \le p_n f_1(w_0), \qquad n = 1, 2, \dots$$ (7.8.9) From here, (7.8.7) implies w_n converges to w^* , see Exercise 7.8.5. Using coercivity of the gradient (4.5.16), we can obtain an improved result GD-II. Let $g = \nabla f(w)$. By basic gradient descent (7.3.1), $w^+ = w - tg$, hence $$|w^+ - w^*|^2 = |w - w^*|^2 - 2tq \cdot (w - w^*) + t^2|q|^2.$$ Inserting x = w and $a = w^*$ in (4.5.16) and using $\nabla f(w^*) = 0$ implies $$g \cdot (w - w^*) \ge \frac{mL}{m+L} |w - w^*|^2 + \frac{1}{m+L} |g|^2.$$ Inserting this inequality in the last equation, $$|w^+ - w^*|^2 \le \left(1 - 2t \frac{mL}{m+L}\right) |w - w^*|^2 + \left(t^2 - \frac{2t}{m+L}\right) |g|^2.$$ Let r = m/L. Setting the learning rate at t = 2/(m+L), the rightmost term vanishes, yielding $$|w^+ - w^*|^2 \le \left(1 - 2t \frac{mL}{m+L}\right)|w - w^*|^2 = \left(\frac{1-r}{1+r}\right)^2 |w - w^*|^2.$$ Iterating this, we obtain # Gradient Descent II (GD-II) Let r = m/L. Then the descent sequence w_0, w_1, w_2, \ldots given by basic gradient descent (7.3.1) with learning rate $$t = \frac{2}{m+L}$$ converges to w^* at the rate $$|w_n - w^*|^2 \le \left(\frac{1-r}{1+r}\right)^{2n} |w_0 - w^*|^2 \qquad n = 1, 2, \dots$$ (7.8.10) GD-II improves GD-I in two ways: Since m < L, the learning rate is larger, $$\frac{2}{m+L} > \frac{1}{L},$$ and the convergence rate is smaller, $$\left(\frac{1-r}{1+r}\right)^2 < (1-r),$$ implying faster convergence. For example, if L=6 and m=2, then r=1/3, the learning rates are 1/6 versus 1/4, and the convergence rates are 2/3 versus 1/4. Even though GD-II improves GD-I, the improvement is not substantial. In the next section, we use momentum to derive better convergence rates. When the loss function is quadratic, we can be more explicit. Let $g = \nabla f(w)$ be the gradient of the loss function at a point w. Then the line passing through w in the direction of g is w-tg. When the loss function is quadratic (7.8.2), f(w-tg) is a quadratic function of the scalar variable t. In this case, the minimizer t along the line w-tg is explicitly computable as $$t^* = \frac{g \cdot g}{g \cdot Qg}.\tag{7.8.11}$$ This choice of learning rate leads to gradient descent with varying rates t_1 , t_2 , As a consequence, in this case, one can show the error $f_1(w) = f(w) - f(w^*)$ is lowered as follows, $$f_1(w^+) = \left(1 - \frac{1}{(u \cdot Qu)(u \cdot Q^{-1}u)}\right) f_1(w), \qquad u = \frac{g}{|g|}.$$ (7.8.12) To estimate the rate of descent, we use #### Kantorovich's Inequality [21] If Q is a symmetric $d \times d$ matrix with positive top and bottom eigenvalues L and m, then $$(u \cdot Qu)(u \cdot Q^{-1}u) \le \frac{(m+L)^2}{4mL}$$ for every unit vector u. Using this, one can show that here the convergence rate is also (7.8.10). Thus, after all this work, there is no advantage here, it simpler to stick with GD-II! Nevertheless, the idea here, the *line-search for a minimizer*, is a sound one, and is useful in some situations. Kantorovich's inequality is derived in Exercise 4.5.7. We turn now to the analysis of the stochastic gradient descent (SGD) algorithm. Here we have a sampled loss function F(w, v), depending on a sample v, and the mean loss function is $$f(w) = E(F(w, V)), \tag{7.8.13}$$ for some random variable V. Motivation for this set-up is in §7.3. We assume strong convexity of f(w). Then, under reasonable conditions, by linearity of the expectation (5.3.6), the mean of $\nabla F(w, V)$ is $\nabla f(w)$, $$\nabla f(w) = E(\nabla F(w, V)), \quad \text{for every } w.$$ (7.8.14) For example, this holds for (7.3.5) and (7.3.6). In addition to (7.8.1), we assume the (total) variance of $\nabla F(w, V)$ is bounded, $$Var(\nabla F(w, V)) \le \sigma^2$$, for every w . (7.8.15) Since the second moment equals the variance plus the mean squared, and by (7.8.14) the mean is $\nabla f(w)$, (7.8.15) and strong convexity (4.5.20) imply $$E(|\nabla F(w, V)|^2) \le L^2 |w - w^*|^2 + \sigma^2,$$ for every w . (7.8.16) This holds for the parabola case in $\S7.3$, and for (7.3.5) and (7.3.6). Thus (7.8.14) and (7.8.16) hold for stochastic sample training and minibatch sample training, as explained in §7.4: For those settings, the only real assumption we are making is strong convexity of the mean loss f(w). The basic SGD descent step is $$W^{+} = W - t\nabla F(W, V). \tag{7.8.17}$$ Here V, W, and W^+ are in uppercase because they are random variables. At every step in (7.8.17), we assume W and V are independent, so we have the conditional expectations³ $$E(\nabla F(W, V) \mid W = w) = E(\nabla F(w, V)) \tag{7.8.18}$$ and $$E(|\nabla F(W,V)|^2 \mid W = w) = E(|\nabla F(w,V)|^2). \tag{7.8.19}$$ We proceed as in the derivation of GD-II, and start with $$|W^{+} - w^{*}|^{2} = |W - w^{*}|^{2} + 2(W^{+} - W) \cdot (W - w^{*}) + |W^{+} - W|^{2}.$$ Inserting (7.8.17) leads to $$|W^{+} - w^{*}|^{2} = |W - w^{*}|^{2} - 2t\nabla F(W, V) \cdot (W - w^{*}) + t^{2}|\nabla F(W, V)|^{2}.$$ Taking the expectation, conditional on W = w, and appealing to (7.8.16), (7.8.18), and (7.8.19), $$E(|W^+ - w^*|^2 \mid W = w) \le |w - w^*|^2 (1 + t^2 L^2) - 2t(w - w^*) \cdot \nabla f(w) + t^2 \sigma^2.$$ Since $\nabla f(w^*) = 0$, by (4.5.15) with x = w and $a = w^*$, $$E(|W^+ - w^*|^2 | W = w) < |w - w^*|^2 (1 - 2mt + t^2L^2) + t^2\sigma^2$$ Inserting w = W and taking the expectation, $$E(|W^+ - w^*|^2) \le E(|W - w^*|^2)(1 - 2mt + t^2L^2) + t^2\sigma^2.$$ (7.8.20) Let V_1, V_2, \ldots be an i.i.d. sequence of samples of V, and let W_1, W_2, \ldots , be the SGD sequence generated by ³ Properties of conditional expectations are in Exercises 5.3.26, 5.3.27, 5.3.28. $$W_n = W_{n-1} - t_n \nabla F(W_{n-1}, V_n), \qquad W_0 = w_0. \tag{7.8.21}$$ Then W_n depends only on V_1, V_2, \ldots, V_n , so W_{n-1} and V_n are independent. Inserting $w = W_{n-1}, W^+ = W_n, t = t_n$, in (7.8.20), we obtain $$E(|W_n - w^*|^2) \le E(|W_{n-1} - w^*|^2)(1 - 2mt_n + t_n^2 L^2) + t_n^2 \sigma^2,$$ (7.8.22) for n = 1, 2, Let p_n and s_n be the product and sum $$p_n = \prod_{k=1}^{n} (1 - 2mt_k + L^2 t_k^2), \qquad s_n = \sum_{k=1}^{n} t_k^2 \cdot \frac{p_n}{p_k}.$$ Under the assumptions $$t_1 + t_2 + \dots = \infty$$ and $t_1^2 + t_2^2 + \dots < \infty$, (7.8.23) we have $p_n \to 0$ (Exercise A.7.7). Repeating the argument at the end of §7.3, $p_n \to 0$ implies $s_n \to 0$. Assume⁴ the learning rates are small enough so that all factors in p_n are positive. Then we can iterate (7.8.22) for n = 1, 2, ..., leading to $$E(|W_n - w^*|^2) \le p_n \cdot |w_0 - w^*|^2 + \sigma^2 \cdot s_n, \qquad n = 1, 2, \dots$$ (7.8.24) Summarizing, we have # Stochastic Gradient Descent (SGD) Assume the loss function f(w), given by (7.8.13) for some random variable V, is strongly convex, and assume (7.8.14), and (7.8.16). Let V_1, V_2, \ldots be an i.i.d. sequence of samples of V, and let W_1, W_2, \ldots be generated by (7.8.21). If the learning rates satisfy (7.8.23), then $$E(|W_n - w^*|^2) \to 0$$ as $n \to \infty$. (7.8.25) Here w^* is the global minimum of the loss function f(w). The takeaway here is one only needs strong convexity for the mean loss function f(w), no convexity assumptions are made on the individual sample loss functions F(w,v). The sample loss functions can have bumps and kinks in them,
and need not be convex everywhere. ⁴ (7.8.23) guarantees $t_n \to 0$, which implies the *n*-th factor $(1 - 2mt_n + L^2t_n^2)$ is positive for all sufficiently large *n*. For simplicity, we assume this is so for all $n \ge 1$. #### Exercises **Exercise 7.8.1** With f(w) given by (7.8.2) and g = Qw - b, show $f(w) - f(w^*) = g \cdot Q^{-1}g/2$. **Exercise 7.8.2** With f(w) given by (7.8.2) and g = Qw - b, show f(w - tg) is minimized at t^* given by (7.8.11). Exercise 7.8.3 Verify (7.8.12). **Exercise 7.8.4** Use Kantorovich's inequality to show the error decrease (7.8.12) is no greater than $(1-r)^2/(1+r)^2$, which is the rate in (7.8.10). **Exercise 7.8.5** Suppose the short step learning rates t_1, t_2, \ldots satisfy $$t_1 + t_2 + t_3 + \dots = \infty.$$ If w_0, w_1, w_2, \ldots follows basic gradient descent (7.3.1), use (7.8.9) and Exercise **A.7.7** to show $f(w_n) \to f(w^*)$. Conclude $w_n \to w^*$. **Exercise 7.8.6** Show (7.8.16) follows from (7.8.15). #### 7.9 Accelerated Gradient Descent In this section, we modify the gradient descent method by adding a term incorporating previous gradients, leading to gradient descent with momentum. Recall in a descent sequence, the current point is w, the next point is w^+ , and the previous point is w^- . In gradient descent with momentum, we add a momentum term to the current point w, obtaining the lookahead point $$w^{\circ} = w + s(w - w^{-}). \tag{7.9.1}$$ Here s>0 is the *decay rate*. The momentum term reflects the direction induced by the previous step. Because this mimics the behavior of a ball rolling downhill, gradient descent with momentum is also called *heavy ball descent*. Then the descent sequence w_0, w_1, w_2, \ldots is generated by ## Momentum Gradient Descent Step $$w^{+} = w - t\nabla f(w) + s(w - w^{-}). \tag{7.9.2}$$ Here we have two hyperparameters, the learning rate and the decay rate. We establish convergence of momentum gradient descent in the above form, due to Polyak [26], and in the modified form due to Nesterov [23]. The first result is valid for strongly convex quadratics, and the second for all strongly convex functions. Assume f(x) is quadratic (7.8.2). In this case, $\nabla f(w) = Qw - b$, and the sequence satisfies the recursion $$w_{n+1} = w_n - t(Qw_n - b) + s(w_n - w_{n-1}), \qquad n = 0, 1, 2, \dots$$ (7.9.3) To initialize the recursion, we set $w_{-1} = w_0^- = w_0$. This implies $w_1 = w_0 - t(Qw_0 - b)$. We measure the convergence using the error $E(w) = |w - w^*|^2$, and we assume m < Q < L strictly, in the sense every eigenvalue λ of Q satisfies $$m < \lambda < L. \tag{7.9.4}$$ As before, we set r = m/L. Let v be an eigenvector of Q with eigenvalue $\lambda > 0$. To solve (7.9.3), we assume a solution of the form $$w_n = w^* + \rho^n v, \qquad Qv = \lambda v. \tag{7.9.5}$$ Inserting this into (7.9.3) and using $Qw^* = b$ leads to the quadratic equation $$\rho^2 = (1 - t\lambda + s)\rho - s.$$ By the quadratic formula, $$\rho = \rho_{\pm} = \frac{(1 - \lambda t + s) \pm \sqrt{(1 - \lambda t + s)^2 - 4s}}{2}.$$ Assume the discriminant $(1 - \lambda t + s)^2 - 4s$ is negative. This happens exactly when $$\frac{(1-\sqrt{s})^2}{\lambda} < t < \frac{(1+\sqrt{s})^2}{\lambda}.$$ (7.9.6) If we assume $$\frac{(1-\sqrt{s})^2}{m} \le t \le \frac{(1+\sqrt{s})^2}{L},\tag{7.9.7}$$ then (7.9.6) holds for every eigenvalue λ of Q. Multiplying (7.9.7) by λ , $$4s - (1 - \lambda t + s)^{2} = (2\sqrt{s} - 1 + \lambda t - s)(2\sqrt{s} + 1 - \lambda t + s)$$ $$= (\lambda t - (\sqrt{s} - 1)^{2})(-\lambda t + (\sqrt{s} + 1)^{2})$$ $$\geq (1 - \sqrt{s})^{2}(1 + \sqrt{s})^{2} \left(\frac{\lambda}{m} - 1\right) \left(1 - \frac{\lambda}{L}\right)$$ $$= (1 - s)^{2} \frac{(L - \lambda)(\lambda - m)}{mL}.$$ (7.9.8) When (7.9.6) holds, the roots are conjugate complex numbers ρ , $\bar{\rho}$, where $$\rho = x + iy = \frac{(1 - \lambda t + s) + i\sqrt{-(1 - \lambda t + s)^2 + 4s}}{2}.$$ (7.9.9) It follows the absolute value of ρ equals $$|\rho| = \sqrt{x^2 + y^2} = \sqrt{s}.$$ To obtain the fastest convergence, we choose s and t to minimize $|\rho| = \sqrt{s}$, while still satisfying (7.9.7). This forces (7.9.7) to be an equality, $$\frac{(1-\sqrt{s})^2}{m} = t = \frac{(1+\sqrt{s})^2}{L}.$$ These are two equations in two unknowns s, t. Solving, we obtain $$\sqrt{s} = \frac{1 - \sqrt{r}}{1 + \sqrt{r}}, \qquad t = \frac{1}{L} \cdot \frac{4}{(1 + \sqrt{r})^2}.$$ Let $\tilde{w}_n = w_n - w^*$. Since $Qw_n - b = Q\tilde{w}_n$, (7.9.3) is a 2-step *linear* recursion in the variables \tilde{w}_n . Therefore the general solution depends on two constants A B Let $\lambda_1, \lambda_2, \ldots, \lambda_d$ be the eigenvalues of Q and let v_1, v_2, \ldots, v_d be the corresponding orthonormal basis of eigenvectors. Since (7.9.3) is a 2-step *vector* linear recursion, A and B are vectors, and the general solution depends on 2d constants A_k , B_k , k = 1, 2, ..., d. If ρ_k , $k=1,2,\ldots,d$, are the corresponding roots (7.9.9), then (7.9.5) is a solution of (7.9.3) for each of 2d roots $\rho=\rho_k$, $\rho=\bar{\rho}_k$, $k=1,2,\ldots,d$. Therefore the linear combination $$w_n = w^* + \sum_{k=1}^d (A_k \rho_k^n + B_k \bar{\rho}_k^n) v_k, \qquad n = 0, 1, 2, \dots$$ (7.9.10) is the general solution of (7.9.3). Inserting n = 0 and n = 1 into (7.9.10), then taking the dot product of the result with v_k , we obtain two linear equations for two unknowns A_k , B_k , $$A_k + B_k = (w_0 - w^*) \cdot v_k,$$ $$A_k \rho_k + B_k \bar{\rho}_k = (w_1 - w^*) \cdot v_k = (1 - t\lambda_k)(w_0 - w^*) \cdot v_k,$$ for each k = 1, 2, ..., d. Solving for A_k , B_k yields $$A_k = \left(\frac{1 - t\lambda_k - \bar{\rho}_k}{\rho_k - \bar{\rho}_k}\right) (w_0 - w^*) \cdot v_k, \qquad B_k = \bar{A}_k.$$ Let $$C = \max_{\lambda} \frac{(L-m)(L-m)}{(L-\lambda)(\lambda-m)}.$$ (7.9.11) Using (7.9.8), one verifies the estimate $$|A_k|^2 = |B_k|^2 \le C |(w_0 - w^*) \cdot v_k|^2.$$ Now use (2.9.5) twice, first with $v = w_n - w^*$, then with $v = w_0 - w^*$. By (7.9.10) and the triangle inequality, $$|w_n - w^*|^2 = \sum_{k=1}^d |(w_n - w^*) \cdot v_k|^2 = \sum_{k=1}^d |A_k \rho_k^n + B_k \bar{\rho}_k^n|^2$$ $$\leq \sum_{k=1}^d (|A_k| + |B_k|)^2 |\rho_k|^{2n}$$ $$\leq 4Cs^n \sum_{k=1}^d |(w_0 - w^*) \cdot v_k|^2 = 4Cs^n |w_0 - w^*|^2.$$ This derives the following result. #### Momentum Gradient Descent - Heavy Ball Suppose the loss function f(w) is quadratic (7.8.2) and strongly convex, and let r = m/L. Let C be given by (7.9.11). Then the descent sequence w_0, w_1, w_2, \ldots given by (7.9.2) with learning rate and decay rate $$t = \frac{1}{L} \cdot \frac{4}{(1 + \sqrt{r})^2}, \qquad s = \left(\frac{1 - \sqrt{r}}{1 + \sqrt{r}}\right)^2,$$ converges to w^* at the rate $$|w_n - w^*|^2 \le 4C \left(\frac{1 - \sqrt{r}}{1 + \sqrt{r}}\right)^{2n} |w_0 - w^*|^2, \qquad n = 1, 2, \dots$$ (7.9.12) This heavy ball descent, due to Polyak [26], is an improvement over GD-II (7.8.10), because \sqrt{r} is substantially larger than r when r is small. The downside of this momentum method is that the convergence (7.9.12) is only guar- anteed for f(w) quadratic (7.8.2). In fact, there are examples of non-quadratic f(w) where heavy ball descent does not converge to w^* . Nevertheless, this method is widely used. The momentum method can be modified by evaluating the gradient at the lookahead point w° (7.9.1), #### Momentum Descent Step With Lookahead Gradient $$w^{\circ} = w + s(w - w^{-}),$$ $w^{+} = w^{\circ} - t\nabla f(w^{\circ}).$ (7.9.13) This leads to accelerated gradient descent, or momentum descent with lookahead gradient. This result, due to Nesterov [23], is valid for any strongly convex function, not just quadratics. The iteration (7.9.13) is in two steps, a momentum step followed by a basic gradient descent step. The momentum step takes us from the current point w to the lookahead point w° , and the gradient descent step takes us from w° to the successive point w^{+} . Starting from w_0 , and setting $w_{-1} = w_0$, here it turns out the loss sequence $f(w_0)$, $f(w_1)$, $f(w_2)$, ... is not always decreasing. Because of this, we seek another function V(w) where the corresponding sequence $V(w_0)$, $V(w_1)$, $V(w_2)$, ... is decreasing. To explain this, it's best to assume $w^* = 0$ and $f(w^*) = 0$. This can always be arranged by translating the coordinate system. Then it turns out $$V(w) = f(w) + \frac{L}{2}|w - \rho w^{-}|^{2}, \tag{7.9.14}$$ with a suitable choice of ρ , does the job. With the choices $$t = \frac{1}{L}, \qquad s = \frac{1 - \sqrt{r}}{1 + \sqrt{r}}, \qquad \rho = 1 - \sqrt{r},$$ we will show $$V(w^+) \le \rho V(w).$$ (7.9.15) In fact, we see below (7.9.22), (7.9.23) that V is reduced by an additional quantity proportional to the momentum term. The choice t = 1/L is a natural choice from basic gradient descent (7.3.4). The derivation of (7.9.15) below forces the choices for s and ρ . Given a point w, while w^+ is well-defined by (7.9.13), it is not clear what w^- means. There are two ways to insert meaning here. Either evaluate V(w) along a sequence w_0 , w_1 , w_2 , ... and set, as before, $w_n^- = w_{n-1}$, or work with the function $W(w) = V(w^+)$ instead of V(w). If we assume $(w^+)^- = w$, then W(w) is well-defined. With this understood, we nevertheless stick with V(w) as in (7.9.14) to simplify the calculations. We first show how (7.9.15) implies the result. Using $(w_0)^- = w_0$ and (7.8.3), $$V(w_0) = f(w_0) + \frac{L}{2}|w_0 - \rho w_0|^2 = f(w_0) + \frac{m}{2}|w_0|^2 \le 2f(w_0).$$ Moreover $f(w) \leq V(w)$. Iterating (7.9.15), we obtain $$f(w_n) \le V(w_n) \le \rho^n V(w_0) \le 2\rho^n f(w_0).$$ This derives #### Momentum Descent - Lookahead Gradient Let r = m/L and set $f_1(w) = f(w) - f(w^*)$. Then the sequence w_0 , w_1, w_2, \ldots given by (7.9.13) with short step learning rate and decay rate $$t \le
\frac{1}{L}, \qquad s = \frac{1 - \sqrt{r}}{1 + \sqrt{r}}$$ converges to w^* at the rate $$f_1(w_n) \le 2(1 - \sqrt{r})^n f_1(w_0), \qquad n = 1, 2, \dots$$ (7.9.16) While the convergence rate for accelerated descent is slightly worse than heavy ball descent, the value of accelerated descent is its validity for all strongly convex functions satisfying (7.8.1), and the fact, also due to Nesterov [23], that this convergence rate is best-possible among all such functions. Now we derive (7.9.15). Assume $(w^{+})^{-} = w$ and $w^{*} = 0$, $f(w^{*}) = 0$. We know $w^{\circ} = (1 + s)w - sw^{-}$ and $w^{+} = w^{\circ} - tg^{\circ}$, where $g^{\circ} = \nabla f(w^{\circ})$. Assume $t \leq 1/L$. Since $w^+ = w^\circ - tg^\circ$, (7.3.4) implies $$f(w^{+}) \le f(w^{\circ}) - \frac{t}{2}|g^{\circ}|^{2}.$$ (7.9.17) By (4.5.14) with x = w and $a = w^{\circ}$, $$f(w^{\circ}) \le f(w) - g^{\circ} \cdot (w - w^{\circ}) - \frac{m}{2} |w - w^{\circ}|^2.$$ (7.9.18) By (4.5.14) with $x = w^* = 0$ and $a = w^{\circ}$, $$f(w^{\circ}) \le g^{\circ} \cdot w^{\circ} - \frac{m}{2} |w^{\circ}|^2.$$ (7.9.19) Now assume t = 1/L. Multiply (7.9.18) by ρ and (7.9.19) by $1 - \rho$ and add, then insert the sum into (7.9.17). After some simplification, this yields $$f(w^{+}) \leq \rho f(w) + g^{\circ} \cdot (w^{\circ} - \rho w) - \frac{r}{2t} \left(\rho |w - w^{\circ}|^{2} + (1 - \rho)|w^{\circ}|^{2} \right) - \frac{t}{2} |g^{\circ}|^{2}.$$ (7.9.20) Since $$(w^{\circ} - \rho w) - tg^{\circ} = w^{+} - \rho w,$$ we have $$\frac{1}{2t}|w^+ - \rho w|^2 = \frac{1}{2t}|w^\circ - \rho w|^2 - g^\circ \cdot (w^\circ - \rho w) + \frac{t}{2}|g^\circ|^2.$$ Adding this to (7.9.20) leads to $$V(w^{+}) \le \rho f(w) - \frac{r}{2t} \left(\rho |w - w^{\circ}|^{2} + (1 - \rho)|w^{\circ}|^{2} \right) + \frac{1}{2t} |w^{\circ} - \rho w|^{2}. \quad (7.9.21)$$ Let $$R(a,b) = r\left(\rho s^2 |b|^2 + (1-\rho)|a+sb|^2\right) - |(1-\rho)a+sb|^2 + \rho |(1-\rho)a+\rho b|^2.$$ Solving for f(w) in (7.9.14) and inserting into (7.9.21) leads to $$V(w^{+}) \le \rho V(w) - \frac{1}{2t} R(w, w - w^{-}). \tag{7.9.22}$$ If we can choose s and ρ so that R(a, b) is a *positive* scalar multiple of $|b|^2$, then, by (7.9.22), (7.9.15) follows, completing the proof. Based on this, we choose s, ρ to make R(a, b) independent of a, which is equivalent to $\nabla_a R = 0$. But $$\nabla_a R = 2(1-\rho) \left((r - (1-\rho)^2) a + (\rho^2 - s(1-r)) b \right),$$ so $\nabla_a R = 0$ is two equations in two unknowns s, ρ . This leads to the choices for s and ρ made above. Once these choices are made, $s(1-r) = \rho^2$ and $\rho > s$. From this, $$R(a,b) = R(0,b) = (rs^2 - s^2 + \rho^3)|b|^2 = \rho^2(\rho - s)|b|^2, \tag{7.9.23}$$ which is positive. # Chapter A Appendices Some of the material in these appendices is first seen in high school. Because repeating the exposure leads to a deeper understanding, we review it in a manner useful to us here. We start with basic counting, and show how the factorial function leads directly to the exponential. Given its convexity and its importance for entropy (§5.2), the exponential is treated carefully (§A.3). The other use of counting is in graph theory ($\S 3.3$), which lays the groundwork for neural networks ($\S 7.2$). After this, we review two-dimensional geometry: Points and vectors in the plane, 2×2 matrices, and complex numbers, followed by two foundational appendices on convergence and minimizers. The last appendix has a different flavor, and covers coding SQL from within Python. #### A.1 Permutations and Combinations Suppose we have three balls in a bag, colored red, green, and blue. Suppose they are pulled out of the bag and arranged in a line. We then obtain six possibilities, listed in Figure A.1. Why are there six possibilities? Because they are three ways of choosing the first ball, then two ways of choosing the second ball, then one way of choosing the third ball, so the total number of ways is $$6 = 3 \times 2 \times 1.$$ In particular, we see that the number of ways multiply, $6 = 3 \times 2 \times 1$. Similarly, there are $5 \times 4 \times 3 \times 2 \times 1 = 120$ ways of arranging five distinct balls. Since this pattern appears frequently, it has a name. If n is a positive integer, then n-factorial is $$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1.$$ The factorial function grows large rapidly, for example, $$10! = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 3,628,800.$$ Notice also $$(n+1)! = (n+1) \times n \times (n-1) \times \cdots \times 2 \times 1 = (n+1) \times n!,$$ and $(n+2)! = (n+2) \times (n+1)!$, and so on. **Fig. A.1** 6 = 3! arrangements of 3 balls. #### Arrangements of n Objects The number of arrangements of n objects is n!. We also have $$1! = 1, \qquad 0! = 1.$$ It's clear that 1! = 1. It's less clear that 0! = 1, but it's reasonable if you think about it: The number of arrangements of zero balls results in only one possibility — no arrangements. The code for n! is from scipy.special import factorial factorial(n,exact=True) More generally, we can consider the number of ways of selecting k balls from n balls, for some fixed number $k \leq n$. There are two varieties of selec- tions that can be made: Ordered selections and unordered selections. These are permutations and combinations. An ordered selection is a *permutation*, and the number of permutations of k objects, or a k-tuple of objects, from n objects is denoted P(n,k). In particular, a permutation of n objects from n objects is an arrangement, so P(n,n) = n!. The act of selecting a k-tuple from n objects can be decomposed into two parts: Selecting a (k-1)-tuple t, then selecting an additional object i not in t. This is the basis for the code This code returns all k-tuples of integers x satisfying $0 \le x < n$, and P(n, k) equals len(perm_tuples(n,k)). For example, perm_tuples(5,2) returns ``` [(0,1), (0,2), (0,3), (0,4), (1,0), (1,2), (1,3), (1,4), (2,0), \\ \hookrightarrow (2,1), (2,3), (2,4), (3,0), (3,1), (3,2), (3,4), (4,0), (4,1), \\ \hookrightarrow (4,2), (4,3)] ``` In Python, P(n,k) is ``` from scipy.special import perm n, k = 5, 2 perm(n, k) ``` so the code ``` perm(n,k,exact=True) == len(perm_tuples(n,k)) ``` returns True. For ordered selections, there are n choices for the first ball, n-1 choices for the second ball, and so on, until we have n-(k-1) choices for the k-th ball. Thus $$P(n,k) = n \times (n-1) \times \cdots \times (n-k+1).$$ Because the selection order is taken into account, selecting ball #2 then ball #3 is considered distinct from selecting ball #3 then ball #2. # Permutation of k Objects from n Objects The number of permutations of k objects from n objects is $$P(n,k) = n(n-1)(n-2)\dots(n-k+1) = \frac{n!}{(n-k)!}.$$ The last formula follows by canceling, $$\frac{n!}{(n-k)!} = \frac{n(n-1)\dots(n-k+1)(n-k)!}{(n-k)!} = n(n-1)\dots(n-k+1).$$ Note P(x,k) is defined for any real number x by the same formula, $$P(x,k) = x(x-1)(x-2)...(x-k+1).$$ An unordered selection is a *combination*, and the number of combinations of k objects from n objects is denoted C(n,k). Here the selection order doesn't count, so the number of combinations of n objects from n objects is C(n,n) = 1. When a selection of k objects is made, and the k selected objects are permuted, this results in the same unordered selection, but results in a different ordered selection. Since the number of permutations of k objects is k!, it follows P(n,k) equals k! times C(n,k). #### Combinations of k Objects from n Objects The number of combinations of k objects from n objects is $$C(n,k) = \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}.$$ Writing out the fraction C(n, k), $$C(n,k) = \frac{n(n-1)(n-2)\dots(n-k+1)}{1\cdot 2\cdot 3\cdot \dots \cdot k}.$$ (A.1.1) The formula (A.1.1) is easy to remember: There are k terms in the numerator as well as the denominator, the factors in the denominator increase starting from 1, and the factors in the numerator decrease starting from n. The act of selecting an unordered k-tuple from n objects is equivalent to restricting the selection to k-tuples with increasing entries. This is the basis for the code Then comb_tuples(n,k) returns all combinations of k integers x satisfying $0 \le x < n$, and C(n,k) equals len(comb_tuples(n,k)). The code for comb_tuples(n,k) is identical to that of perm_tuples(n,k), except the tuple entries are now restricted to be in increasing order. For example, comb_tuples(5,2) returns ``` [(0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4), \hookrightarrow (3,4)] ``` In Python, C(n, k) is ``` from scipy.special import comb n, k = 5, 2 comb(n, k) ``` so the code ``` comb(n,k,exact=True) == len(comb_tuples(n,k)) ``` returns True. The number C(n, k) is also called *n-choose-k* and the *binomial coefficient*. Since P(x, k) is defined for any real number x, so is C(x, k): $$C(x,k) = \frac{P(x,k)}{k!} = \frac{x(x-1)(x-2)\dots(x-k+1)}{1\cdot 2\cdot 3\cdot \dots \cdot k}.$$ An important question is the *rate of growth* of the factorial function n!. Attempting to answer this question leads to the exponential ($\S A.3$) and to the entropy ($\S 4.2$). Here is how this happens. Since n! is a product of the n factors $$1, 2, 3, \ldots, n-1, n,$$ each no larger than n, it is clear that $$n! < n^n$$. However, because half of the factors are less then n/2, we expect an approximation smaller than n^n , maybe something like $(n/2)^n$ or $(n/3)^n$. To be systematic about it, assume $$n!$$ is approximately equal to $e\left(\frac{n}{e}\right)^n$ for n large, (A.1.2) for some *constant* e. We seek the best constant e that fits here. In this approximation, we multiply by e so that (A.1.2) is an equality when n = 1. Using the binomial theorem, in §A.3 we show $$3\left(\frac{n}{3}\right)^n \le n! \le 2\left(\frac{n}{2}\right)^n, \qquad n \ge 1. \tag{A.1.3}$$ Based on this, a constant e satisfying (A.1.2) must
lie between 2 and 3, $$2 \le e \le 3$$. To figure out the best constant e to pick, we see how much both sides of (A.1.2) increase when we replace n by n+1. Write (A.1.2) with n+1 replacing n, obtaining $$(n+1)!$$ is approximately equal to $e\left(\frac{n+1}{e}\right)^{n+1}$ for n large. (A.1.4) Dividing the left sides of (A.1.2), (A.1.4) yields $$\frac{(n+1)!}{n!} = (n+1).$$ Dividing the right sides yields $$\frac{e((n+1)/e)^{n+1}}{e(n/e)^n} = (n+1) \cdot \frac{1}{e} \cdot \left(1 + \frac{1}{n}\right)^n.$$ (A.1.5) To make these quotients match as closely as possible, we should choose $$e \approx \left(1 + \frac{1}{n}\right)^n$$, for n large. (A.1.6) Choosing $n = 1, 2, 3, \dots, 100, \dots$ results in $$e \approx 2, 2.25, 2.37, \dots, 2.705, \dots$$ As $n \to \infty$, we obtain Euler's constant e (§A.3). Equation (A.1.2) can be improved to Stirling's approximation $$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$, for n large. (A.1.7) This is an asymptotic equality. This means the ratio of the two sides approaches 1 for large n (see §A.7). Stirling's approximation is a consequence of the central limit theorem (Exercise 5.4.13). Stirling's approximation is highly accurate for n large: As soon as n=1, Stirling's approximation is 90% accurate, and, as soon as n=9, Stirling's approximation is 99% accurate. #### Exercises **Exercise A.1.1** The *n*-th Hermite number is $$H_n = \frac{(2n)!}{2^n n!}, \qquad n = 0, 1, 2, 3, \dots$$ Use scipy.special.factorial to find the least n for which H_n is greater than a billion. **Exercise A.1.2** (Summation notation exercise) Let $n = 1, 2, \ldots$ Show $$\sum_{k=n}^{\infty} (k-n) \cdot \frac{n^k}{k!} = \frac{n^{n+1}}{n!}.$$ (A.1.8) (First break the sum into two sums, then write out the first few terms of each sum separately, and notice all terms but one cancel.) **Exercise A.1.3** (Summation notation exercise) Let $k=2,3,4,\ldots$ Show the sum $$\sum_{j=1}^{k-1} j = 1 + 2 + \dots + (k-1) = \frac{k(k-1)}{2}.$$ (A.1.9) Hint - Write the sum in reverse order, then add the two sums term-by-term. # A.2 The Binomial Theorem Let x and a be two variables. A binomial is an expression of the form $$(a+x)^2$$, $(a+x)^3$, $(a+x)^4$, ... The degree of each of these binomials is 2, 3, and 4. When binomials are expanded by multiplying out, one obtains a sum of terms. The *binomial theorem* specifies the exact pattern of the resulting sum. Recall that $$(a+b)(c+d) = a(c+d) + b(c+d) = ac + ad + bc + bd.$$ Similarly, $$(a+b)(c+d+e) = a(c+d+e) + b(c+d+e) = ac + ad + ae + bc + bd + be$$. Using this algebra, we can expand each binomial. Expanding $(a+x)^2$ yields $$(a+x)^2 = (a+x)(a+x) = a^2 + xa + ax + x^2 = a^2 + 2ax + x^2.$$ (A.2.1) Similarly, for $(a+x)^3$, we have $$(a+x)^3 = (a+x)(a+x)^2 = (a+x)(a^2 + 2ax + x^2)$$ $$= a^3 + 2a^2x + ax^2 + xa^2 + 2xax + x^3$$ $$= a^3 + 3a^2x + 3ax^2 + x^3.$$ (A.2.2) For $(a+x)^4$, we have $$(a+x)^4 = (a+x)(a+x)^3 = (a+x)(a^3 + 3a^2x + 3ax^2 + x^3)$$ = $a^4 + 3a^3x + 3a^2x^2 + ax^3 + a^3x + 3a^2x^2 + 3ax^3 + x^4$ (A.2.3) = $a^4 + 4a^3x + 6a^2x^2 + 4ax^3 + x^4$. Thus $$(a+x)^{2} = a^{2} + 2ax + x^{2}$$ $$(a+x)^{3} = a^{3} + 3a^{2}x + 3ax^{2} + x^{3}$$ $$(a+x)^{4} = a^{4} + 4a^{3}x + 6a^{2}x^{2} + 4ax^{3} + x^{4}$$ $$(a+x)^{5} = \star a^{5} + \star a^{4}x + \star a^{3}x^{2} + \star a^{2}x^{3} + \star ax^{4} + \star x^{5}.$$ (A.2.4) Here \star means we haven't found the coefficient yet. There is a pattern in (A.2.4). In the first line, the powers of a are in decreasing order, 2, 1, 0, while the powers of x are in increasing order, 0, 1, 2. In the second line, the powers of a decrease from 3 to 0, while the powers of x increase from 0 to 3. In the third line, the powers of a decrease from 4 to 0, while the powers of a increase from 0 to 4. This pattern of powers is simple and clear. Now we want to find the pattern for the coefficients in front of each term. In (A.2.4), these coefficients are (1,2,1), (1,3,3,1), (1,4,6,4,1), and $(\star,\star,\star,\star,\star,\star)$. These coefficients are the binomial coefficients. Before we determine the pattern, we introduce a useful notation for these coefficients by writing $$\binom{2}{0} = 1, \qquad \binom{2}{1} = 2, \qquad \binom{2}{2} = 1$$ and $$\begin{pmatrix} 3 \\ 0 \end{pmatrix} = 1, \qquad \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 3, \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3, \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1$$ and $$\binom{4}{0}=1, \qquad \binom{4}{1}=4, \qquad \binom{4}{2}=6, \qquad \binom{4}{3}=4, \qquad \binom{4}{4}=1$$ and $$\binom{5}{0} = \star, \quad \binom{5}{1} = \star, \quad \binom{5}{2} = \star, \quad \binom{5}{3} = \star, \quad \binom{5}{4} = \star, \quad \binom{5}{5} = \star.$$ With this notation, the number $$\binom{n}{k} \tag{A.2.5}$$ is the coefficient of $a^{n-k}x^k$ when you multiply out $(a+x)^n$. This is the binomial coefficient. Here n is the degree of the binomial, and k, which specifies the term in the resulting sum, varies from 0 to n (not 1 to n). It is important to remember that, in this notation, the binomial $(a + x)^2$ expands into the sum of three terms a^2 , 2ax, x^2 . These are term 0, term 1, and term 2. Alternatively, one says these are the zeroth term, the first term, and the second term. Thus the second term in the expansion of the binomial $(a+x)^4$ is $6a^2x^2$, and the binomial coefficient $\binom{4}{2} = 6$. In general, the binomial $(a+x)^n$ of degree n expands into a sum of n+1 terms. Since the binomial coefficient $\binom{n}{k}$ is the coefficient of $a^{n-k}x^k$ when you multiply out $(a+x)^n$, we have the binomial theorem. #### **Binomial Theorem** The binomial $(a+x)^n$ equals $$\binom{n}{0}a^n + \binom{n}{1}a^{n-1}x + \binom{n}{2}a^{n-2}x^2 + \dots + \binom{n}{n-1}ax^{n-1} + \binom{n}{n}x^n.$$ (A.2.6) Using summation notation, the binomial theorem states $$(a+x)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} x^k.$$ (A.2.7) This result is only useful when we obtain usable formulas for $\binom{n}{k}$. The binomial coefficient $\binom{n}{k}$ is called "n-choose-k", because it is the coefficient of the term corresponding to choosing k x's when multiplying the n factors in the product $$(a+x)^n = (a+x)(a+x)(a+x)\dots(a+x).$$ For example, the term $\binom{4}{2}a^2x^2$ corresponds to choosing two a's, and two x's, when multiplying the four factors in the product $$(a+x)^4 = (a+x)(a+x)(a+x)(a+x).$$ The binomial coefficients may be arranged in a triangle, *Pascal's triangle* (Figure A.2). Can you figure out the numbers \star in this triangle before peeking ahead? | n=0: | | | | | | | | | | 1 | | | | | | | | | | | |---------|---|----|---|----|----|-----|----|----|-----|-----|-----|----|----|-----|----|----|---|----|---|---| | n = 1: | | | | | | | | | 1 | | 1 | | | | | | | | | | | n=2: | | | | | | | | 1 | | 2 | | 1 | | | | | | | | | | n = 3: | | | | | | | 1 | | 3 | | 3 | | 1 | | | | | | | | | n=4: | | | | | | 1 | | 4 | | 6 | | 4 | | 1 | | | | | | | | n = 5: | | | | | 1 | | 5 | | 10 | | 10 | | 5 | | 1 | | | | | | | n = 6: | | | | * | | 6 | | 15 | | 20 | | 15 | | 6 | | * | | | | | | n = 7: | | | 1 | | * | | 21 | | 35 | | 35 | | 21 | | * | | 1 | | | | | n = 8: | | 1 | | 8 | | * | | 56 | | 70 | | 56 | | * | | 8 | | 1 | | | | n = 9: | 1 | | 9 | | 36 | | * | | 126 | | 126 | | * | | 36 | | 9 | | 1 | | | n = 10: | 1 | 10 | | 45 | | 120 | | * | | 252 | | * | | 120 | | 45 | | 10 | | 1 | Table A.2 Pascal's triangle. Based on (A.2.10), here is code generating Pascal's triangle. ``` from numpy import * N = 10 Comb = zeros((N,N),dtype=int) Comb[0,0] = 1 for n in range(1,N): Comb[n,0] = Comb[n,n] = 1 for k in range(1,n): Comb[n,k] = Comb[n-1,k] + Comb[n-1,k-1] Comb ``` In Pascal's triangle, the very top row has one number in it: This is the zeroth row corresponding to n=0 and the binomial expansion of $(a+x)^0=1$. The first row corresponds to n=1; it contains the numbers (1,1), which correspond to the binomial expansion of $(a+x)^1=1a+1x$. We say the zeroth entry (k=0) in the first row (n=1) is 1 and the first entry (k=1) in the first row is 1. Similarly, the zeroth entry (k=0) in the second row (n=2) is 1, and the second entry (k=2) in the second row (n=2) is 1. The second entry (k=2) in the fourth row (n=4) is 6. For every row, the entries are counted starting from k=0, and end with k=n, so there are n+1 entries in row n. With this understood, the k-th entry in the n-th row is the binomial coefficient n-choose-k. So 10-choose-2 is $$\binom{10}{2} = 45.$$ We can learn a lot about the binomial coefficients from this triangle. First, we have 1's all along the left edge. Next, we have 1's all along the right edge. Similarly, one step in from the left or right edge, we have the row number. Thus we have $$\binom{n}{0} = 1 = \binom{n}{n}, \qquad \binom{n}{1} = n = \binom{n}{n-1}, \qquad n \ge 1.$$ Note also Pascal's triangle has a left-to-right symmetry: If you read off the coefficients in a particular row, you can't tell if you're reading them from left to right, or from right to left, it's the same either way: The fifth row is (1, 5, 10, 10, 5, 1). In terms of our notation, this is written $$\binom{n}{k} = \binom{n}{n-k}, \qquad 0 \le k \le n;$$ the binomial coefficients remain unchanged when k is replaced by n-k. The key step in finding a formula for n-choose-k is to notice $$(a+x)^{n+1} = (a+x)(a+x)^n.$$ Let's multiply this out when n=3. From (A.2.4), we get Combining terms, this equals $$\binom{3}{0}a^4 + \left(\binom{3}{1} + \binom{3}{0}\right)a^3x + \left(\binom{3}{2} + \binom{3}{1}\right)a^2x^2 + \left(\binom{3}{3} + \binom{3}{2}\right)ax^3 + \binom{3}{3}x^4.$$ Equating corresponding coefficients of x, we get, $$\binom{4}{1} = \binom{3}{1} + \binom{3}{0}, \qquad \binom{4}{2} = \binom{3}{2} + \binom{3}{1}, \qquad \binom{4}{3} = \binom{3}{3} + \binom{3}{2}.$$ In general, a similar calculation establishes $$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}, \qquad 1 \le k \le n. \tag{A.2.8}$$ This allows us to build Pascal's triangle (Figure A.2),
where, apart from the ones on either end, each term ("the child") in a given row is the sum of the two terms ("the parents") located directly above in the previous row. Insert x = 1 and a = 1 in the binomial theorem to get $$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n}. \tag{A.2.9}$$ We conclude the sum of the binomial coefficients along the n-th row of Pascal's triangle is 2^n (remember n starts from 0). Now insert x = 1 and a = -1. You get $$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots \pm \binom{n}{n-1} \pm \binom{n}{n}.$$ Hence: the alternating sum of the binomial coefficients along the n-th row of Pascal's triangle is zero. Let C(n,k) be as in §A.1. We show #### **Binomial Coefficient** For $n \geq 0$, $$\binom{n}{k} = C(n,k) = \frac{n!}{k!(n-k)!}, \qquad 0 \le k \le n.$$ To establish this, because $$C(0,0) = 1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$ and $\binom{n}{k}$ satisfies (A.2.8), it is enough to show C(n,k) also satisfies (A.2.8), $$C(n+1,k) = C(n,k) + C(n,k-1), 1 \le k \le n.$$ (A.2.10) To establish (A.2.10), we simplify $$C(n,k) + C(n,k-1) = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$ $$= \frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{k} + \frac{1}{n-k+1}\right)$$ $$= \frac{n!(n+1)}{(k-1)!(n-k)!k(n-k+1)}$$ $$= \frac{(n+1)!}{k!(n+1-k)!} = C(n+1,k).$$ This establishes (A.2.10), and, consequently, equality of $\binom{n}{k}$ and C(n,k). For example, $$\binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3} = 35 = \binom{7}{4} \quad \text{and} \quad \binom{10}{2} = \frac{10 \cdot 9}{1 \cdot 2} = 45 = \binom{10}{8}.$$ In Python, the code $^{^1}$ Alternating means the plus-minus pattern $+-+-+-\dots$ from scipy.special import comb comb(n,k) comb(n,k,exact=True) returns the binomial coefficient. The binomial coefficient $\binom{n}{k}$ makes sense even for fractional n. This can be seen from (A.1.1). For example, for n = 1/2 and k = 3, $$\binom{1/2}{3} = \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right)}{1 \cdot 2 \cdot 3} = \frac{(1/2)(-1/2)(-3/2)}{6} = \frac{3}{48}.$$ (A.2.11) This works also for n negative, $${\binom{-1/2}{3}} = \frac{{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)}}{1\cdot 2\cdot 3} = \frac{(-1/2)(-3/2)(-5/2)}{6} = \frac{-15}{48}.$$ (A.2.12) In fact, in (A.1.1), n may be any real number, for example $n = \sqrt{2}$. # A.3 The Exponential Function In this section, our first goal is to derive (A.1.3), as promised in §A.1. To begin, use the binomial theorem (A.1.1), (A.2.7) with a = 1 and x = 1/n, obtaining $$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} \left(\frac{1}{n}\right)^k = \sum_{k=0}^n \frac{1}{k!} \frac{n(n-1)(n-2)\dots(n-k+1)}{n \cdot n \cdot n \cdot \dots \cdot n}.$$ Rewriting this by pulling out the first two terms k = 0 and k = 1 leads to $$\left(1 + \frac{1}{n}\right)^n = 1 + 1 + \sum_{l=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right). \quad (A.3.1)$$ From (A.3.1), we can tell a lot. First, since all terms are positive, we see $$\left(1 + \frac{1}{n}\right)^n \ge 2, \qquad n \ge 1.$$ Second, each factor in (A.3.1) is of the form $$\left(1 - \frac{j}{n}\right), \qquad 1 \le j \le k - 1. (A.3.2)$$ Since n is in the denominator, each such factor *increases* with n. Moreover, as n increases, the *number of terms* in (A.3.1) increases, hence so does the sum. We conclude $$\left(1 + \frac{1}{n}\right)^n$$ increases as n increases. (A.3.3) Third, when $k \geq 2$, we know $$k! = k(k-1)(k-2)\dots 3 \cdot 2 \ge 2^{k-1}$$. Since each factor in (A.3.2) is no greater than 1, by (A.3.1), $$\left(1 + \frac{1}{n}\right)^n \le 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=2}^n \frac{1}{2^{k-1}}.$$ (A.3.4) But we can show $$\sum_{k=2}^{n} \frac{1}{2^{k-1}} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} \le 1,$$ as follows. A geometric sum is a sum of the form $$s_n = 1 + a + a^2 + \dots + a^{n-1} = \sum_{k=0}^{n-1} a^k.$$ Multiplying s_n by a results in almost the same sum, $$as_n = a + a^2 + a^3 + \dots + a^{n-1} + a^n = s_n + a^n - 1,$$ yielding $$(a-1)s_n = a^n - 1.$$ When $a \neq 1$, we may divide by a - 1, obtaining $$s_n = \sum_{k=0}^{n-1} a^k = 1 + a + a^2 + \dots + a^{n-1} = \frac{a^n - 1}{a - 1}.$$ (A.3.5) Inserting a = 1/2, we conclude $$\sum_{k=2}^{n} \frac{1}{2^{k-1}} = \sum_{k=1}^{n-1} \frac{1}{2^k} = s_n - 1 = 2\left(1 - 2^{-n}\right) - 1 \le 1, \qquad n \ge 2.$$ By (A.3.4), we arrive at $$2 \le \left(1 + \frac{1}{n}\right)^n \le 3, \qquad n \ge 1.$$ (A.3.6) Now we use (A.3.6) to establish (A.1.3). Write (A.1.3) as $a_n \leq b_n \leq c_n$. When n = 1, $$a_1 = b_1 = c_1.$$ Moreover, as n increases, a_n , b_n , c_n all increase. Therefore, to establish (A.1.3), it is enough to show b_n increases faster than a_n , and c_n increases faster than b_n , both as n increases. To measure how a_n , b_n , c_n increase with n, divide the (n + 1)-st term by the n-th term: It is enough to show $$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n} \le \frac{c_{n+1}}{c_n}.$$ But we already know $$\frac{b_{n+1}}{b_n} = n+1,$$ and, from (A.3.6), $$\frac{a_{n+1}}{a_n} = \frac{3((n+1)/3)^{n+1}}{3(n/3)^n} = (n+1) \cdot \frac{1}{3} \cdot \left(1 + \frac{1}{n}\right)^n \le n+1 = \frac{b_{n+1}}{b_n},$$ and, from (A.3.6) again, $$\frac{b_{n+1}}{b_n} = n+1 \le (n+1) \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^n = \frac{2((n+1)/2)^{n+1}}{2(n/2)^n} = \frac{c_{n+1}}{c_n}.$$ Since we've shown b_n increases faster than a_n , and c_n increases faster than b_n , we have derived (A.1.3). Since a bounded increasing sequence has a limit ($\S A.8$), by (A.3.3), we have the following strengthening of (A.1.6). #### Euler's Constant The limit $$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{A.3.7}$$ exists and satisfies $2 \le e \le 3$. Standard properties of limits, such as $$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n,\qquad \lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_n\lim_{n\to\infty}b_n,$$ are in §A.7. Nevertheless, the intuition is clear: (A.3.7) is saying there is a specific positive number e with $$\left(1 + \frac{1}{n}\right)^n \approx e$$ for n large. By definition, Euler's constant e satisfies (A.3.7). To obtain a second formula for e, insert $n = \infty$ in (A.3.1). Using $1/\infty = 0$, since the k-th term approaches 1/k!, and since the number of terms increases with n, we obtain the second formula $$e = 1 + 1 + \sum_{k=2}^{\infty} \frac{1}{k!} \left(1 - \frac{1}{\infty} \right) \left(1 - \frac{2}{\infty} \right) \dots \left(1 - \frac{k-1}{\infty} \right) = \sum_{k=0}^{\infty} \frac{1}{k!}.$$ For a guarantee that plugging $n = \infty$ into (A.3.1) really makes sense, see Exercise A.3.5. To summarize, # Euler's Constant Euler's constant satisfies $$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$$ (A.3.8) Depositing one dollar in a bank offering 100% interest returns two dollars after one year. Depositing one dollar in a bank offering the same annual interest compounded at mid-year returns $$\left(1 + \frac{1}{2}\right)^2 = 2.25$$ dollars after one year. Depositing one dollar in a bank offering the same annual interest compounded at n intermediate time points returns $(1+1/n)^n$ dollars after one year. Passing to the limit, depositing one dollar in a bank and continuously compounding at an annual interest rate of 100% returns e dollars after one year. Because of this, (A.3.7) is often called the *compound-interest formula*. Now we derive the result of continuously compounding at any specified annual interest rate x. Note here x is a proportion, not a percent. An interest rate of 30% corresponds to x=.3 in the exponential function. #### **Exponential Function** For any real number x, the limit $$\exp x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \tag{A.3.9}$$ exists. In particular, $\exp 0 = 1$ and $\exp 1 = e$. **Fig. A.3** The exponential function $\exp x$. Note, in the compound-interest interpretation, when x > 0, the bank is giving you interest, while, if x < 0, the bank is taking away interest, leading to a continual loss. To derive this, assume first x > 0 is a positive real number. Then, exactly as before, using the binomial theorem, $$\left(1 + \frac{x}{n}\right)^n, \qquad n \ge 1,$$ is increasing with n, so the limit in (A.3.9) is well-defined. To establish the existence of the limit when x < 0, we first show $$(1-x)^n \ge 1 - nx, \qquad 0 < x < 1, n \ge 1.$$ (A.3.10) This follows inductively: Each of the following inequalities is implied by the preceding one, $$(1-x) = 1-x$$ $$(1-x)^2 = 1-2x+x^2 \ge 1-2x$$ $$(1-x)^3 = (1-x)(1-x)^2 \ge (1-x)(1-2x) = 1-3x+2x^2 \ge 1-3x$$ $$(1-x)^4 = (1-x)(1-x)^3 \ge (1-x)(1-3x) = 1-4x+3x^3 \ge 1-4x$$ This establishes (A.3.10) for all $n \ge 1$. Now let x be any real number. Replacing x by x^2/n^2 in (A.3.10), we obtain $$1 \ge \left(1 - \frac{x^2}{n^2}\right)^n \ge 1 - \frac{x^2}{n}.$$ As $n \to \infty$, both sides of this last equation approach 1, so $$\lim_{n \to \infty} \left(1 - \frac{x^2}{n^2} \right)^n = 1. \tag{A.3.11}$$ Now let n grow without bound in $$\left(1 + \frac{x}{n}\right)^n \left(1 - \frac{x}{n}\right)^n = \left(1 - \frac{x^2}{n^2}\right)^n.$$ Since the limit $\exp x$ is well-defined when x > 0, by (A.3.11), we obtain $$\exp x \cdot \lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n = 1, \qquad x > 0.$$ This shows the limit $\exp x$ in (A.3.9) is well-defined when x < 0, and $$\exp(-x) = \frac{1}{\exp x}$$, for all x . The code ``` from numpy import * from matplotlib.pyplot import * plot(x,exp(x)) grid() show() ``` returns Figure A.3. Repeating the logic yielding (A.3.1), we have $$\left(1 + \frac{x}{n}\right)^n = 1 + x + \sum_{k=2}^n \frac{x^k}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 -
\frac{k-1}{n}\right). \quad (A.3.12)$$ Letting $n \to \infty$ in (A.3.12) as before, results in the following. #### **Exponential Series** The exponential function is always positive and satisfies, for every real number x, $$\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + \dots$$ (A.3.13) The graph of $\exp x$ is in Figure A.3. We use the binomial theorem one more time to show #### Law of Exponents For real numbers x and y, $$\exp(x+y) = \exp x \cdot \exp y$$. To see this, multiply out the sums $$(a_0 + a_1 + a_2 + a_3 + \dots)(b_0 + b_1 + b_2 + b_3 + \dots)$$ in a "symmetric" manner, obtaining $$a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0) + \dots$$ Using summation notation, the n-th term in this last sum is $$\sum_{k=0}^{n} a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0.$$ Thus $$\left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{m=0}^{\infty} b_m\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right).$$ Now insert $$a_k = \frac{x^k}{k!}, \qquad b_{n-k} = \frac{y^{n-k}}{(n-k)!}.$$ Then the n-th term in the resulting sum equals, by the binomial theorem, $$\sum_{k=0}^{n} a_k b_{n-k} = \sum_{k=0}^{n} \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = \frac{1}{n!} (x+y)^n.$$ Thus $$\exp x \cdot \exp y = \left(\sum_{k=0}^{\infty} \frac{x^k}{k!}\right) \left(\sum_{m=0}^{\infty} \frac{y^m}{m!}\right) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = \exp(x+y).$$ This derives the law of exponents. Repeating the law of exponents n times implies $$\exp(nx) = \exp(x + x + \dots + x) = \exp x \cdot \exp x \cdot \dots \cdot \exp x = (\exp x)^n.$$ If we write $\sqrt[n]{x} = x^{1/n}$, replacing x by x/n yields $$\exp(x/n) = (\exp x)^{1/n}.$$ Combining the last two equations yields $$\exp(nx/m) = ((\exp x)^n)^{1/m} = (\exp x)^{n/m}.$$ Inserting x=1 in this last equation, it follows, for any rational number x=n/m, $$\exp x = \exp(1 \cdot x) = (\exp 1)^x = e^x.$$ Because of this, as a matter of convenience, we write the exponential function either way, $\exp x$ or e^x , even when x is not rational. #### **Exponential Notation** For any real number x, $$e^x = \exp x$$. Suppose 0 < r < 1. Then $r^2 < r$, $r^3 < r$, and so on. Replacing x by rx in the exponential series (A.3.13), $$e^{rx} = 1 + rx + \frac{1}{2!}r^2x^2 + \frac{1}{3!}r^3x^3 + \dots$$ $$< 1 + rx + \frac{1}{2!}rx^2 + \frac{1}{3!}rx^3 + \dots$$ $$= 1 - r + re^x.$$ (A.3.14) From this we can show #### Convexity of the Exponential Function For 0 < r < 1, $$\exp((1-r)x + ry) < (1-r)\exp x + r\exp y. \tag{A.3.15}$$ To derive (A.3.15), replace x by y - x in (A.3.14), obtaining $$e^{r(y-x)} < 1 - r + re^{y-x}$$. Now multiply both sides by e^x , obtaining (A.3.15). Graphically, the convexity of the exponential functions is the fact that the line segment joining two points on the graph lies above the graph (Figure A.4). Fig. A.4 Convexity of the exponential function. Convexity is discussed further in §4.5. #### Exercises Exercise A.3.1 Assume a bank gives 50% annual interest on deposits. After one year, what does \$1 become? Do this when the money is compounded once, twice, and at every instant during the year. Exercise A.3.2 Assume a bank gives -50% annual interest on deposits. After one year, what does \$1 become? Do this when the money is compounded once, twice, and at every instant during the year. **Exercise A.3.3** Which of the following is correct? For n large, $$n+1 \approx n$$, $e^{n+1} \approx e^n$, $e^{e^{n+1}} \approx e^{e^n}$. \approx is asymptotic equality (see §A.7). Exercise A.3.4 Extend (A.3.10) by showing $$(1-a)(1-b)(1-c) \ge 1 - (a+b+c),$$ valid for a, b, c in (0, 1). Use this to show $$1 - \left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\left(1 - \frac{3}{n}\right) \le \frac{1}{n} + \frac{2}{n} + \frac{3}{n}.$$ This remains true for any number of factors. Exercise A.3.5 Use the previous exercise, (A.1.9), (A.3.1), and (A.3.4), to derive the error estimate $$0 \le 2 + \sum_{k=2}^{n} \frac{1}{k!} - \left(1 + \frac{1}{n}\right)^{n} \le \frac{3}{2n}, \qquad n \ge 2.$$ This is a complete derivation of (A.3.8). **Exercise A.3.6** Replace x by x/n in (A.3.10) to show $$1 - x < e^{-x}, \qquad x > 0.$$ (A.3.16) Exercise A.3.7 Use (A.3.5) to derive the geometric series $$\frac{1}{1-a} = \sum_{n=0}^{\infty} a^n = 1 + a + a^2 + a^3 + \dots, \qquad -1 < a < 1.$$ (A.3.17) Exercise A.3.8 Take the derivative of (A.3.17) to obtain $$\frac{1}{(1-a)^2} = \sum_{n=1}^{\infty} na^{n-1} = 1 + 2a + 3a^2 + 4a^3 + \dots, \qquad -1 < a < 1. \text{ (A.3.18)}$$ #### A.4 Two Dimensions This section is a review of the geometry of vectors and matrices in two dimensions. This is the *cartesian plane* \mathbb{R}^2 , also called 2-dimensional real space. The plane \mathbb{R}^2 is a vector space, in the sense described in §1.3. Fig. A.5 A vector v. In the cartesian plane, a *vector* is an arrow v joining the origin to a point (Figure A.5). In this way, points and vectors are almost interchangeable, as a point x in \mathbf{R}^d corresponds to the vector v starting at the origin 0 and ending at x. In the cartesian plane, each vector v has a shadow. This is the triangle constructed by dropping the perpendicular from the tip of v to the x-axis, as in Figure A.6. This cannot be done unless one first draws a horizontal line (the x-axis), then a vertical line (the y-axis). In this manner, each vector v has cartesian coordinates v = (x, y). In Figure A.5, the coordinates of v are (3, 2). In particular, the vector 0 = (0, 0), the zero vector, corresponds to the origin. **Fig. A.6** Vectors v_1 and v_2 and their shadows in the plane. In the cartesian plane, vectors $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$ are added by adding their coordinates, # Addition of vectors If $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$, then $v_1 + v_2 = (x_1 + x_2, y_1 + y_2). \tag{A.4.1}$ Because points and vectors are interchangeable, the same formula is used for addition P + P' of points P and P'. This addition is the same as combining their shadows as in Figure A.7. In Python, lists and tuples do not add this way. Lists and tuples have to first be converted into numpy arrays. ``` v1 = (1,2) v2 = (3,4) v1 + v2 == (1+3,2+4) # returns False v1 = [1,2] v2 = [3,4] v1 + v2 == [1+3,2+4] # returns False from numpy import * v1 = array([1,2]) v2 = array([3,4]) v1 + v2 == array([1+3,2+4]) # returns True ``` For example, $v_1 = (-3, 1)$ and $v_2 = (2, -2)$ returns $$v_1 + v_2 = (-3, 1) + (2, -2) = (-3 + 2, 1 - 2) = (-1, -1).$$ Fig. A.7 Adding v_1 and v_2 In Python, u == v is exact equality of values. When the entries of u and v are ints, this is not a problem. However, when the entries of u and v are floats, u == v may return False even though the floats agree to within the underlying precision of the Python code. To remedy this, it's best to use isclose(u,v) for scalars or allclose(u,v) for arrays. This returns True when u and v agree to within the underlying precision. In this chapter, we ignore this point, but we are more careful starting in Chapter 2. A vector v = (x, y) in the plane may be scaled by scaling the shadow as in Figure A.8. This is *vector scaling* by t. Note when t is negative, the shadow is also flipped. In Python, we write ``` from numpy import * v = array([1,2]) 3*v == array([3,6]) # returns True ``` **Fig. A.8** Scaling with t = 2 and t = -2/3 Given a vector v, the scalings tv of v form a line passing through the origin 0 (Figure A.10). This line is the span of v (more on this in §2.4). Scalings tv of v are also called multiples of v. If t, s are scalars and u, v are vectors, it is easy to check *linearity* $$t(u+v) = tu + tv$$ and $(s+t)u = su + tu$, and $$t(sv) = (ts)v.$$ Thus scaling v by s, and then scaling the result by t, has the same effect as scaling v by ts, in a single step. Because points and vectors are interchangeable, the same formula tP is used for scaling points P by t. We set -v = (-1)v, and define subtraction of vectors by $$v_1 - v_2 = v_1 + (-v_2).$$ ``` from numpy import * v1 = array([1,2]) v2 = array([3,4]) v1 - v2 == array([1-3,2-4]) # returns True ``` # Subtraction of vectors If $$v_1 = (x_1, y_1)$$ and $v_2 = (x_2, y_2)$, then $$v_1 - v_2 = (x_1 - x_2, y_1 - y_2) \tag{A.4.2}$$ #### Distance Formula If $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$, then the distance between v_1 and v_2 is $$|v_1 - v_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$ **Fig. A.9** The polar representation of v = (x, y). The distance of v=(x,y) to the origin 0=(0,0) is its magnitude or norm or length $$r = |v| = |v - 0| = \sqrt{x^2 + y^2}.$$ In Python, ``` from numpy import * from scipy.linalg import norm v = array([1,2]) norm(v) == sqrt(5)# returns True ``` For future use, we recall the trigonometric function $\sin \theta$ and $\cos \theta$. These are defined in terms of r, x, and y (Figure A.9) $$x = r\cos\theta, \qquad y = r\sin\theta.$$ (A.4.3) This is the *polar* representation of (x, y). The *unit circle* consists of the vectors which are distance 1 from the origin 0. When v is on the unit circle, the magnitude of v is 1, and we say v is a *unit vector*. In this case, the line formed by the scalings of v intersects the unit circle at $\pm v$ (Figure A.10). When v is a unit vector, r = 1, and (Figure A.9), $$v = (x, y) = (\cos \theta, \sin \theta). \tag{A.4.4}$$ **Fig. A.10** v and its antipode -v. The unit circle intersects the horizontal axis at (1,0), and (-1,0), and intersects the vertical axis at (0,1), and (0,-1). These four points are equally spaced on the unit circle (Figure A.10). By the distance formula, a vector v = (x, y) is a unit vector when $$x^2 + y^2 = 1.$$ More generally, any circle with center Q = (a, b) and radius r consists of points (x, y) satisfying $$(x-a)^2 + (y-b)^2 = r^2$$. Let R be a point on the unit circle, and let t > 0. From
this, we see the scaled point tR is on the circle with center (0,0) and radius t. Moreover, it follows a point P is on the circle of center Q and radius r iff P = Q + rR for some R on the unit circle. Given this, it is easy to check $$|tv| = |t||v|$$ for any scalar t and vector v. From this, if a vector v is unit and r > 0, then rv has magnitude r. If v is any vector not equal to the zero vector, then r = |v| is positive, and $$\left|\frac{1}{r}v\right| = \frac{1}{r}\left|v\right| = \frac{1}{r}r = 1,$$ so v/r is a unit vector. **Fig. A.11** Two vectors v_1 and v_2 . Now we discuss the dot product in two dimensions. Let $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$ be two vectors in the plane. The dot product of v_1 and v_2 is given algebraically as $$v_1 \cdot v_2 = x_1 x_2 + y_1 y_2,$$ or geometrically as $$v_1 \cdot v_2 = |v_1| |v_2| \cos \theta,$$ where θ is the angle between v_1 and v_2 . To show that these are the same, below we derive the #### **Dot Product Identity** $$x_1 x_2 + y_1 y_2 = v_1 \cdot v_2 = |v_1| |v_2| \cos \theta.$$ (A.4.5) From the algebraic definition of dot product, we have $v \cdot v = x^2 + y^2 = |v|^2$. Since $v_2 - v_1 = (x_2 - x_1, y_2 - y_1)$, $$|v_2 - v_1|^2 = (v_2 - v_1) \cdot (v_2 - v_1) = (x_2 - x_1)^2 + (y_2 - y_1)^2.$$ Expanding the squares, we obtain $$|v_2 - v_1|^2 = |v_2|^2 - 2v_1 \cdot v_2 + |v_1|^2.$$ (A.4.6) As an example of the usefulness of the dot product identity, the linearity of the dot product $$(su + tv) \cdot w = su \cdot w + tv \cdot w$$ follows immediately from the algebraic definition, but is not at all obvious from the viewpoint of the geometric definition. In Python, the dot product is given by numpy.dot, ``` from numpy import * v1 = array([1,2]) v2 = array([3,4]) dot(v1,v2) == 1*3 + 2*4 # returns True ``` Using the geometric definition of the dot product, we can write $$\cos\theta = \frac{u \cdot v}{|u| \, |v|}.$$ As a consequence, we have code for the angle between two vectors (we write Angle to distinguish from the built-in numpy.angle). ``` from numpy import * def Angle(u,v): ``` ``` a = dot(u,v) b = dot(u,u) c = dot(v,v) theta = arccos(a / sqrt(b*c)) return degrees(theta) ``` Recall that $-1 \le \cos \theta \le 1$. Using the dot product identity (A.4.5), we obtain the important #### Cauchy-Schwarz Inequality If u and v are any two vectors, then $$-|u||v| \le u \cdot v \le |u||v|.$$ (A.4.7) Vectors u and v are orthogonal or perpendicular if the angle between them is a right angle (90 degrees or $\pi/2$ radians). Since $\cos(\pi/2) = 0$, we see vectors are orthogonal when their dot product is zero. When orthogonal vectors u and v are also unit vectors, we say u and v are orthonormal. As a consequence of the Cauchy-Schwarz inequality, # Parallel, Anti-Parallel, and Orthogonal Vectors Let u and v be two vectors. Then $u \cdot v$ achieves its maximum |u| |v| when u and v point in the same direction, achieves its minimum |u| |v| when u and v point in opposite directions, and equals zero when u and v are orthogonal. Fig. A.12 Pythagoras for general triangles. To derive the dot product identity, we first derive Pythagoras' theorem for general triangles (Figure A.12) $$c^2 = a^2 + b^2 - 2ab\cos\theta. (A.4.8)$$ To derive (A.4.8), we drop a perpendicular to the base b, obtaining two right triangles, as in Figure A.13. By Pythagoras applied to each right triangle, $$a^2 = d^2 + f^2$$ and $c^2 = e^2 + f^2$. Also b = e + d, so e = b - d, so $$e^2 = (b-d)^2 = b^2 - 2bd + d^2$$. By the definition of $\cos \theta$, $d = a \cos \theta$. Putting this all together, $$c^{2} = e^{2} + f^{2} = (b - d)^{2} + f^{2}$$ $$= f^{2} + d^{2} + b^{2} - 2db$$ $$= a^{2} + b^{2} - 2ab\cos\theta,$$ which is (A.4.8). Fig. A.13 Proof of Pythagoras for general triangles. Next, connect Figures A.11 and A.12 by noting $a = |v_2|$ and $b = |v_1|$ and $c = |v_2 - v_1|$. By (A.4.6), $$c^2 = |v_2 - v_1|^2 = |v_2|^2 - 2v_1 \cdot v_2 + |v_1|^2 = a^2 + b^2 - 2(x_1x_2 + y_1y_2),$$ thus $$c^{2} = a^{2} + b^{2} - 2(x_{1}x_{2} + y_{1}y_{2}). (A.4.9)$$ Comparing the terms in (A.4.8) and (A.4.9), we arrive at the dot product identity (A.4.5). If P=(x,y), let $P^{\perp}=(-y,x)$ (pronounced "P-perp"), and let v=OP and $v^{\perp}=OP'$ be the vectors emanating from the origin, and ending at P and P^{\perp} . Then $$v \cdot v^{\perp} = (x, y) \cdot (-y, x) = 0.$$ This shows v and v^{\perp} are perpendicular (Figure A.14). From Figure A.14, we see points P and P' on the unit circle satisfy $P \cdot P' = 0$ iff $P' = \pm P^{\perp}$. **Fig. A.14** P and P^{\perp} and v and v^{\perp} . We now solve two linear equations in two unknowns $x,\,y.$ We start with the homogeneous linear system $$ax + by = 0,$$ $cx + dy = 0.$ (A.4.10) Let A be the 2×2 matrix $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{A.4.11}$$ Assume $(a,b) \neq (0,0)$. Then it is easy to exhibit a nonzero solution of the first equation in (A.4.10): choose $(x,y) = (-b,a) = (a,b)^{\perp}$. If we want this to be a solution of the second equation as well, we must have cx + dy = ad - bc = 0. On the other hand, if $(c,d) \neq (0,0)$, $(x,y) = (-d,c) = (c,d)^{\perp}$ is a nonzero solution of the second equation in (A.4.10). If we want this to be a solution of the first equation as well, we must have ax + by = bc - ad = 0. Based on this, we make the following definition. The determinant of A is $$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc. \tag{A.4.12}$$ Above we found solutions of (A.4.10) when $\det(A) = 0$. We now show the only solution is (x, y) = (0, 0) when $\det(A) \neq 0$. Multiply the first equation in (A.4.10) by d and the second by b and subtract, obtaining $$(ad - bc)x = d(ax + by) - b(cx + dy) = 0.$$ When $ad - bc \neq 0$, this leads to x = 0. Similarly, in (A.4.10), multiply the first equation by c and the second by a and subtract, obtaining $$(bc - ad)y = c(ax + by) - a(cx + dy) = 0.$$ When $ad - bc \neq 0$, this leads to y = 0. Summarizing, we conclude #### Homogeneous Linear System Let A be the matrix (A.4.11). There are three cases. - If $det(A) \neq 0$, the only solution of (A.4.10) is (x, y) = (0, 0). - If det(A) = 0 but $A \neq 0$, every solution of (A.4.10) is a scalar multiple of (x, y) = (-b, a), or of (x, y) = (-d, c), depending on whether $(a, b) \neq (0, 0)$ or $(c, d) \neq (0, 0)$. - If A = 0, any (x, y) is a solution of (A.4.10). This covers the homogeneous case. For the inhomogeneous linear system $$ax + by = e, \qquad cx + dy = f, \tag{A.4.13}$$ again there are the same three cases. - If A = 0, the system (A.4.13) has a solution only if (e, f) = (0, 0), in which case, any (x, y) is a solution. - If $A \neq 0$ but $\det(A) = 0$, multiplying and subtracting as above, we obtain $$(ad - bc)x = d(ax + by) - b(cx + dy) = de - bf,$$ $(ad - bc)y = a(cx + dy) - c(ax + by) = af - ce.$ (A.4.14) This implies ce = af and de = bf. Conversely, when ce = af and de = bf, $$(x,y) = (e/a,0), \quad (x,y) = (0,e/b), \quad (x,y) = (f/c,0), \quad (x,y) = (0,f/d)$$ are solutions, when $a \neq 0$, $b \neq 0$, $c \neq 0$, or $d \neq 0$ respectively. • If $det(A) \neq 0$, dividing (A.4.14) by ad - bc leads to $$x = \frac{de - bf}{ad - bc}, \qquad y = \frac{af - ce}{ad - bc}.$$ (A.4.15) Putting all this together, we conclude #### Inhomogeneous Linear System Let A be the matrix (A.4.11). There are three cases. - If $det(A) \neq 0$, (A.4.13) has the unique solution (A.4.15). - If det(A) = 0 but $A \neq 0$, (A.4.13) has a solution iff ce = af and de = bf, in which case, there are four possible solutions, listed above, depending on which of a, b, c, d is nonzero. - If A = 0, (A.4.13) has a solution if (e, f) = (0, 0), in which case, any (x, y) is a solution. All other solutions differ from these solutions by a solution of (A.4.10). In §2.9, we will understand the three cases in terms of the rank of A equal to 2, 1, or 0. The *trace* of A is the sum of the diagonal entries, $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \operatorname{trace}(A) = a + d. \tag{A.4.16}$$ The determinant and trace are the basic functions of 2×2 matrices. We now go over the properties of 2×2 matrices. These we use in §1.4, and these properties are a prelude to Chapter 2. We go over matrix-vector, matrix-matrix, and tensor products, and we connect them to the dot product. For the remainder of the section, matrices are 2×2 and vectors are in \mathbb{R}^2 . The matrix (A.4.11) can be written in terms of the two vectors u = (a, b) and v = (c, d), as follows $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}, \qquad u = (a, b), v = (c, d).$$ In this case, we call u and v the rows of A. On the other hand, A may be written as $$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} u & v \end{pmatrix}, \qquad u = (a, b), \quad v = (c, d).$$ In this case, we call u and v the *columns* of A. Many texts then write u and v as $$u = \begin{pmatrix} a \\ b \end{pmatrix}, \qquad v = \begin{pmatrix} c \\ d \end{pmatrix}.$$ (A.4.17) We do not usually do this when u and v are on their own, because then they are just vectors. We only do this when u and v being multiplied with matrices or are rows or columns of matrices. In fact, when we do write (A.4.17), we are thinking of u and v as 2×1 matrices, not as vectors. This shows there are at least three ways to think about a matrix: as rows, or as columns, or as a single block. The simplest operations on matrices are addition and scaling. Addition is $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \qquad \Longrightarrow \qquad A + A' = \begin{pmatrix} a + a' & b + b' \\ c + c' & d + d' \end{pmatrix},$$ and scaling is $$tA = \begin{pmatrix} ta & tb \\ tc & td \end{pmatrix}.$$ As with vectors, addition and scaling are linear $$s(A+B) = sA + sB, \qquad (s+t)A = sA + tA.$$ The $transpose A^t$ of
the matrix A is $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \Longrightarrow \qquad A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}.$$ Then the rows of A^t are the columns of A, and vice-versa. If Q satisfies $Q^t = Q$, then Q is a *symmetric matrix*. In this case, the rows of Q equal the columns of Q, and Q looks like $$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$ A general matrix A consists of four numbers a, b, c, d, and a symmetric matrix Q consists of three numbers a, b, c. Let x = (s,t) be a vector. We now explain how to multiply the matrix A by the vector x. The result is then another vector Ax. This is called $matrix-vector\ multiplication$. To do this, we write A as rows $A = \begin{pmatrix} u \\ v \end{pmatrix}$, then use the dot product to define $$Ax = (u \cdot x, v \cdot x) = (as + bt, cs + dt).$$ When multiplying this way, we often write $$Ax = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} as + bt \\ cs + dt \end{pmatrix} = \begin{pmatrix} u \cdot x \\ v \cdot x \end{pmatrix},$$ and we think of x and Ax as column vectors. This terminology is introduced to keep things consistent: It's always rowtimes-column with row on the left and column on the right. Nevertheless, a vector, a row vector, and a column vector are all the same thing, just a vector. Matrix-vector multiplication and scaling are related by $$A(sx) = s(Ax) = (sA)x$$ for any scalar s, and is linear $$A(u+v) = Au + Av, \qquad (A+B)u = Au + Bu.$$ Let A = (u, v) be a matrix with columns u and v, and let x = (s, t) be a vector. To express Ax in terms of u, v, write $$Ax = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} as + ct \\ bs + dt \end{pmatrix} = \begin{pmatrix} as \\ bs \end{pmatrix} + \begin{pmatrix} ct \\ dt \end{pmatrix} = su + tv.$$ Summarizing, #### Matrix-Vector Product in Terms of Rows and Columns Let A be a matrix and x = (s, t) a vector. If A has rows u, v, then $Ax = (u \cdot x, v \cdot x)$. If A has columns u, v, then Ax = su + tv. As a consequence, a matrix A may be identified by its matrix-vector products Ax over all vectors x, #### Matrix-Vector Product Uniquely Identifies the Matrix Let A and A' be matrices. If Ax = A'x for every vector x, then A = A'. To see this, let u, v and u', v' be the columns of A, A'. Inserting x = (s,t) = (1,0) into $$su + tv = Ax = A'x = su' + tv'.$$ yields u = u', and repeating with x = (0, 1) yields v = v'. Let x and y be vectors, with x = (s, t), and let A be a matrix with rows u, v. Then A^t has columns u, v, so we have $$Ay = (u \cdot y, v \cdot y), \qquad A^t x = su + tv.$$ Taking the dot product of Ay with x leads to $$x \cdot Ay = su \cdot y + tv \cdot y.$$ Taking the dot product of $A^t x$ with y leads to $$(A^t x) \cdot y = (su + tv) \cdot y = su \cdot y + tv \cdot y.$$ Since the last two displays are equal, we arrive at the # **Dot Product Transpose Identity** Let A be a matrix and x, y vectors. Then $$(A^t x) \cdot y = x \cdot Ay$$ and $(Ax) \cdot y = x \cdot (A^t y)$. (A.4.18) We established the first equation in (A.4.18). The second equation follows by switching x and y and using $a \cdot b = b \cdot a$. Just like we can multiply matrices and vectors, we can also multiply two matrices A and A' and obtain a product AA'. This is matrix-matrix multiplication. Following the row-column rule above, we write $A = \begin{pmatrix} u \\ v \end{pmatrix}$ as rows and A' = (u', v') as columns and define $$AA' = (Au', Av') = \begin{pmatrix} u \cdot u' & u \cdot v' \\ v \cdot u' & v \cdot v' \end{pmatrix}.$$ If we do this the other way, we obtain $$A'A = \begin{pmatrix} u' \cdot u \ u' \cdot v \\ v' \cdot u \ v' \cdot v \end{pmatrix},$$ so in general $$AA' \neq A'A$$. The matrix-vector product and the matrix-matrix product are related by the identity $$(AA')x = A(A'x).$$ (A.4.19) To check this, let A' have columns u', v', and let x = (s,t). Then A'x = su' + tv' so $$A(A'x) = A(su' + tv') = sAu' + tAv' = (Au', Av')x = (AA')x.$$ We conclude multiplying a vector by two matrices, one after the other, is the same as multiplying the vector by their matrix product. As a consequence, the matrix-matrix product is also linear $$A(B+C) = AB + AC,$$ $(A+B)C = AC + BC.$ We can use (A.4.19) to derive #### Transpose of Matrix-Matrix Product If A and B are matrices, then $$(AB)^t = B^t A^t.$$ This follows from $$(AB)x \cdot y = (A(Bx)) \cdot y = Bx \cdot A^t y = x \cdot B^t (A^t y) = x \cdot (B^t A^t) y,$$ valid for any x and y. If u = (a, b) and v = (c, d) are vectors, their tensor product is the matrix $$u \otimes v = \begin{pmatrix} ac & ad \\ bc & bd \end{pmatrix} = \begin{pmatrix} cu & du \end{pmatrix} = \begin{pmatrix} av \\ bv \end{pmatrix}.$$ Here we wrote $u \otimes v$ as a single block, and also in terms of rows and columns. If we do this the other way, we get $$v \otimes u = \begin{pmatrix} ca & cb \\ da & db \end{pmatrix},$$ so $$(u \otimes v)^t = v \otimes u.$$ When u = v, $u \otimes v = v \otimes v$ is a symmetric matrix. Just like for the other products, the tensor product is linear $$(su + tv) \otimes w = su \otimes w + tv \otimes w.$$ Here is code for tensor. from numpy import * def tensor(u,v): return array([[a*b for b in v] for a in u]) There is no need to use this, since numpy.outer does the same job, from numpy import * A = outer(u,v) From the definition of $u \otimes v$, the following equations are immediate, $$det(u \otimes v) = 0,$$ $trace(u \otimes v) = u \cdot v.$ Here are the basic identities for the tensor product. #### Tensor Product Identities The following identities hold. 1. If u, v, w are vectors, $$(u \otimes v)w = (v \cdot w)u. \tag{A.4.20}$$ 2. If a, b, c, d are vectors, $$a \cdot (b \otimes c)d = (a \cdot b)(c \cdot d). \tag{A.4.21}$$ 3. If $Q = v \otimes v$, $$u \cdot Qu = u \cdot (v \otimes v)u = (u \cdot v)^2. \tag{A.4.22}$$ 4. If A has columns u, v, $$AA^t = u \otimes u + v \otimes v. \tag{A.4.23}$$ 5. For matrices A, B, and vectors u, v, $$A(u \otimes v)B^t = (Au) \otimes (Bv). \tag{A.4.24}$$ For (A.4.20), suppose u = (s, t). Then $$(u \otimes v)w = \begin{pmatrix} sv \\ tv \end{pmatrix} w = (sv \cdot w, tv \cdot w) = (v \cdot w)u.$$ For (A.4.21), replace u, v, w in (A.4.20) by b, c, d, then take the dot product with a. For (A.4.22), replace a, b, c, d in (A.4.21) by v, u, u, v. For (A.4.23), let x be any vector. Since A^t has rows u, v, $A^t x = (u \cdot x, v \cdot x)$. Since A has columns u, v, $$AA^{t}x = A(A^{t}x) = (u \cdot x)u + (v \cdot x)v = (u \otimes u + v \otimes v)x.$$ For (A.4.24), let x be any vector. Then $$((u \otimes v)B^t)x = (u \otimes v)(B^tx) = (v \cdot B^tx)u = (Bv \cdot x)u,$$ so $$(A(u \otimes v)B^t)x = A((u \otimes v)B^t)x) = A((Bv \cdot x)u) = (Bv \cdot x)Au = (Au \otimes Bv)x.$$ A rotation in the plane is the matrix $$U = U(\theta) = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$ Here θ is the *angle of rotation*. By the trigonometric addition formulas (A.5.6), $$U(\theta)U(\theta') = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta' - \sin \theta' \\ \sin \theta' & \cos \theta' \end{pmatrix}$$ $$= \begin{pmatrix} \cos(\theta + \theta') - \sin(\theta + \theta') \\ \sin(\theta + \theta') & \cos(\theta + \theta') \end{pmatrix} = U(\theta + \theta').$$ This says rotating by θ' followed by rotating by θ is the same as rotating by $\theta + \theta'$. There is a special matrix I, the identity matrix, $$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$ The matrix I satisfies $$AI = IA = A$$ for any matrix A. Also, for each matrix A with $det(A) \neq 0$, the matrix $$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ is the *inverse* of A. The inverse matrix satisfies $$AA^{-1} = I = A^{-1}A.$$ Since $$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I,$$ we have #### **Inverse of Matrix-Matrix Product** If A and B are matrices, then $$(AB)^{-1} = B^{-1}A^{-1}.$$ Using the matrix inverse property, the solution of $$Ax = b$$ is $$x = A^{-1}b,$$ since $$Ax = AA^{-1}b = Ib = b.$$ With this, we can rewrite (A.4.13) as $$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e \\ f \end{pmatrix},$$ and the solution (A.4.15) can be rewritten $$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} e \\ f \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} e \\ f \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} de - bf \\ af - ce \end{pmatrix}.$$ We study inverse matrices in depth in §2.3. Let A have columns u, v. Then A^t has rows u, v. Since matrix multiplication is $row \times column$, $$A^{t}A = \begin{pmatrix} u \\ v \end{pmatrix} (u \ v) = \begin{pmatrix} u \cdot u \ u \cdot v \\ v \cdot u \ v \cdot v \end{pmatrix}.$$ Now suppose $A^tA = I$. Then $u \cdot u = 1 = v \cdot v$ and $u \cdot v = 0$, so u and v are orthogonal unit vectors, or orthonormal vectors. We have shown #### **Orthogonal Matrices** Let A be a matrix. Then $A^tA = I$ iff the columns of A are orthonormal, and $AA^t = I$ iff the rows of A are orthonormal. The second statement follows by applying the first to A^t instead of A. A matrix U is orthogonal if $$U^tU = I = UU^t$$. Thus a matrix is orthogonal iff its rows are orthonormal, and its columns are orthonormal. Later we see that, for a square matrix, either equation, $UU^t = I$ or $U^tU = I$, implies the other. #### **Exercises** Exercise A.4.1 Solve the linear system $$ax + by = c,$$ $-bx + ay = d.$ **Exercise A.4.2** Let u = (1, a), v = (b, 2), and w = (3, 4). Solve $$u + 2v + 3w = 0$$ for a and b. **Exercise A.4.3** Let u = (1, 2), v = (3, 4), and w = (5, 6). Find a and b such that $$au + bv = w$$.
Exercise A.4.4 Let P be a nonzero point in the plane. What is $(P^{\perp})^{\perp}$? **Exercise A.4.5** Let $A = \begin{pmatrix} 8 & -8 \\ -7 & -3 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$. Compute AB and BA. **Exercise A.4.6** Let $A = \begin{pmatrix} 9 & 2 \\ -36 & -8 \end{pmatrix}$. Find a nonzero 2×2 matrix B satisfying AB = 0. Exercise A.4.7 Solve for X $$\begin{pmatrix} -7 & 4 \\ 4 & -3 \end{pmatrix} - 4X = \begin{pmatrix} -9 & 5 \\ 6 & -9 \end{pmatrix}.$$ **Exercise A.4.8** Use (A.4.20) to compute the matrix-matrix product $(u \otimes v)^2$. **Exercise A.4.9** Find a nonzero 2×2 matrix A satisfying $A^2 = 0$. **Exercise A.4.10** If V is a symmetric 2×2 matrix, show $$(\operatorname{trace}(V))^2 = 2\det(V) + \operatorname{trace}(V^2).$$ **Exercise A.4.11** With V a 2×2 matrix and t scalar, show $$\det(I + tV) = 1 + t \cdot \operatorname{trace}(V) + t^2 \det(V).$$ **Exercise A.4.12** With Q and V 2×2 matrices, Q invertible, and t scalar, show $$\frac{\det(Q+tV)}{\det(Q)} = 1 + t \cdot \operatorname{trace}(Q^{-1}V) + t^2 \det(Q^{-1}V).$$ **Exercise A.4.13** What is the trace of $A = \begin{pmatrix} 9 & 2 \\ -36 & -8 \end{pmatrix}$? **Exercise A.4.14** Let A be a 2×2 matrix with rows u, v. The wedge product of u and v is the matrix $$u \wedge v = u \otimes v - v \otimes u$$. Show $$u \wedge v = \begin{pmatrix} 0 & \delta \\ -\delta & 0 \end{pmatrix},$$ where $\delta = \det(A)$. **Exercise A.4.15** Let u be a unit vector, and let $A = u \otimes u$. Compute A^{100} . **Exercise A.4.16** Calculate the areas of the triangles and the squares in Figure A.14. From that, deduce Pythagoras's theorem $c^2 = a^2 + b^2$. **Exercise A.4.17** Let u and v be unit vectors, and let $A = u \otimes v$. If $A^2 = 0$, what is the angle between u and v? **Exercise A.4.18** Let $$W = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$. What is W^{211} ? #### A.5 Complex Numbers In §A.4, we study points in two dimensions, and we saw how points can be added and subtracted. In §2.1, we study points in any number of dimensions, and there we also add and subtract points. In two dimensions, each point has a shadow (Figure A.6). By stacking shadows, points in the plane can be multiplied and divided (Figure A.15). In this sense, points in the plane behave like numbers, because they follow the usual rules of arithmetic. This ability of points in the plane to follow the usual rules of arithmetic is, apart from the real line, unique to two dimensions, and not present in any other dimension. When thought of in this manner, points in the plane are called *complex numbers*, and the plane is the *complex plane*. To define multiplication of points, let P = (x, y) and P' = (x', y') be points on the unit circle. Stack the shadow of P' on top of the shadow of P, as in Figure A.15. Because angle stacking is at the basis of angle measurement [13], we must do this without knowledge of angle measure. Here is how one does this without any angle measurement: Mark Q = x'P at distance x' along the vector OP joining O and P, and draw the circle with radius y' and center Q. Then this circle intersects the unit circle at two points, both called P''. Fig. A.15 Multiplying and dividing points on the unit circle. We think of the first point P'' as the result of multiplying P and P', and we write P'' = PP', and we think of the second point P'' as the result of dividing P by P', and we write P'' = P/P'. Then we have ## Multiplication and Division of Points For P = (x, y) and P' = (x', y') on the unit circle, when $x'y' \neq 0$, $$P'' = PP' = (xx' - yy', x'y + xy'),$$ $$P'' = P/P' = (xx' + yy', x'y - xy').$$ (A.5.1) To derive (A.5.1), let $P^{\perp} = (-y, x)$ ("P-perp"). Then $$x'P + y'P^{\perp} = (x'x, x'y) + (-y'y, y'x) = (xx' - yy', x'y + xy'),$$ $$x'P - y'P^{\perp} = (x'x, x'y) - (-y'y, y'x) = (xx' + yy', x'y - xy'),$$ so (A.5.1) is equivalent to $$P'' = x'P \pm y'P^{\perp}. \tag{A.5.2}$$ To establish (A.5.2), since P'' is on the circle of center Q and radius y', we may write P'' = Q + y'R, for some point R on the unit circle (see §A.4). Interpreting points as vectors, and using (A.4.6), P'' = x'P + y'R is on the unit circle iff $$1 = |x'P + y'R|^2 = |x'P|^2 + 2x'P \cdot y'R + |y'R|^2$$ $$= x'^2|P|^2 + 2x'y'P \cdot R + y'^2|R|^2$$ $$= x'^2 + y'^2 + 2x'y'P \cdot R$$ $$= 1 + 2x'y'P \cdot R.$$ But this happens iff $P \cdot R = 0$, which happens iff $R = \pm P^{\perp}$ (Figure A.14). This establishes (A.5.2). More generally, if P and P' are not on the unit circle, the formula for the product PP' remains unchanged, while the formula for the quotient P/P' must be modified. To see how, let r = |P| and r' = |P'|, and let R be any point satisfying |R| = r. Then $$P'' = Q + y'R = x'P + y'R$$ satisfies |P''| = rr' exactly when $R = \pm P^{\perp}$, leading to the two points in (A.5.1). Let \bar{P} be the *conjugate* (x, -y) of P = (x, y). The first P'' is the product $$PP' = (xx' - yy', x'y + xy'), \tag{A.5.3}$$ and the second P'' is the hermitian product $P\bar{P}'$ of P and \bar{P}' . The correct formula for division is given by $$P/P' = \frac{1}{r'^2} P\bar{P}' = \frac{1}{x'^2 + y'^2} (xx' + yy', x'y - xy'), \qquad r' \neq 0.$$ (A.5.4) When r' = 1, (A.5.4) reduces to the formula in (A.5.1). With this understood, it is easily checked that division undoes multiplication, $$(P/P')P' = P.$$ In fact, one can check that multiplication and division as defined by (A.5.3) and (A.5.4) follow the usual rules of arithmetic, for any two points P and P' in the plane, not necessarily on the unit circle. It is natural to identify points on the horizontal axis with real numbers, because, using (A.5.1), P = (x, 0) and P' = (x', 0) implies $$P+P'=(x,0)+(x',0)=(x+x',0), \qquad PP'=(xx'-00,x0+x'0)=(xx',0).$$ Because of this, we can write P = x instead of P = (x, 0), and we call the horizontal axis the *real axis*. Similarly, let i = (0, 1). Then the point i is on the vertical axis, and, using (A.5.1), one can check $$iy = (0,1)(y,0) = (-0,y) = y^{\perp}$$ (y^{\perp}) was defined in §A.4). Thus the vertical axis consists of all points of the form iy. These are called *imaginary numbers*, and the vertical axis is the *imaginary axis*. Fig. A.16 Complex numbers Using i, any point P = (x, y) may be written $$P = x + iy,$$ since $$x + iy = (x, 0) + (0, 1)(y, 0) = (x, 0) + (0, y) = (x, y).$$ This leads to Figure A.16. When writing a complex number as x + iy, the real part is x, and the imaginary part is y (not iy). In this way, real numbers x are considered complex numbers with zero imaginary part, x = x + i0. By (A.5.1), $$i^2 = (0,1)^2 = (-1,0) = -1$$. This shows # Square Root of -1 The complex number i satisfies $i^2 = -1$. When thinking of points in the plane as complex numbers, it is traditional to denote them by z instead of P. By (A.5.1), we have $$z = x + iy$$, $z' = x' + iy'$ \Longrightarrow $zz' = (xx' - yy') + i(x'y + xy')$, and $$\frac{z}{z'} = \frac{x + iy}{x' + iy'} = \frac{(xx' + yy') + i(x'y - xy')}{{x'}^2 + {y'}^2}.$$ In particular, one can always "move" the i from the denominator to the numerator by the formula $$\frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{\bar{z}}{|z|^2}.$$ Here $x^2 + y^2 = r^2 = |z|^2$ is the absolute value squared of z, and \bar{z} is the conjugate of z. Let r, θ be the polar coordinates of P=(x,y) (Figure A.9). When we write z=x+iy, r is the absolute value of z, $r=|z|=\sqrt{x^2+y^2}$, and $$z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta).$$ Let r, r', r'' and $\theta, \theta', \theta''$ be the polar coordinates of z, z', z'' = zz'. Then Figure A.15 says $\theta'' = \theta + \theta'$. Using angle stacking together with his bisection method, Archimedes [14] defined angle measure θ , providing the theoretical basis for the addition formula $\theta'' = \theta + \theta'$. By elementary algebra, $$(x^{2} + y^{2})(x'^{2} + y'^{2}) = (xx' - yy')^{2} + (x'y + xy')^{2}.$$ (A.5.5) Since this says $r^2r'^2 = r''^2$, we conclude #### Polar Coordinates of Complex Numbers If (r, θ) and (r', θ') are the polar coordinates of complex numbers z and z', and (r'', θ'') are the polar coordinates of the product z'' = zz', then $$r'' = rr'$$ and $\theta'' = \theta + \theta'$. From this and (A.5.1), using $(x,y) = (\cos \theta, \sin \theta)$, $(x',y') = (\cos \theta', \sin \theta')$, we have the addition formulas $$\sin(\theta + \theta') = \sin\theta\cos\theta' + \cos\theta\sin\theta',$$ $$\cos(\theta + \theta') = \cos\theta\cos\theta' - \sin\theta\sin\theta'.$$ (A.5.6) For example, if $\omega = \cos \theta + i \sin \theta$, then the polar coordinates of ω are r = 1 and θ . It follows the polar coordinates of ω^2 are r = 1 and 2θ , so $\omega^2 = \cos(2\theta) + i \sin(2\theta)$. By the same logic, for any power k, the polar coordinates of ω^k are r=1 and $k\theta$, so $\omega^k = \cos(k\theta) + i\sin(k\theta)$. We can reverse the logic in the previous paragraph to compute square roots. We define the *square root* of a complex number z to be a complex number w satisfying $w^2 = z$. In this case, we write $w = \sqrt{z}$. If w is a square root, so is -w, so there are two square roots $w = \pm \sqrt{z}$. The formula for $w = \sqrt{z}$ is $$z = x + yi$$ \Longrightarrow $\sqrt{z} = \frac{r+x}{\sqrt{2r+2x}} + \frac{yi}{\sqrt{2r+2x}}.$ (A.5.7) Here $r = \sqrt{x^2 + y^2}$ and this formula is valid as long as z is not a negative number or zero. When z is a negative number or zero, z = -x with $x \ge 0$. in this case, we have $\sqrt{z} = i\sqrt{x}$. Therefore every complex number, other than zero, has two square roots. When z is on the unit circle, r = 1, (A.5.7) reduces to $$\sqrt{z} = \frac{1+x}{\sqrt{2+2x}} + \frac{yi}{\sqrt{2+2x}}.$$ We will need the roots of unity in §3.2. This generalizes square roots, cube roots, etc. A complex number
ω is a root of unity if $\omega^d = 1$ for some power d. If d is the power, we say ω is a d-th root of unity. For example, the square roots of unity are ± 1 , since $(\pm 1)^2 = 1$. Here we have $$1 = \cos 0 + i \sin 0, \qquad -1 = \cos \pi + i \sin \pi.$$ The fourth roots of unity are ± 1 and $\pm i$, since $(\pm 1)^4 = 1$ and $(\pm i)^4 = 1$. Here we have $$1 = \cos 0 + i \sin 0,$$ $$i = \cos(\pi/2) + i \sin(\pi/2),$$ $$-1 = \cos \pi + i \sin \pi,$$ $$-i = \cos(3\pi/2) + i \sin(3\pi/2).$$ In general, the roots of unity are denoted by powers of ω , so the square roots of unity are 1 and $\omega = -1$, and the fourth roots of unity are 1, $\omega = i$, $\omega^2 = -1$, $\omega^3 = -i$. Let $\omega = \cos \theta + i \sin \theta$. Since $1 = \cos(2\pi) + i \sin(2\pi)$ and $\omega^k = \cos(k\theta) + i \sin(k\theta)$, a d-th root of unity ω satisfies $$\omega = \cos(2\pi/d) + i\sin(2\pi/d). \tag{A.5.8}$$ If $\omega^d = 1$, then $$\left(\omega^k\right)^d = \left(\omega^d\right)^k = 1^k = 1.$$ With ω given by (A.5.8), this implies $$1, \omega, \omega^2, \dots, \omega^{d-1}$$ are the d-th roots of unity. Fig. A.17 The second, third, and fourth roots of unity If we set $$\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \cos(2\pi/3) + i\sin(2\pi/3),$$ then a calculation shows $$1, \qquad \omega, \qquad \omega^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$ are the cube roots of unity, $$1^3 = 1, \qquad \omega^3 = 1, \qquad (\omega^2)^3 = 1.$$ Similarly, the fifth roots of unity are 1, ω , ω^2 , ω^3 , ω^4 , where $$\omega = -\frac{1}{4} + \frac{\sqrt{5}}{4} + i\sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} = \cos(2\pi/5) + i\sin(2\pi/5).$$ Fig. A.18 The fifth, sixth, and fifteenth roots of unity Summarizing, #### **Roots of Unity** Let $d \ge 1$ and let $$\omega = \cos(2\pi/d) + i\sin(2\pi/d),$$ Then the d-th roots of unity are $$1, \omega, \omega^2, \dots, \omega^{d-1}$$. The roots satisfy $$\omega^k = \cos(2\pi k/d) + i\sin(2\pi k/d), \qquad k = 0, 1, 2, \dots, d-1.$$ Here we write ω instead of ω_d , we do not indicate the dependence of ω on d. Since $\omega^d = 1$, one has, from Figures A.17 and A.18, $$\omega^k + \omega^{-k} = \omega^k + \omega^{d-k} = 2\cos(2\pi k/d), \qquad k = 0, 1, 2, \dots, d-1.$$ (A.5.9) This we need in $\S3.2$. A polynomial is an expression of the form $$p(z) = z^d + c_1 z^{d-1} + c_2 z^{d-2} + \dots + c_d.$$ For example, $p(z) = z^3 - 5z + 2$ or $p(z) = z^2 - 2z + 2$. Here z is the variable, and the constants c_1, c_2, \ldots, c_d are the coefficients. A root of a polynomial p(z) is a complex number a satisfying p(a)=0. For example, the roots of z^2-2z+2 are $1\pm i$, and the roots of z^5-1 are the fifth roots of unity 1, ω , ω^2 , ω^3 , ω^4 . In general, the roots of z^d-1 are the d-th roots of unity 1, ω , ω^2 , ..., ω^{d-1} . The fundamental theorem of algebra states that every polynomial has as many roots as its degree: If the degree of p(z) is d, there are d (not necessarily distinct) roots a_1, a_2, \ldots, a_d of p(z), and p(z) may be factored into a product $$p(z) = \prod_{k=1}^{d} (z - a_k) = (z - a_1)(z - a_2) \dots (z - a_d).$$ (A.5.10) Conversely, given a_1, a_2, \ldots, a_d , (A.5.10) exhibits a polynomial with these as roots. In particular, when $p(z) = z^d - 1$, we have $$\frac{z^d - 1}{z - 1} = \prod_{k=1}^{d-1} (z - \omega^k). \tag{A.5.11}$$ Here is sympy code for the roots of unity. ``` from sympy import solve, symbols, init_printing init_printing() z = symbols('z') d = 5 solve(z**d - 1) ``` In numpy, the roots of $p(z) = az^2 + bz + c$ are returned by ``` from numpy import roots roots([a,b,c]) ``` Since the cube roots of unity are the roots of $p(z) = z^3 - 1$, the code ``` from numpy import roots roots([1,0,0,-1]) ``` returns the cube roots ``` array([-0.5+0.8660254j, -0.5-0.8660254j, 1. +0.j]) ``` # Exercises **Exercise A.5.1** Let P=(1,2) and Q=(3,4) and R=(5,6). Calculate PQ, P/Q, PR, P/R, QR, Q/R. **Exercise A.5.2** Let a = 1 + 2i and b = 3 + 4i and c = 5 + 6i. Calculate ab, a/b, ac, a/c, bc, b/c. **Exercise A.5.3** We say z' is the *reciprocal* of z if zz' = 1. Show the reciprocal of z = x + yi is $$z' = \frac{x - yi}{x^2 + y^2}.$$ **Exercise A.5.4** Show \sqrt{z} given by (A.5.7) satisfies $(\sqrt{z})^2 = z$. Exercise A.5.5 Check (A.5.5) is correct. Fig. A.19 Complex conjugate roots ρ_{\pm} . **Exercise A.5.6** Let a, b, c be complex numbers, with $a \neq 0$. Show the roots of $p(z) = az^2 + bz + c$ are given by the Babylonian quadratic formula $$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$ **Exercise A.5.7** Let b, c be real numbers, with $b^2 < c$. If $\rho = x + yi$ satisfies $\rho(\rho + 2b) + c = 0$, show $|\rho| = \sqrt{c}$ (Figure A.19). **Exercise A.5.8** Let 1, ω , ..., ω^{d-1} be the *d*-th roots of unity. Using the code below, compute the *product* $$(1-\omega)(1-\omega^2)(1-\omega^3)\dots(1-\omega^{d-1}).$$ What is the answer? Try different degrees d. ``` from sympy import prod, solve, symbols, simplify z = symbols('z') roots = solve(z**d - 1) prod([1-a if a != 1 else 1 for a in roots]).simplify() ``` The answer can be derived algebraically by using (A.5.11). **Exercise A.5.9** Given three distinct (non-equal) numbers a, b, c, there is a quadratic $p(z) = r + sz + tz^2$ satisfying p(a) = 0, p(b) = 0, and p(c) = 1. (With d = 2 and roots a and b, divide (A.5.10) by a constant to make p(c) = 1.) **Exercise A.5.10** Given three distinct (non-equal) numbers a, b, c, and three numbers α , β , γ , there is a quadratic $p(z) = r + sz + tz^2$ satisfying $p(a) = \alpha$, $p(b) = \beta$, and $p(c) = \gamma$. Repeat the previous exercise three times, once each for roots a and b, then b and c, then c and a, and take a linear combination of the results. ## A.6 Integration This section is a review of integration, using the fundamental theorem of calculus and Python. Let y = f(x) be a function, and let its graph be as in Figure A.20. The *integral* $$I = \int_{a}^{b} f(x) dx \tag{A.6.1}$$ is the area under the graph between the vertical lines at a and b. A.6. INTEGRATION 525 To repeat, the integral is a *number*, the area of a specific region under the graph y = f(x). In Figure A.20, the integral (A.6.1) is the sum of three areas: red, green, blue. We use Figure A.20 to derive the # Fundamental Theorem of Calculus (FTC) If F'(x) = f(x), then $$\int_{a}^{b} f(x) dx = F(b) - F(a). \tag{A.6.2}$$ Fig. A.20 Areas under the graph. To derive this, let A(x) denote the area under the graph between the y-axis and the vertical line at x. Then A(x) is the sum of the gray area and the red area, A(a) is the gray area, and A(b) is the sum of four areas: gray, red, green, and blue. It follows the integral (A.6.1) equals A(b) - A(a). Since A(x + dx) is the sum of three areas, gray, red, green, it follows A(x + dx) - A(x) is the green area. But the green area is approximately a rectangle of width dx and height f(x). Hence the green area is approximately $f(x) \times dx$, or $$A(x + dx) - A(x) \approx f(x) dx$$. As a consequence of this analysis, $$\frac{A(x+dx) - A(x)}{dx} \approx f(x).$$ The smaller dx is, the closer the green area is to a rectangle. Taking the limit $dx \to 0$, the green rectangle becomes infinitely thin, and we obtain $$A'(x) = \lim_{dx\to 0} \frac{A(x+dx) - A(x)}{dx} = f(x).$$ Now let F(x) be any function satisfying F'(x) = f(x). Then A(x) and F(x) have the same derivative, so A(x) - F(x) has derivative zero. By (4.1.2), A(x) - F(x) is a constant C, or A(x) = F(x) + C. This implies $$\int_{a}^{b} f(x) dx = A(b) - A(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).$$ This completes the derivation of the fundamental theorem of calculus. Often one writes $F(x)|_a^b$ for F(b) - F(a). The FTC then reads $$\int_a^b f(x) \, dx = \left. F(x) \right|_{x=a}^{x=b}.$$ When F'(x) = f(x), F(x) is called an *anti-derivative* or *indefinite integral* of f(x). This should not be confused with the integral (A.6.1), which is a number, an area. Since the total area between a and b may be *sliced* into many thin green rectangles, interpreting the symbol \int as "sum" explains the notation (A.6.1). Important consequences of the FTC are integral additivity, $$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx,$$ and integral scaling, $$\int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx.$$ For example, if $f(x) = x^d$, then, by (4.1.4), $F(x) = x^{d+1}/(d+1)$ satisfies F'(x) = f(x), so, by the FTC, $$\int_{a}^{b} x^{n} dx = F(b) - F(a) = \frac{b^{d+1}}{d+1} - \frac{a^{d+1}}{d+1}.$$ When d=2, a=-1, b=1, this is 2/3, which is the area under the parabola in Figure A.21. When a = 0, b = 1, A.6. INTEGRATION $$\int_0^1 t^d \, dt = \frac{1}{d+1}.\tag{A.6.3}$$ Fig. A.21 Area under the parabola. When F(x) can't be found, we can't use the FTC. Instead we use Python to evaluate the integral (A.6.1) as follows. ``` from scipy.integrate import quad d = 2 def f(x): return x**d a,b = -1, 1 # integral of f(x) over the interval [a,b] # plus error quad(f,a,b) ``` This not only returns the computed integral I but also an estimate of the error between the computed integral and the theoretical value, quad refers to quadrature, which is another term for integration. Another example is the area under one hump of the sine curve in Figure A.22, $$\int_0^{\pi} \sin x \, dx = -\cos \pi - (-\cos 0) = -(-1) + 1 = 2.$$ Here $f(x) = \sin x$, $F(x) = -\cos x$, F'(x) = f(x). The Python code quad returns (2.0, 2.220446049250313e-14). Fig. A.22 The graph and area under $\sin x$. It is important to realize the integral (A.6.1) is the *signed* area under the graph: Portions of areas that are below the x-axis are counted negatively. For example, $$\int_0^{2\pi} \sin x \, dx = -\cos(2\pi) - (-\cos 0) = -1 + 1 = 0.$$ Explicitly, $$\int_0^{2\pi} \sin x \, dx = \int_0^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} \sin
x \, dx = 2 - 2 = 0,$$ so the areas under the first two humps in Figure A.22 cancel. **Fig. A.23** Integral of $\sin x/x$. A.6. INTEGRATION 529 Here is code for Figures A.21, A.22, A.23. ``` from numpy import * from matplotlib.pyplot import * from scipy.integrate import quad def plot_and_integrate(f,a,b,pi_ticks=False): # draw x-axis and y-axis axhline(0, color='black', lw=1) axvline(0, color='black', lw=1) \# set x-axis ticks as multiples of pi/2 if pi_ticks: set_pi_ticks(a,b) x = linspace(a,b,100) plot(x,f(x)) positive = f(x) >= 0 negative = f(x) < 0 fill_between(x, f(x), 0, color = 'g', where = positive, alpha = .5) fill_between(x, f(x), 0, color = 'r', where = negative, alpha = .5) # just the integral, no error estimate I = quad(f, a, b, limit=1000)[0] title("integral equals " + str(I),fontsize = 10) grid() show() def f(x): return sin(x)/x a, b = 0.001, 3*pi plot_and_integrate(f,a,b,pi_ticks=True) ``` Above, the Python function $set_pi_ticks(a,b)$ sets the x-axis tick mark labels at the multiples of $\pi/2$ The code for set_pi_ticks is in §4.1. The exercises are meant to be done using the code in this section. For the infinite limits below, use numpy.inf. # **Exercises** **Exercise A.6.1** Plot and integrate $f(x) = x^2 + A\sin(5x)$ over the interval [-10, 10], for amplitudes A = 0, 1, 2, 4, 15. Note the integral doesn't depend on A. Why? Exercise A.6.2 Plot and integrate (Figure A.23) $$\int_0^{3\pi} \frac{\sin x}{x} \, dx.$$ **Exercise A.6.3** Plot and integrate $f(x) = \exp(-x)$ over [a, b] with a = 0, b = 1, 10, 100, 1000, 10000. **Exercise A.6.4** Plot and integrate $f(x) = \sqrt{1 - x^2}$ over [-1, 1]. **Exercise A.6.5** Plot and integrate $f(x) = 1/\sqrt{1-x^2}$ over [-1,1]. **Exercise A.6.6** Plot and integrate $f(x) = (-\log x)^n$ over [0,1] for n = 2, 3, 4. What is the answer for general n? **Exercise A.6.7** With k = 7, n = 10, plot and integrate using Python $$\int_0^1 x^k (1-x)^{n-k} \, dx.$$ From (5.2.8), what is the exact integral? **Exercise A.6.8** Plot and integrate $f(x) = \sin(nx)/x$ over $[0, \pi]$ with $n = 1, 2, 3, 4, \ldots$ What's the limit of the integral as $n \to \infty$? Exercise A.6.9 Use numpy.inf to compute $$\frac{2}{\pi} \int_0^\infty \frac{\sin x}{x} \, dx.$$ Exercise A.6.10 Use numpy.inf to plot the normal pdf and compute its integral $$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} \, dx.$$ **Exercise A.6.11** Let $\sigma(x) = 1/(1+e^{-x})$. Plot and integrate $f(x) = \sigma(x)(1-\sigma(x))$ over [-10, 10]. What is the answer for $(-\infty, \infty)$? **Exercise A.6.12** Let $P_n(x)$ be the Legendre polynomial of degree n (§4.1). Use num_legendre (§4.1) to compute the integral $$\int_{-1}^{1} P_n(x)^2 dx$$ for n = 1, 2, 3, 4. What is the integral for general n? Hint – take the reciprocal of the answers. # A.7 Asymptotics and Convergence Let x_1, x_2, \ldots be a sequence of scalars. What does it mean to say x_n is asymptotically zero? It means for n sufficiently large, x_n is arbitrarily small. To make this precise, we introduce some terminology. We say x_n is bounded if all terms lie in some bounded interval, $a \le x_n \le b$. If b > 0, we say x_n is bounded by b if $|x_n| \le b$. For example $x_n = \sin(n)$ is bounded by b = 1. The constant b is a bound. We say x_n is eventually bounded by a positive constant b, if, after ignoring finitely many terms, the remaining terms are bounded by b. For example, $x_n = 1/n$ is eventually bounded by b = .01, since, after ignoring the first ninety-nine terms, the sequence is bounded by b. The sequence $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, ..., is eventually bounded by 1, but not eventually bounded by 0.5. If x_n is bounded by 5, then x_n is eventually bounded by 5. On the other hand, if x_n is eventually bounded by 5, then x_n is bounded, but not necessarily by 5, since we are ignoring finitely many terms, when writing the bound. Typically we use the greek letter epsilon ϵ to denote small positive numbers. ### **Asymptotic Vanishing** If for any positive constant ϵ , no matter how small, a sequence x_n is eventually bounded by ϵ , we say x_n is asymptotically zero or asymptotically vanishing, and we write $x_n \approx 0$. For example, $x_n = 1, 1, 1, \ldots$ is not asymptotically zero, since x_n is not eventually bounded by $\epsilon = 0.5$. On the other hand, $x_n = 1/n$ is asymptotically zero: To bound the sequence by $\epsilon = 1/10$, we ignore the first nine terms. To bound the sequence by $\epsilon = 1/100$, we ignore the first ninety-nine terms. To bound the sequence by $\epsilon = 1/10000$, we ignore the first 9999 terms. Notice the smaller the desired bound, the more terms need to be ignored. Immediate consequences of the asymptotic vanishing definition are the following properties. - 1. $|x_n| \le e_n$ and $e_n \approx 0$ imply $x_n \approx 0$. - 2. $x_n \approx 0$ and $y_n \approx 0$ implies $x_n + y_n \approx 0$, - 3. $x_n \approx 0$ and y_n eventually bounded implies $x_n y_n \approx 0$. These are intuitively clear. As a special case, for any constant c, $$x_n \approx 0 \implies cx_n \approx 0.$$ A sequence x_n is asymptotically positive if, apart from finitely many terms, x_n is positive. More generally, x_n is asymptotically nonzero if, apart from finitely many terms, x_n is not zero. We say x_n is asymptotically one, if the difference $x_n - 1$ is asymptotically zero. In this case, we write $$x_n \approx 1$$. As a consequence of the above properties, we show # Convergence of Reciprocals If $x_n \approx 1$, then $1/x_n \approx 1$. To derive this, assume $x_n \approx 1$. Then $x_n - 1 \approx 0$, so $x_n - 1$ is eventually bounded by any positive constant. In particular, $x_n - 1$ is eventually bounded by $\epsilon = 1/2$, which means x_n is eventually in the interval (1/2, 3/2), so eventually $x_n \geq 1/2$, or $1/x_n$ is eventually bounded. By property 3, $$\frac{1}{x_n} - 1 = \frac{1}{x_n} (1 - x_n) \approx 0,$$ yielding the result. The exercises exhibit many other consequences of the above properties. The point of the exercises is that they depend only on these properties, or their consequences. Let y_1, y_2, \ldots be another sequence. We say x_n is asymptotically equal to y_n , and we write $$x_n \approx y_n,$$ (A.7.1) if y_n is asymptotically nonzero, and the ratio x_n/y_n is asymptotically one, or $x_n/y_n \approx 1$. As part of this, we are assuming y_n is asymptotically nonzero, to ensure we aren't dividing by zero. From the definition, it is not clear that $x_n \approx y_n$ is equivalent to $y_n \approx x_n$. Nevertheless, this is correct (Exercise A.7.10). Summarizing, #### Asymptotic Equality $$a_n \approx b_n \qquad \Longleftrightarrow \qquad \frac{a_n}{b_n} \approx 1 \qquad \Longleftrightarrow \qquad \frac{a_n}{b_n} - 1 \approx 0.$$ For example, let $a_n = n$, $b_n = n + 1$, $c_n = n^2$. When n = 1000, $$a_n = 1000,$$ $b_n = 1001,$ $\frac{a_n}{b_n} = .9990000,$ so here we do have $a_n \approx b_n$ for n large. On the hand, here c_n is a million, and a_n is a thousand, so we don't have $a_n \approx c_n$. This is exactly what is meant in (A.1.7). While both sides in (A.1.7) increase without bound, their ratio is close to one, for large n. In general, $a_n \approx b_n$ is not the same as $a_n - b_n \approx 0$: ratios and differences behave differently. For example, based on (A.1.7), the following code from numpy import * def factorial(n): ``` if n == 1: return 1 else: return n * factorial(n-1) def stirling(n): return sqrt(2*pi*n) * (n/e)**n a = factorial(100) b = stirling(100) a/b, a-b ``` returns $$(1.000833677872004, 7.773919124995513 \times 10^{154}).$$ The first entry is close to one, but the second entry is far from zero. If, however, $b_n \approx b$ for some nonzero constant b, then (Exercise A.7.15) ratios and differences are the same, $$a_n \approx b_n \qquad \Longleftrightarrow \qquad a_n - b_n \approx 0.$$ (A.7.2) In particular, for $a \neq 0$, $a_n \approx a$ is the same as $a_n - a \approx 0$. When we have $a_n - a \approx 0$, we say a is the *limit* of a_n , and we write $$a = \lim_{n \to \infty} a_n. \tag{A.7.3}$$ As we saw above, limits and asymptotic equality are the same, as long as the limit is not zero. When a is the limit of a_n , we also say a_n converges to a, or a_n approaches a and we write $a_n \to a$. With this notation, asymptotic vanishing is $a_n \to 0$, asymptotically one is $a_n \to 1$, and asymptotic equality is $a_n/b_n \to 1$. Limits can be taken for sequences of points in \mathbf{R}^d as well. Let a_n be a sequence of points in \mathbf{R}^d . We say a_n converges to a if $a_n \cdot v$ converges to $a \cdot v$ for every vector v. Here we also write $a_n \to a$ and we write (A.7.3). In Chapter 6, \approx is used for random variables. We say random variables X_n are asymptotically equal to random variables Y_n , and we write $X_n \approx Y_n$, if their corresponding probabilities are asymptotically equal, $$Prob(a < X_n < b) \approx Prob(a < Y_n < b),$$ for any interval (a, b). In particular, when Y does not depend on n, the asymptotic equality $X_n \approx Y$ is short for $$Prob(a < X_n < b) \approx Prob(a < Y < b).$$ (A.7.4) When Y is normal or standard normal or chi-squared, we also write $X_n \approx$ normal or $X_n \approx N(0,1)$ or $X_n \approx \chi_d^2$. Since probabilities are positive, here both interpretations in (A.7.2) hold, hence we also have $$Prob(a < X_n < b) \rightarrow Prob(a < Y < b).$$ Also, $X_n \approx Y$ in the sense of (A.7.4) is equivalent to approximations of the means $$E(f(X_n)) \to E(f(Y)),$$ and equivalent to approximations of the moment-generating functions $$M_{X_n}(t) \to M_Y(t)$$. # **Exercises** **Exercise A.7.1** Let k be fixed. Show $$\frac{\binom{n}{k}}{\binom{n}{k-1} + \binom{n}{k+1}} \approx 0 \quad \text{and} \quad 2^{-n} \binom{n}{k} \approx 0, \quad n \to \infty.$$ (Use (A.2.9)
for the second part.) Exercise A.7.2 Show the infinite sum $$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \dots$$ equals 1. (If $t_n = 1/n$, the *n*-th term is $t_n - t_{n+1}$. Write out the sum termby-term.) Exercise A.7.3 Show the infinite sum $$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$ is less than 2. In fact, as was first shown by Euler, this infinite sum equals $\pi^2/6$ [16]. (Compare with the infinite sum in the previous exercise.) **Exercise A.7.4** Let α and β be constants, with $\alpha > 0$ and β nonnegative. Show the infinite sum $$\sum_{n=1}^{\infty} \frac{\alpha}{(n+\beta)^2} = \frac{\alpha}{(1+\beta)^2} + \frac{\alpha}{(2+\beta)^2} + \frac{\alpha}{(3+\beta)^2} + \frac{\alpha}{(4+\beta)^2} + \dots$$ is less than 2α , by repeating the argument in the previous exercise. Exercise A.7.5 Show the infinite sum $$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$$ is infinite, by grouping the terms into mini-batches, where the *n*-th mini-batch b_n is the sum of the 2^{n-1} terms ending with the term $1/2^n$. For example, for n = 1, 2, 3, $$b_1 = \frac{1}{2}$$, $b_2 = \frac{1}{3} + \frac{1}{4}$, $b_3 = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$. Verify each mini-batch b_n is not less than 1/2, for every $n = 1, 2, 3, 4, 5, \ldots$. Use this to conclude this infinite sum equals ∞ . **Exercise A.7.6** Let α and β be constants, with $\alpha > 0$ and β nonnegative. Show the infinite sum $$\sum_{n=1}^{\infty} \frac{\alpha}{n+\beta} = \frac{\alpha}{1+\beta} + \frac{\alpha}{2+\beta} + \frac{\alpha}{3+\beta} + \frac{\alpha}{4+\beta} + \dots$$ is infinite, by repeating the argument in the previous exercise. **Exercise A.7.7** Let m > 0 and $L \ge 0$. Given scalars t_n converging to zero, let p_n be the product $$p_n = \prod_{k=1}^{n} (1 - 2mt_k + L^2 t_k^2), \qquad n = 1, 2, \dots$$ For example, if L=0, $$p_n = (1 - 2mt_1)(1 - 2mt_2)\dots(1 - 2mt_n), \qquad n = 1, 2, \dots$$ Suppose $$t_1 + t_2 + t_3 + \dots = \infty, \qquad t_1^2 + t_2^2 + t_3^2 + \dots < \infty.$$ Then $t_n \to 0$, so the factors in p_n are eventually all positive, which implies p_n/p_N is positive for N large enough and all $n \ge N$. Use (A.3.16) to show p_n converges to zero as $n \to \infty$. **Exercise A.7.8** Let α and β be constants, with $\alpha>0$ and β nonnegative. Show $$t_n = \frac{\alpha}{n+\beta}, \qquad n = 1, 2, \dots$$ satisfies $$t_n t_{n+1} = \alpha(t_n - t_{n+1}), \qquad n = 1, 2, \dots$$ **Exercise A.7.9** Let α and β be constants, with $\alpha>0$ and β nonnegative, and let $$t_n = \frac{\alpha}{n+\beta}, \qquad n = 1, 2, \dots$$ Use the previous exercise to show recursively $$\prod_{k=1}^{n} \left(1 - \frac{t_k}{\alpha} \right) = \frac{\beta}{n+\beta}, \qquad n = 1, 2, \dots$$ **Exercise A.7.10** If $a_n \approx b_n$, then $b_n \approx a_n$. **Exercise A.7.11** If $a_n \approx 1$ and $b_n \approx 1$, then $a_n b_n \approx 1$. **Exercise A.7.12** If $a_n \approx b_n$ and $b_n \approx c_n$, then $a_n \approx c_n$. **Exercise A.7.13** If $a_n \approx a'_n$ and $b_n \approx b'_n$, then $a_n b_n \approx a'_n b'_n$. **Exercise A.7.14** Let $a \neq 0$. If $a_n \approx a$, then $a_n - a \approx 0$, and conversely. **Exercise A.7.15** If $b_n \approx b$ and $b \neq 0$, then (A.7.2) holds. **Exercise A.7.16** If $a_n - b_n \approx 0$ and $b_n \to b$, then $a_n \to b$. **Exercise A.7.17** Let μ be a constant and let $\bar{X}_1, \bar{X}_2, \ldots$ be a sequence of random variables. For example, in the LLN, \bar{X}_n is the sample mean. Show $\bar{X}_n \approx \mu$ is equivalent to $$Prob(a < \bar{X}_n < b) \approx 0,$$ for any interval (a, b) not containing μ . **Exercise A.7.18** If $a_n \to a$ and $b_n \to b$, then $$a_n + b_n \to a + b, \qquad a_n b_n \to ab.$$ **Exercise A.7.19** If $a_n \leq b_n \leq c_n$ and $a_n \to L$ and $c_n \to L$, then $b_n \to L$ (squeezing lemma). # A.8 Existence of Minimizers Several times in the text, we deal with minimizing functions, most notably for the pseudo-inverse of a matrix ($\S2.3$), for proper continuous functions ($\S4.3$), and for gradient descent ($\S7.3$). Previously, the technical foundations underlying the *existence* of minimizers were ignored. In this section, we review the foundational material supporting the existence of minimizers. For example, since $y = e^x$ is an increasing function, the minimum $$\min_{0 \le x \le 1} e^x = \min\{e^x \mid 0 \le x \le 1\}$$ is $y^* = e^0 = 1$, and the minimizer, the location at which the minimum occurs, is $x^* = 0$. Here we have one minimizer. For the function $y = x^4 - 2x^2$ in Figure 4.4, the minimum over $-2 \le x \le 2$ is $y^* = -1$, which occurs at the minimizers $x^* = \pm 1$. Here we have two minimizers. On the other hand, there is no minimizer for $y=e^x$ on the entire real line $-\infty < x < \infty$, because as x approaches $-\infty$, e^x approaches zero, but never reaches it. Our goal in this section is to establish conditions which guarantee the existence of minimizers. A sequence x_n is increasing if $x_1 \leq x_2 \leq x_3 \leq \ldots$. A sequence x_n is decreasing if $x_1 \geq x_2 \geq x_3 \geq \ldots$. If x_n is increasing, then $-x_n$ is decreasing, and vice-versa. In §A.7, we had bounded sequences and limits. A foundational axiom for real numbers, the *completeness property*, is the following. # Completeness Property Let x_n be a bounded increasing sequence. Then x_n has a limit $$\lim_{n\to\infty} x_n.$$ By multiplying a sequence by a minus, we also see every bounded decreasing sequence has a limit. In general, a bounded sequence need not converge. However below we see it subconverges. Let x_1, x_2, \ldots be a sequence. A *subsequence* is a selection of terms $$x_{n_1}, x_{n_2}, x_{n_3}, \dots, n_1 < n_2 < n_3 < \dots$$ Here it is important that the indices $n_1 < n_2 < n_3 < \dots$ be strictly increasing. If a sequence x_1, x_2, \ldots has a subsequence x'_1, x'_2, \ldots converging to x^* , then we say the sequence x_1, x_2, \ldots subconverges to x^* . For example, the sequence $1, -1, 1, -1, 1, -1, \ldots$ subconverges to 1 and also subconverges to -1, as can be seen by considering the odd-indexed terms and the even-indexed terms separately. #### Bounded Sequences Must Subconverge Let x_1, x_2, \ldots be a bounded sequence of vectors. Then there is a subsequence x'_1, x'_2, \ldots converging to some x^* . To see this, assume first x_1, x_2, \ldots are scalars, and let x_1, x_2, \ldots be a bounded sequence of numbers, say $a \leq x_n \leq b$ for $n \geq 1$. Bisect the interval $I_0 = [a, b]$ into two equal subintervals. Then at least one of the subintervals, call it I_1 , has infinitely many terms of the sequence. Select x'_1 in I_1 and let x_1^* be the left endpoint of I_1 . Now bisect I_1 into two equal subintervals. Then at least one of the subintervals, call it I_2 , has infinitely many terms of the sequence. Select x'_2 in I_2 and let x_2^* be the left endpoint of I_2 . Continuing in this manner, we obtain a subsubsequence x'_1, x'_2, \ldots with x'_n in I_n , and a sequence x_1^*, x_2^*, \ldots Since the intervals are nested $$I_0 \supset I_1 \supset I_2 \supset \ldots$$, the sequence x_1^*, x_2^*, \dots is increasing. By the completeness property, $$x^* = \lim_{n \to \infty} x_n^*$$ exists. By definition of limit, this says $e_n = x_n^* - x^* \approx 0$. Since the length of I_n equals $(b-a)/2^n$, and $2^{-n} \to 0$, $$0 \le x_n' - x_n^* \le (b - a)2^{-n},$$ hence $x'_n - x^*_n \approx 0$. By Exercise **A.7.16**, we conclude $x'_n \to x^*$. Now let x_1, x_2, \ldots be a sequence of vectors in \mathbf{R}^d , and let v be a vector; then $x_1 \cdot v, x_2 \cdot v, \ldots$ are scalars, so, from the previous paragraph, there is a subsequence $x'_n \cdot v$ (depending on v) converging to some x^*_v . Let e_1, e_2, \ldots, e_d be the standard basis in \mathbf{R}^d . By choosing $v = e_1$, there is a subsequence x_1', x_2', \ldots such that the first features of x_n' converge. By choosing $v = e_2$, and focusing on the subsequence x_1', x_2', \ldots , there is a sub-subsequence x_1'', x_2'', \ldots such that the first and second features of x_n'' converge. Continuing in this manner, we obtain a subsequence x_1^*, x_2^*, \ldots such that the k-th feature of the subsequence converges to the k-th feature of a single x^* , for every $1 \le k \le d$. From this, it follows that x_n^* converges to x^* . Let S be a set of vectors and let y = f(x) be a scalar-valued function bounded below on S, $f(x) \ge b$ for some number b, for all x in S. Then b is a lower bound for f(x) over S. A minimizer is a vector x^* satisfying $$f(x^*) \le f(x)$$, for every x in S . As we saw above, a minimizer may or may not exist, and, when the minimizer does exist, there may be several minimizers. A function y = f(x) is *continuous* if $f(x_n)$ approaches $f(x^*)$ whenever x_n approaches x^* , $$x_n \to x^* \qquad \Longrightarrow \qquad f(x_n) \to f(x^*),$$ for every x^* and every $x_n \to x^*$. Here $a_n \to a$ means $a_n - a \approx 0$, see §A.7. Now we can establish #### Existence of Minimizers If f(x) is continuous on \mathbf{R}^d and S is a bounded set in \mathbf{R}^d , then there is a minimizer x^* , $$f(x^*) = \min_{x \text{ in } S} f(x).$$ (A.8.1) In general, the minimizer x^* may lie outside the set S. To guarantee x^* belongs to S, typically one assumes an additional requirement, the closedness of S. In our applications of this result, we seek a minimizer somewhere in \mathbf{R}^d , so this point
is of no concern. To establish the result, let m_1 be a lower bound for f(x) over S, and let x_1 be any point in S. Then $f(x_1) \ge m_1$. Let $$c = \frac{f(x_1) + m_1}{2}$$ be the midpoint between m_1 and $f(x_1)$. There are two possibilities. Either c is a lower bound or not. In the first case, define $m_2 = c$ and $x_2 = x_1$. In the second case, there is a point x_2 in S satisfying $f(x_2) < c$, and we define $m_2 = m_1$. As a consequence, in either case, we have $f(x_2) \ge m_2$, $m_1 \le m_2$, and $$f(x_2) - m_2 \le \frac{1}{2}(f(x_1) - m_1).$$ Let $$c = \frac{f(x_2) + m_2}{2}$$ be the midpoint between m_2 and $f(x_2)$. There are two possibilities. Either c is a lower bound or not. In the first case, define $m_3 = c$ and $x_3 = x_2$. In the second case, there is a point x_3 in S satisfying $f(x_3) < c$, and we define $m_3 = m_2$. As a consequence, in either case, we have $f(x_3) \ge m_3$, $m_2 \le m_3$, and $$f(x_3) - m_3 \le \frac{1}{2^2} (f(x_1) - m_1).$$ Continuing in this manner, we have a sequence x_1, x_2, \ldots in S, and an increasing sequence $m_1 \leq m_2 \leq \ldots$ of lower bounds, with $$f(x_n) - m_n \le \frac{2}{2^n} (f(x_1) - m_1).$$ Since S is bounded, x_n subconverges to some x^* . Since f(x) is continuous, $f(x_n)$ subconverges to $f(x^*)$. Since $f(x_n) \approx m_n$ and m_n is a lower bound for all n, $f(x^*)$ is a lower bound, hence x^* is a minimizer. # A.9 SQL Recall matrices (§2.1), datasets, CSV files, spreadsheets, arrays, dataframes are basically the same objects. Databases are collections of tables, where a table is another object similar to the above. Hence matrix = dataset = CSV file = spreadsheet = table = array = data frame(A.9.1) One difference is that each entry in a table may be a string, or code, or an image, not just a number. Nevertheless, every table has rows and columns; rows are usually called *records*, and columns are columns. A *database* is a collection of several tables that may or may not be linked by columns with common data. Software that serves databases is a *database server*. Often the computer running this software is also called a *database server*, or a *server* for short. Databases created by a database server (software) are stored as files on the database server. There are many varieties of database server software. We use *MariaDB*, a widely-used open-source database server. By using open-source software, one is assured to be using the "purest" form of the software, in the sense that proprietary extensions are avoided, and the software is compatible with the widest range of commercial variations. Because database tables can contain millions of records, it is best to access a database server programmatically, using an application programming interface, rather than a graphical user interface. The basic API for interacting with database servers is SQL (structured query language). SQL is a programming language for creating and modifying databases. A.9. SQL 541 Any application on your laptop that is used to access a database is called an SQL *client*. The database server being accessed may be *local*, running on the same computer you are logged into, or *remote*, running on another computer on the internet. In our examples, the code assumes a local or remote database server is being accessed. Because SQL commands are case-insensitive, by default we write them in lowercase. Depending on the SQL client, commands may terminate with semicolons or not. As mentioned above, data may be numbers or strings. The basic SQL commands are ``` select from limit select distinct where/where not <column> where <column> = <data> and/or <column> = <data> order by <column1>,<column2> insert into table (<column1>,<column2>,...) \ values (<data1>, <data2>, ...) is null update set <column> = <data> where ... like <regex> (%, _, [abc], [a-f], [!abc]) delete from where ... select min(<column>) from (also max, count, avg) where <column> in/not in (<data array>) between/not between <data1> and <data2> join (left, right, inner, full) create database <database> drop database <database> create table truncate alter table add <column> <datatype> alter table drop column <column> insert into select ``` All the objects in (A.9.1) are also equivalent to a Python list-of-dicts. In this section we explain how to convert between the objects ``` list-of-dicts \iff JSON \ string \iff dataframe \iff CSV \ file \iff SQL \ table \ (A.9.2) ``` For all conversions, we use pandas. We begin describing a Python *list-of-dicts*, because this does not require any additional Python packages. A Python dictionary or dict is a Python object of the form (prices are in cents) ``` item1 = {"dish": "Hummus", "price": 800, "quantity": 5} ``` This is an *unordered* listing of key-value pairs. Here the keys are the strings dish, price, and quantity. Keys need not be strings; they may be integers or any *unmutable* Python objects. Since a Python list is mutable, a key cannot be a list. Values may be any Python objects, so a value may be a list. In a dict, values are accessed through their keys. For example, item1["dish"] returns 'Hummus'. A *list-of-dicts* is simply a Python list whose elements are Python dicts, for example, ``` item2 = {"dish": "Avocado", "price": 900, "quantity": 2} L = [item1,item2] ``` Here L is a list and ``` len(L), L[0]["dish"] ``` returns ``` (2,'Hummus') ``` In other words, L is a *list-of-dicts*, ``` L == [\{"dish": "Hummus", "price": 800, "quantity": 5\}, \{"dish": ... \\ \hookrightarrow \}] ``` returns True. A list-of-dicts L can be converted into a string using the json module, as follows: ``` frpm json import * s = dumps(L) ``` Now print L and print s. Even though L and s "look" the same, L is a list, and s is a string. To emphasize this point, note - len(L) == 2 and len(s) == 99, - $L[0:2] == L \text{ and } s[0:2] == '[{'}]$ - L[8] returns an error and s[8] == ':' To convert back the other way, use A.9. SQL 543 ``` from json import * L1 = loads(s) ``` Then L == L1 returns True. Strings having this form are called *JSON strings*, and are easy to store in a database as VARCHARs (see Figure A.27). The basic object in the Python package pandas is the *dataframe* (Figures A.24, A.25, A.27, A.28). pandas can convert a dataframe df to many, many other formats To convert a list-of-dicts to a dataframe is easy. The code ``` from pandas import * df = DataFrame(L) df ``` returns the dataframe in Figure A.24 (prices are in cents). | | dish | price | quantity | |---|---------|-------|----------| | 0 | Hummus | 800 | 5 | | 1 | Avocado | 900 | 2 | ${\bf Fig.~A.24~~Data frame~from~list-of-dicts.}$ To go the other way is equally easy. The code ``` L1 = df.to_dict('records') L == L1 ``` returns True. Here the option 'records' returns a list-of-dicts; other options returns a dict-of-dicts or other combinations. To convert a CSV file into a dataframe, use the code ``` menu_df = read_csv("menu.csv") menu_df ``` This returns Figure A.25 (prices are in cents). To go the other way, to convert the dataframe df to the CSV file menul.csv, use the code | | dish | price | |----|--|-------| | 0 | Hummus | 800 | | 1 | Baba Ghanouj | 800 | | 2 | Avocado | 900 | | 3 | Muhammara | 800 | | 4 | Mujaddara | 800 | | | | | | 73 | Chicken Kebab, one dip, baklava | 2300 | | 74 | Lahmbajeen Pizza, two dips | 2400 | | 75 | Merguez Kebab and Moussaka | 2600 | | 76 | Margherita Pizza, Chicken Wings, Baklava | 2500 | | 77 | Any three pizzas | 5000 | 78 rows × 2 columns Fig. A.25 Menu dataframe and SQL table. ``` df.to_csv("menu1.csv") df.to_csv("menu2.csv",index=False) ``` The option index=False suppresses the index column, so menu2.csv has two columns, while menu1.csv has three columns. Also useful is the method .to_excel, which returns an excel file. Now we explain how to convert between a dataframe and an SQL table. What we have seen so far uses only pandas. To convert to SQL, we need two more packages, sqlalchemy and pymysql. The package sqlalchemy allows us to connect to a database server from within Python, and the package pymysql is the code necessary to complete the connection to the MariaDB database server. For example, if we are connecting to an Oracle database server, we would use the package cx-Oracle instead of pymysql. In Python, the standard package installation method is to use pip. To install sqlalchemy and pymysql, type within jupyter: ``` pip install sqlalchemy pip install pymysql ``` To connect using sqlalchemy, we first collect the connection data into one URI string, A.9. SQL 545 ``` protocol = "mysql+pymysql://" credentials = "username:password" server = "@servername" port = ":3306" uri = protocol + credentials + server + port ``` This string contains your database username, your database password, the database server name, the server port, and the protocol. If the database is "rawa", the URI is ``` database = "/rawa" uri = protocol + credentials + server + port + database ``` Using this uri, the connection is made as follows ``` from sqlalchemy import create_engine engine = sqlalchemy.create_engine(uri) ``` (In sqlalchemy, a connection is called an "engine".) After this, to store the dataframe df into a table Menu, use the code ``` df.to_sql('Menu',engine,if_exists='replace') ``` The if_exists = 'replace' option replaces the table Menu if it existed prior to this command. Other options are if_exists='fail' and if_exists='append'. The default is if_exists='fail', so ``` df.to_sql('Menu',engine) ``` returns an error if Menu exists. To read a table into a dataframe, use for example the code Fig. A.26 Rawa restaurant. Better Python coding technique is to place read_sql and to_sql in a with block, as follows ``` with engine.connect() as connection: df = pd.read_sql(query, connection) df.to_sql('Menu',engine) ``` One benefit of this syntax is the automatic closure of the connection upon completion. This completes the discussion of how
to convert between dataframes and SQL tables, and completes the discussion of conversions between any of the objects in (A.9.2). As an example how all this goes together, here is a task: Given two CSV files menu.csv and orders.csv downloaded from a restaurant website (Figure A.26), create three SQL tables Menu, OrdersIn, OrdersOut. The two CSV files are (click) ``` orders.csv and menu.csv. ``` The three SQL table columns are as follows (price, tip, tax, subtotal, total are in cents) ``` /* Menu */ dish varchar price integer /* ordersin */ orderid integer created datetime ``` A.9. SQL 547 ``` customerid integer items json /* ordersout */ orderid integer subtotal integer tip integer tax integer total integer ``` | | orderId | created | customerId | items | |------|---------|---------------|------------|--| | 0 | 1 | 6/29/19 2:37 | 1497 | [{"dish": "Citrus Chicken", "price": 1000, "quantity": 8}] | | 1 | 5 | 7/1/19 14:30 | 1600 | [{"dish": "Hummus", "price": 800, "quantity": 10}] | | 2 | 11 | 7/9/19 17:07 | 1704 | [{"dish": "Hummus", "price": 800, "quantity": 1}, {"dish": "Baba G | | 3 | 12 | 7/10/19 12:14 | 1431 | [{"dish": "Hummus", "price": 800, "quantity": 9}] | | 4 | 13 | 7/10/19 18:50 | 1458 | [{"dish": "Labne", "price": 800, "quantity": 1}, {"dish": "Garden" | | | | | | | | 3965 | 3985 | 1/20/23 17:23 | 1787 | [{"dish": "Hummus", "price": 800, "quantity": 1}, {"dish": "Chicke | | 3966 | 3986 | 1/20/23 17:37 | 10 | [{"dish": "Falafel", "price": 1300, "quantity": 1}, {"dish": "Chic | | 3967 | 3987 | 1/20/23 19:16 | 1354 | [{"dish": "Lentil", "price": 800, "quantity": 1}, {"dish": "Marghe | | 3968 | 3988 | 1/21/23 12:06 | 152 | [{"dish": "Mamyaldi Vegan", "price": 1700, "quantity": 2}] | | 3969 | 3989 | 1/21/23 17:00 | 1579 | [{"dish": "Sampler Plate", "price": 1800, "quantity": 1}, {"dish": | 3970 rows × 4 columns Fig. A.27 OrdersIn dataframe and SQL table. To achieve this task, we download the CSV files $\mathtt{menu.csv}$ and $\mathtt{orders.csv}$, then we carry out these steps. (price and tip in $\mathtt{menu.csv}$ and $\mathtt{orders.csv}$ are in cents so they are INTs.) - 1. Read the CSV files into dataframes menu_df and orders_df. - 2. Convert the dataframes into list-of-dicts menu and orders. - 3. Create a list-of-dicts OrdersIn with keys orderId, created, customerId whose values are obtained from list-of-dicts orders. - 4. Create a list-of-dicts OrdersOut with keys orderId, tip whose values are obtained from list-of-dicts orders (tips are in cents so they are INTs). - 5. Add a key items to OrdersIn whose values are JSON strings specifying the items ordered in orders, using the prices in menu (these are in cents so they are INTs). The JSON string is of a list-of-dicts in the form discussed above L = [item1, item2] (see row 0 in Figure A.27). Do this by looping over each order in the list-of-dicts orders, then looping over each item in the list-of-dicts menu, and extracting the quantity ordered of the item item in the order order. Add a key subtotal to OrdersOut whose values (in cents) are computed from the above values. Add a key tax to OrdersOut whose values (in cents) are computed using the Connecticut tax rate 7.35%. Tax is applied to the sum of subtotal and tip. Add a key total to OrdersOut whose values (in cents) are computed from the above values (subtotal, tax, tip). - Convert the list-of-dicts OrdersIn, OrdersOut to dataframes OrdersIn_df, OrdersOut_df. - Upload menu_df, OrdersIn_df, OrdersOut_df to tables Menu, OrdersIn, OrdersOut. The resulting dataframes ordersin_df and ordersout_df, and SQL tables OrdersIn and OrdersOut, are in Figures A.27 and A.28. | | orderld | tip | subtotal | tax | total | |------|---------|------|----------|-----|-------| | 0 | 0 | 0 | 4000 | 294 | 4294 | | 1 | 1 | 0 | 8000 | 588 | 8588 | | 2 | 2 | 0 | 2200 | 161 | 2361 | | 3 | 3 | 0 | 8800 | 646 | 9446 | | 4 | 4 | 0 | 10400 | 764 | 11164 | | | | | | | | | 3985 | 3985 | 434 | 7800 | 605 | 8839 | | 3986 | 3986 | 0 | 3000 | 220 | 3220 | | 3987 | 3987 | 1275 | 8200 | 696 | 10171 | | 3988 | 3988 | 180 | 3400 | 263 | 3843 | | 3989 | 3989 | 885 | 5800 | 491 | 7176 | 3990 rows × 5 columns Fig. A.28 OrdersOut dataframe and SQL table. A.9. SQL 549 # Complete Code for the Task ``` # step 1 from pandas import * protocol = "https://" server = "omar-hijab.org" path = "/teaching/csv_files/restaurant/" url = protocol + server + path menu_df = read_csv(url + "menu.csv") orders_df = read_csv(url + "orders.csv") # step 2 menu = menu_df.to_dict('records') orders = orders_df.to_dict('records') # step 3 OrdersIn = h for r in orders: d = \{\} d["orderId"] = r["orderId"] d["created"] = r["created"] d["customerId"] = r["customerId"] OrdersIn.append(d) # step 4 OrdersOut = h for r in orders: d = \{\} d["orderId"] = r["orderId"] d["tip"] = r["tip"] OrdersOut.append(d) # step 5 from json import * for i,r in enumerate(OrdersIn): itemsOrdered = h for item in menu: dish = item["dish"] price = item["price"] if dish in orders[i]: quantity = orders[i][dish if quantity > 0: d = {"dish": dish, "price": price, "quantity": \hookrightarrow quantity} itemsOrdered.append(d) r["items"] = dumps(itemsOrdered) # steps 6 ``` ``` for i,r in enumerate(OrdersOut): items = loads(OrdersIn[i]["items"]) subtotal = sum([item["price"]*item["quantity"] for item in items →]) r["subtotal"] = subtotal tip = OrdersOut[i]["tip"] tax = int(.0735*(tip + subtotal)) total = subtotal + tip + tax r["tax"] = tax r["total"] = total # step 7 ordersin_df = DataFrame(OrdersIn) ordersout_df = DataFrame(OrdersOut) from sqlalchemy import create_engine, text # connect to the database protocol = "mysql+pymysql://" credentials = "username:password@" server = "servername" port = ":3306" database = "/rawa" uri = protocol + credentials + server + port + database engine = create_engine(uri) dtype1 = { "dish":sqlalchemy.String(60), "price":sqlalchemy.Integer } dtype2 = { "orderId":sqlalchemy.Integer, "created":sqlalchemy.String(30), "customerId":sqlalchemy.Integer, "items":sqlalchemy.String(1000) } dtype3 = { "orderId":sqlalchemy.Integer, "tip":sqlalchemy.Integer, "subtotal":sqlalchemy.Integer, "tax":sqlalchemy.Integer, "total":sqlalchemy.Integer with engine.connect() as connection: menu_df.to_sql('Menu', engine, if_exists = 'replace', index = False, dtype = dtype1) ordersin_df.to_sql("OrdersIn", engine, index = False, if_exists = 'replace', dtype = dtype2) ordersout_df.to_sql("OrdersOut", engine, index = False, if_exists = 'replace', dtype = dtype3) ``` A.9. SQL 551 #### Moral of this section In this section, all work was done in Python on a laptop, no SQL was used on the database, other than creating a table or downloading a table. Generally, this is an effective workflow: - Use SQL to do big manipulations on the database (joining and filtering). - Use Python to do detailed computations on your laptop (analysis). Now we consider the following simple problem. The total number of orders in 3970. What is the total number of plates? To answer this, we loop through all the orders, summing the number of plates in each order. The answer is 14,949 plates. ``` from json import * from pandas import * from sqlalchemy import create_engine, text protocol = "mysql+pymysql://" credentials = "username:password@" server = "servername" port = ":3306" database = "/rawa" uri = protocol + credentials + server + port + database engine = sqlalchemy.create_engine(uri) connection = engine.connect() query = text("select * from OrdersIn") df = read_sql(query, connection) n_{11m} = 0 for item in df["items"]: plates = loads(item) num += sum([plate["quantity"] for plate in plates]) print(num) ``` A more streamlined approach is to use map. First we define a function whose input is a JSON string in the format of df["items"], and whose output is the number of plates. ``` from json import * def num_plates(item): dishes = loads(item) return sum([dish["quantity"] for dish in dishes]) ``` Then we use map to apply to this function to every element in the series df["items"], resulting in another series. Then we sum the resulting series. ``` num = df["items"].map(num_plates).sum() print(num) ``` Since the total number of plates is 14,949, and the total number of orders is 4970, the average number of plates per order is 3.76. REFERENCES 553 # References [1] J. Akey. Genome 560: Introduction to Statistical Genomics. 2008. URL: https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture1.pdf. - [2] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, 2006. - [3] S. Bubeck. Convex Optimization: Algorithms and Complexity. Vol. 8. Foundations and Trends in Machine Learning. Now Publishers, 2015. - [4] H. Cramér. Mathematical Methods of Statistics. Princeton University Press, 1946. - [5] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. *Mathematics for Machine Learning*. Cambridge University Press, 2020. - [6] J. L. Doob. "Probability and Statistics". In: Transactions of the American Mathematical Society 36 (1934), pp. 759–775. - [7] Math Stack Exchange. URL: https://math.stackexchange.com/questions/4195547/derivation-of-stirling-approximation-from-clt. - [8] T. S. Ferguson. A Course in Large Sample Theory. Springer, 1996. - [9] R. A. Fisher. "The conditions under which χ^2 measures the discrepancy between observation and hypothesis". In: *Journal of the Royal Statistical Society* 87 (1924), pp. 442–450. - [10] I. Goodfellow, Y. Bengio, and A. Courville. *Deep Learning*. MIT Press, 2016. URL: http://www.deeplearningbook.org. - [11] Google. Machine Learning. URL: https://developers.google.com/machine-learning. - [12] R. M. Gray. "Toeplitz and Circulant Matrices: A Review". In: Foundations and Trends in Communications and Information Theory 2.3 (2006), pp. 155-239. ISSN: 1567-2190. URL: http://dx.doi.org/10.1561/0100000006. - [13] E. L. Grinberg and O. Hijab. "The fundamental theorem of trigonometry".
Preprint. - [14] T. L. Heath. The Works of Archimedes. Cambridge University Press, 1897. - [15] O. Hijab. "Binary Classifiers and Logistic Regression". Preprint. - [16] O. Hijab. Introduction to Calculus and Classical Analysis, Fourth Edition. Springer, 2016. - [17] I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008. - [18] N. Janakiev. Classifying the Iris Data Set with Keras. 2018. URL: https://janakiev.com/blog/keras-iris. - [19] L. Jiang. A Visual Explanation of Gradient Descent Methods. 2020. URL: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c. 554 REFERENCES [20] J. W. Longley. "An Appraisal of Least Squares Programs for the Electronic Computer from the Point of View of the User". In: Journal of the American Statistical Association 62.319 (1967), pp. 819–841. - [21] D. G. Luenberger and Y. Ye. *Linear and Nonlinear Programming*. Springer, 2008. - [22] M. Minsky and S. Papert. Perceptrons, An Introduction to Computational Geometry. MIT Press, 1988. - [23] Y. Nesterov. Lectures on Convex Optimization. Springer, 2018. - [24] K. Pearson. "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". In: *Philosophical Magazine Series* 5 50:302 (1900), pp. 157–175. - [25] R. Penrose. "A generalized inverse for matrices". In: *Proceedings of the Cambridge Philosophical Society* 51 (1955), pp. 406–413. - [26] B. T. Polyak. "Some methods of speeding up the convergence of iteration methods". In: *USSR Computational Mathematics and Mathematical Physics* 4(5) (1964), pp. 1–17. - [27] The WeBWorK Project. URL: https://openwebwork.org/. - [28] S. Raschka. *PCA in three simple steps*. 2015. URL: https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html. - [29] H. Robbins and S. Monro. "A Stochastic Approximation Method". In: *The Annals of Mathematical Statistics* 22.3 (1951), pp. 400–407. - [30] S. M. Ross. Probability and Statistics for Engineers and Scientists, Sixth Edition. Academic Press, 2021. - [31] M. J. Schervish. Theory of Statistics. Springer, 1995. - [32] G. Strang. Linear Algebra and its Applications. Brooks/Cole, 1988. - [33] Stanford University. CS224N: Natural Language Processing with Deep Learning. URL: https://web.stanford.edu/class/cs224n. - [34] I. Waldspurger. Gradient Descent With Momentum. 2022. URL: https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s1/advanced_gradient_descent.pdf. - [35] Wikipedia. Logistic Regression. URL: https://en.wikipedia.org/wiki/Logistic_regression. - [36] Wikipedia. Seven Bridges of Königsberg. URL: https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg. - [37] S. J. Wright and B. Recht. *Optimization for Data Analysis*. Cambridge University Press, 2022. # Python Index ``` *, 9, 16 def.hexcolor, 11 def.incoming, 234, 398 append, 184 def.initial_weights, 397 def.inject_source, 398 def.Angle, 500 def.inject_target, 403 def.assign_clusters, 184 def.inputs, 396 def.J, 399 def.backward_prop, 229, 237, def.local, 402 def.ball, 38 def.matrix_text, 29 def.batch_weight_gradient, def.nearest_index, 183 425 def.neurons, 396 def.biases, 396 def.newton, 410 def.cartesian_product, 336 def.num_biases, 407 def.chi2_independence, 381 def.num_edges, 407 def.cluster, 184 def.num_inputs, 407 def.comb_tuples, 474 def.num_legendre, 193 def.confidence_interval, 363, def.num_neurons, 407 373 def.num_outputs, 407 def.derivative, 237 def.num_plates, 551 def.dimension_staircase, 112 def.outgoing, 235, 398 def.display_image, 179 def.outputs, 396 def.pca, 177 def.downstream, 404 def.draw_major_minor_axes, 33 def.pca_with_svd, 178 def.edges, 396 def.perm_tuples, 473 def.ellipse, 28 def.plot_and_integrate, 529 def.plot_cluster, 184 def.find_first_defect, 110 def.forward_prop, 229, 236, 398 def.plot_descent, 411 def.gd, 415 def.poly, 450 def.goodness_of_fit, 377 def.project, 101 def.H, 277 def.project_to_ortho, 102 ``` 556 PYTHON INDEX | def.pvalue, 326 | $\mathtt{matplotlib.pyplot.grid}, \ 7$ | |--|--| | def.random_batch_mean, 268 | $\mathtt{matplotlib.pyplot.hist}, 265$ | | <pre>def.sample_training</pre> | matplotlib.pyplot.imshow, 8, 9 | | $\mathtt{batch}, 425$ | $\mathtt{matplotlib.pyplot.legend}, \frac{28}{2}$ | | $minibatch, \frac{427}{2}$ | matplotlib.pyplot.meshgrid, | | single, 422 | 28 | | $\mathtt{stochastic},427$ | <pre>matplotlib.pyplot.plot, 18, 20</pre> | | <pre>def.set_pi_ticks, 206</pre> | <pre>matplotlib.pyplot.scatter, 7,</pre> | | <pre>def.single_weight_gradient,</pre> | 18 | | 422 | $\mathtt{matplotlib.pyplot.show}, \ 7$ | | def.stirling, 277 | matplotlib.pyplot.stairs, 112 | | <pre>def.sym_legendre, 192</pre> | <pre>matplotlib.pyplot.subplot,</pre> | | def.tensor, 422, 509 | 179 | | def.ttest, 374 | $\mathtt{matplotlib.pyplot.text}, \frac{29}{}$ | | def.type2_error, 369, 375 | $\mathtt{matplotlib.pyplot.title}, 277$ | | def.uniq, 5 | $\mathtt{matplotlib.pyplot.xlabel}, 450$ | | <pre>def.update_means, 184</pre> | matplotlib.pyplot.xticks, 206 | | <pre>def.update_weights, 422</pre> | matplotlib.pyplot.ylim, 332 | | <pre>def.zero_variance, 87</pre> | | | def.ztest, 367 | numpy.allclose, 130, 496 | | dict, 541 | $\mathtt{numpy.amax}, 450$ | | display, 132 | $\verb"numpy.amin", 450"$ | | 4=0 | numpy.arange, 18, 28 | | enumerate, 179 | numpy.arccos, 500 | | import 0 | numpy.argmin, 183 | | import, 9 | numpy.argsort, 177 | | itertools.product, 38 | numpy.array, 8, 41 | | join, 11 | $numpy.ceil, \frac{206}{}$ | | json.dumps, 542 | $\mathtt{numpy.column_stack}, 64$ | | json.loads, 542 | $\mathtt{numpy.copy}, 422$ | | Jeon. 10aas, 012 | $\mathtt{numpy.corrcoef}, 25, 58$ | | lambda, 234 | $\mathtt{numpy.cov}, \textcolor{red}{24}, \textcolor{red}{58}$ | | lamda, 131 | $\mathtt{numpy.cumsum}, 176$ | | list, 7 | $\mathtt{numpy.degrees},500$ | | , | $\mathtt{numpy.diag}, 47, 171$ | | map, 206 | $\mathtt{numpy.dot}, 48$ | | matplotlib.patches | $\mathtt{numpy.dstack}, \frac{336}{}$ | | Circle, $\frac{37}{}$ | $numpy.exp, \frac{277}{}$ | | Rectangle, 37 | $\mathtt{numpy.eye}, 46$ | | $\mathtt{matplotlib.pyplot.axes}, \frac{37}{}$ | $numpy.fill_diagonal, 396$ | | $add_patch, \frac{37}{}$ | numpy.floor, 206 | | axis, 37 | $numpy.full, \frac{396}{}$ | | $\mathtt{set_axis_off}, \frac{37}{}$ | $\mathtt{numpy.inf}, 530$ | | matplotlib.pyplot.contour, 28 | $\mathtt{numpy.invert}, \frac{396}{}$ | | matplotlib.pvplot.figure. 179 | numpy.isclose, 140, 496 | PYTHON INDEX 557 | <pre>numpy.linalg.matrix_rank,</pre> | scipy.special.comb, 475 | |--|--------------------------------------| | 109, 110 | scipy.special.expit, 284 | | numpy.linspace, 38 | scipy.special.factorial, 472 | | numpy.log, 277 | scipy.special.perm, 473 | | numpy.mean, 14 | scipy.special.softmax, 343 | | numpy.meshgrid, 38, 336 | scipy.stats.binom, 275 | | numpy.ones, 46 | scipy.stats.chi2, 331 | | $\verb"numpy.outer", \frac{381}{510}$ | scipy.stats.entropy, 217, 277 | | numpy.pi, 277 | scipy.stats. | | <pre>numpy.random.default_rng, 16</pre> | <pre> multivariate_normal </pre> | | binomial, 264 , 275 , 357 | 335 | | choice, 11 | scipy.stats.norm, 313 | | normal, 325, 356, 429 | scipy.stats.poisson, 302 | | $\mathtt{random},\ 15,\ 20,\ 242,\ 397$ | scipy.stats.t, 371, 373 | | $\mathtt{shuffle}, \textcolor{red}{268}, \textcolor{red}{398}$ | sklearn.datasets.load_iris, 2 | | numpy.reshape, 179 | sklearn.decomposition | | numpy.roots, 522 | $.PCA, \frac{179}{}$ | | numpy.row_stack, 45 | sklearn.preprocessing | | numpy.set_printoptions, 9 | .StandardScaler, 58 | | numpy.shape, 41 | sqlalchemy.create_engine, 545 | | numpy.sort, 176 | sqlalchemy.text, 545 | | numpy.sqrt, 500 | sympy.*, 48 | | numpy.where, 396 | sympy.diag, 47 | | numpy.zeros, 46, 171 | sympy.diagonalize, 131 | | | sympy.diff, 192 | | pandas.DataFrame, 543 | sympy.eigenvects, 131 | | pandas.DataFrame.to_csv, 543 | sympy.init_printing, 131 | | pandas.DataFrame.to_dict, 543 | sympy.lambdify, 193 | | pandas.DataFrame.to_sql, 545 | sympy.Matrix, 41 | | pandas.read_csv, 448, 543 | sympy.Matrix.col, 45 | | pandas.read_sql, 545 | sympy.Matrix.cols, 45 | | | sympy.Matrix.columnspace, 70 | | scipy.integrate.quad, 527 | sympy.Matrix.eye, 46 | | scipy.linalg.block_diag, 47 | sympy.Matrix.hstack, 44, 64, 78 | | scipy.linalg.eig, 126 | sympy.Matrix.inv, 62 | | scipy.linalg.eigh, 127, 176 | sympy.Matrix.nullspace, 76 | | scipy.linalg.inv, 62 | sympy.Matrix.ones, 46 | | scipy.linalg.norm, 183, 498 | sympy.Matrix.rank, 115 | | scipy.linalg.null_space, 76 | sympy.Matrix.row, 45 | | scipy.linalg.orth, 71 | sympy.Matrix.rows, 45 | | scipy.linalg.pinv, 64, 101 | sympy.Matrix.rowspace, 74 | | scipy.linalg.svd, 171 | sympy.Matrix.zeros, 46 | | scipy.optimize.newton, 217 | $sympy.prod, \frac{524}{}$ | | scipy.spatial.ConvexHull, 242 | sympy.shape, 41 | | simplices, 242 | sympy.simplify, 192 | 558 PYTHON INDEX $\mathtt{sympy.solve},\, 297,\, 522 \qquad \qquad \mathtt{tuple},\, 495$ $\verb|sympy.symbols|, 192| \\ \verb|zip|, 182|$ # \mathbf{Index} | \approx , 530 | Newton's, 204 | |------------------------------------|---------------------------------| | 1 , 145, 155, 339, 342, 436 | bound, 222 | | | | | angle, 117 | cartesian plane, 494 | | Archimedes | Cauchy-Schwarz inequality, 50, | | angle measure, 518 | 501 | | axiom, 208 | central limit theorem, 266, 317 | | arcsine law, 209 | and Stirling's approximation, | | asymptotically | 477 | | equal, 383 , 532 | chi-squared, 329 | | nonzero, 531 | correlated, 335, 338 | | normal, 383 | circle, 499 | | one, <u>531</u> | unit, 498 | | positive, 531 | coin-tossing, 272 | | zero, 383 , 531 | bias, 272 | | average, 11 | entropy, 276 | | | relative, 278 | | basis, 107 | column space, 70 | | of eigenvectors,
129 | columns, 44 | | of singular vectors, 168 | orthonormal, 54 | | one-hot encoded, 73 | combination, 474 | | orthonormal, 108, 118, 129 | convex, 241 | | standard, 42 , 73 | linear, 68 | | Bayes theorem, 280, 282, 284 | complex | | perceptron, 285 | conjugate, 516 | | binomial, 477 | division, 515, 517 | | coefficient, 475, 478, 480 | hermitian product, 516 | | density, 281 | multiplication, 515, 516 | | theorem, 477, 479 | numbers, 515 | | chi-squared, 210 | plane, 515 | | | | | polar representation, 519 | weakly, 441 | |-------------------------------|----------------------------------| | roots of unity, 519 | soft-class, 434 | | concave function, 198 | standard, 21, 22, 57 | | condition number, 456 | target, 1 | | confidence, 322 | two-class, 247, 434 | | interval, 362 | variance, 21 | | level, 361 | vectors or points, 13 | | contingency table, 380 | decision boundary, 247, 285, 441 | | converges, 533 | degree | | convex | binomial, 477 | | combination, 241 | chi-squared, 329 | | dual, 203, 251, 345, 350 | graph node, 154 | | hull, 241, 440 | sequence, 154 | | set, 241 | derivative, 187 | | convex function, 198, 249 | directional, 218 | | strictly, 199, 249 | downstream, 232, 402 | | strongly, 187, 201, 456 | formula, 189 | | correlation | local, 402 | | coefficient, 22, 58 | logarithm, 198 | | matrix, 22, 58 | maximizers, 195 | | negative, 22, 58 | minimizers, 195 | | positive, 22, 58 | partial, 218 | | cumulant-generating function, | second, 191, 225 | | 214, 291, 342 | convexity, 199 | | and variance, 296 | strict convexity, 199 | | , | upstream, 232, 402 | | dataset, 1 | descent | | attributes, 1 | gradient, 412 | | augmented, 391 | Newton, 410 | | centered, 13 | sequence, 412 | | dimension, 118 | diagonalizable, 130 | | example, 1 | diagonalization | | features, 1 | eigen, 129 | | full-rank, 118 | singular, 170 | | Iris, 1 | dice-rolling | | label, 1 | bias, 349 | | mean, 19 | entropy, 346 | | MNIST, 6 | relative, 349 | | multi-class, 434 | dimension, 107 | | observation, 1 | staircase, 110 | | projected, 25, 103, 179 | direct sum, 104 | | reduced, 26, 84, 103, 179 | distance formula, 497 | | sample, 1 | distribution | | separable, 247 | arcsine, 312 | | strongly, 441 | Bernoulli, 275 | | | | | binomial, 274
chi-squared, 329, 330
exponential, 312
logistic, 306
normal, 313, 315
Poisson, 302
Student, 370
T-, 370
uniform, 304
Z-, 313, 315
dot product, 48, 500 | intersection, 258 null, 260 significant, 323 sure, 260 symmetric, 272 union, 258 experiment, 257 exponential function, 488 matrix, 61 series, 490 | |--|---| | eigenspace, 139 | factorial, 471 | | eigenvalue, 126 | full-rank | | bottom, 137 | dataset, 118 | | clustering, 148 | matrix, 115 | | decomposition, 129 | function | | minimum variance, 137 | beta, 286 | | projected variance, 136 | concave, 198 | | top, 136 | convex, 198, 249 | | transpose, 127 | cumulant-generating, 214, 291, | | eigenvectors, 126 | 342 | | best-aligned vector, 136 | independence, 300 | | is right singular vector, 172 | relative, 349 | | linearly independent, 128 | cumulative distribution, 290, | | orthogonal, 128 | 305 | | entropy, 211, 346 | error, 409, 430 | | absolute, 211, 346 | level, 222 | | cross-, 351 | logistic, 213, 284 | | relative, 215, 348 | logit, 213 | | error | loss, 409, 430 | | information, 350 | mean error, 388 | | mean logistic, 400 , 435 | mean loss, 388 | | mean square, 399, 431 | moment-generating | | Euler, 156, 487, 534 | chi-squared, 331 | | Euler's constant, 486 | independence, 298, 299 | | events, 257 | normal, 315 | | certain, 258 | standard normal, 315 | | complementary, 258 | probability density, 302, 313 | | difference, 258 | probability mass, 290 | | exclusive, 258 | proper, 222 | | exhaustive, 258 | and trainability, 433 | | highly significant, 323 | relu, 311, 393 | | impossible, 258 | central limit theorem, 329 | | independent, 263 | Stirling's approximation, 329 | | sigmoid, 213, 284 | degree, 154 | |-----------------------------------|---| | softmax, 343 | dominating, 154 | | relative, 351 | hidden, 388 | | strictly convex, 199, 249 | in-degree, 154 | | fundamental theorem | input, 388 | | of algebra, 522 | isolated, 154 | | of calculus, 525 | out-degree, 154 | | or carcurus, 525 | output, 388 | | geometric | order, 152 | | series, 493 | path, 155 | | sum, 485 | regular, 155 | | gradient, 219 | simple, 152 | | descent, 410, 412 | size, $\frac{152}{}$ | | accelerated, 467 | sub-, 153 | | convex case, 456 | tree, $\frac{155}{155}$ | | heavy ball, 466 | undirected, 151 | | | vertex, 151 | | I, 457
II, 459 | walk, 155 | | learning rates, 412, 413, 418 | , | | momentum, $\frac{463}{}$ | eulerian, <mark>156</mark>
weighed, <mark>151</mark> | | short step, 413, 457 | 9 ' | | stochastic, 416, 428, 460 | weight matrix, 389 | | with lookahead gradient, 468 | wheel, 153 | | weight, 405, 421 | hyperplane, 85, 244 | | graph, 151 | LR, 444 | | | | | bipartite, 162
complement, 158 | separating, 245, 247, 248 suporting, 246 | | complete, 153 | | | | tangent, 250 | | component, 160
connected, 155 | hypothesis alternate, 365 | | | | | cycle, 153, 155 | null, 365 | | directed, 151 | testing, 365 | | edge, 151, 388 | :ff 54 197 | | incoming, 388 | iff, 54, 127 | | outgoing, 388 | incoming edge, 388 | | eulerian, 157 | information, 212, 345 | | forest, 155 | absolute, 212, 345 | | isomorphism, 160 | cross-, 350 | | laplacian, 163 | relative, 214, 348 | | node | integral, 524 | | input, 154 | additivity, 526 | | output, 154 | scaling, 526 | | nodes, 151, 388 | inverse, 61 | | adjacent, 151 | pseudo-, 63, 90 | | connected, 155 | Iris dataset, 1 | | Jupyter, 4 | permutation, 48 | |---------------------------------|---| | Wt | positive, 27 , 53 | | Kantorovich's inequality, 460 | projection, 98, 100 | | law of large numbers, 266, 279, | pseudo-inverse, 93 | | 316, 358 | rank, 115 | | Legendre polynomial, 192 | approximate, 132 | | level, 247 | rows, 505 | | limit, 533 | scaling, 46 | | line-search, 460 | square, 45 | | linear | symmetric, 53, 506 | | combination, 68 | trace, 53, 505 | | dependence, 75 | transpose, 43, 506 | | independence, 75 | variance, 21, 27, 56 | | system, 62, 134 | weight, 152, 389 | | homogeneous, 76, 503 | maximizer, 194 | | inhomogeneous, 505 | global, 194 | | transformation, 114, 121 | local, 194, 222 | | log-odds, 213 | mean, 11, 19, 291, 302, 334 sample, 309 | | logistic function, 213, 284 | minimizer, 537, 539 | | logit function, 213 | | | loss, 409 | existence, 223
global, 194, 222 | | information, 436 | local, 194, 222 | | mean logistic, 400 , 435 | properness, 223 | | mean square, 399, 431 | residual, 224 | | 1: 1 : 207 | residual, 224 | | machine learning, 387 | network, 235, 389 | | margin of error, 361 | deep, 406 | | mass-spring system, 142 | incoming list, 233, 389 | | matrix, 42 | neural, 389 | | addition, 46 | incoming signal, 390 | | adjacency, 152
augmented, 72 | layered, 406 | | centered, 436 | training, 421 | | circulant, 147 | neuron, 235, 389 | | eigenvalues, 147 | outgoing signal, 233, 389 | | columns, 506 | perceptron, 390 | | correlation, 22, 58 | shallow, 405 | | diagonal, 45 | dense, $\frac{406}{}$ | | identity, 62 | trainability, 431 | | incidence, 163 | training | | inverse, 61, 512 | batch sample, 425 | | network adjacency, 394 | epoch, 388, 425 | | network weight, 394 | iteration, 388, 425 | | nonnegative, 27, 53 | minibatch sample, 427 | | orthogonal, 116 | single sample, $\frac{1}{422}$ | | ♥ , | · , | | stochastic sample, 427 | matrix-matrix, 51, 508 | |------------------------------------|------------------------------| | Newton's method, 410 | linearity, 509 | | norm, 55, 497 | matrix-vector, 51, 507 | | nullspace, 76 | linearity, 507 | | 1 , | tensor, 55, 509 | | 1 , 145, 155, 339, 342, 436 | linearity, 509 | | one-hot encoding, 73, 341, 351, | projection, 98 | | 434 | matrix, 100 | | orthogonal, 50 | onto column space, 101 | | complement, 79 , 104 | onto nullspace, 105 | | orthonormal, 50 | onto row space, 102 | | outcome, 257 | propagation | | outgoing edge, 388 | back, 228, 229 | | 1 1 | chain, 229 | | parabola | network, 237 | | lower tangent, 200 | neural network, 404 | | upper tangent, 200 | forward, 227, 229 | | Pascal's triangle, 480 | chain, 229 | | perceptron, 285, 390 | network, 236 | | Bayes theorem, 391 | neural network, 398 | | parallel, 405 | proper function, 222 | | permutation, 473 | minimizer, 223 | | perp, 79, 503 | Pythagoras theorem, 502 | | point, 41 | Python, 4 | | critical, 194, 222, 415 | i y elion, i | | inflection, 199, 415 | random variables, 287, 288 | | point of best-fit, 19 | arcsine, 312 | | population, 10 | Bernoulli, 275, 288 | | power of a test, 369 | binomial, 300 | | principal axes, 33 | chi-squared, 329 | | principal components, 130, 135, | continuous, 290 | | | correlation, 296 | | probability additivity, 260 | discrete, 290 | | binomial, 272 | expectation, 291 , 302 | | chain rule, 262 | conditional, 312 | | coin-tossing, 273 | exponential, 312 | | conditional, 262 | gaussian, 313 | | monotonicity, 260 | identically distributed, 308 | | multiplication of, 274 | independence, 297 | | one-hot encoded, 434 | logistic, 306 | | strict, 434 | normal, 313 | | sub-additivity, 260 | Poisson, 302 | | product | standard, $\frac{307}{}$ | | dot, 48, 117, 500 | Student, 370 | | linearity, 500 | vector-valued, 333 | | | | | rank, 115 | sequence, 530 | |-------------------------------|----------------------------| | and eigenvalues, 132
 convergent, 533 | | and singular values, 168 | sub-, 537 | | approximate, 132 | subconvergent, 537 | | column, 70 | series | | | | | full-, 115 | alternating, 483 | | nonzero eigenvalues, 132 | exponential, 490 | | row, 74 | Taylor, 195 | | regression | set | | linear, 431, 446, 447 | ball, 252 | | convexity, 432 | boundary, 240, 252 | | neural network, 431 | closed, 252 | | properness, 432 | complement, 252 | | trainability, 433 | convex, 241 | | with bias, 433 | interior, 252 | | without bias, 433 | level, 239 | | logistic, 435 | open, 252 | | convexity, 437 | sublevel, 222, 240 | | neural network, 435 | sigmoid function, 213, 284 | | one-hot encoded, 440 | singular | | properness, 438 | value, 166 | | strict, 440 | decomposition, 168, 170 | | trainability, 440 | of pseudo-inverse, 173 | | regularization, 414 | versus eigenvalue, 168 | | relu function, 311, 393 | vectors, 166 | | central limit theorem, 329 | left, 166 | | Stirling's approximation, 329 | right, 166 | | residual, 89 | versus eigenvectors, 172 | | vanishing, 90 | singular values | | residual minimizer, 90 | transpose, 166 | | and properness, 223 | slope, <u>187</u> | | minimum norm, 92 | softmax function, 343 | | pseudo-inverse, 93 | space | | regression equation, 91 | column, 70 | | row space, 74 | eigen-, 139 | | rows, 44 | feature, 41, 73 | | orthonormal, 54 | null, <mark>76</mark> | | | outcome, 257 | | scalars, 13 | row, 74 | | scaling | sample, $10, 257$ | | factor, 122 | source, 114 | | integral, 526 | sub-, <mark>80</mark> | | matrix, 46 | $target, \frac{114}{}$ | | principle, 37 | vector, 12 | | vector, 42, 496 | span, <mark>69</mark> | | | | | spherical coordinates, 38 | projected, 27, 84, 123, 128 | |-------------------------------|--------------------------------------| | standard | reduced, 27, 84 | | deviation, 293 | sample, 339 | | error, 324 | total, 25 | | statistic, 16 | unbiased, 24 | | Stirling's approximation, 476 | zero direction, 84 | | central limit theorem, 329 | vector, 12, 41, 494 | | relu function, 329 | addition, 42 , 495 | | sum | best-aligned, $\frac{31}{}$ | | direct, 104 | bias, 406, 430 | | geometric, 485 | cartesian, 494 | | harmonic, 535 | centered, 344 | | of spans, 103 | dimension, 41 | | of vectors, 42 | dot product, 500 | | suspensions, 39 | gradient, 219 | | system | downstream, 402 | | linear | incoming, 390 | | homogeneous, 503 | length, 49, 497 | | inhomogeneous, 505 | magnitude, 49 | | | norm, 49, 497 | | tangent | one-hot encoded, 73, 341, 351, | | line, 188 | 434 | | test | | | chi-squared, 377, 381 | orthogonal, 50, 501 | | goodness of fit, 377 | orthonormal, 50, 77, 501 | | independence, 381 | outgoing, 233, 390 | | $T, \frac{374}{2007}$ | perp, 79 | | $Z, \frac{367}{1200}$ | perpendicular, 501 | | trainability, 431 | polar, 498 | | and properness, 433 | probability, 341 , 377 | | linear regression, 433 | strict, 342, 434 | | logistic regression, 440 | projected, 98, 99, 101, 102 | | one-hot encoded, 440 | $random, \frac{333}{356}$ | | strict, 440 | standard, 334 | | transpose, 43 | reduced, 98 , 99 , 101 , 102 | | triangle inequality, 50 | scaling, 42, 496 | | unit circle, 498 | shadow, 494 | | unit circle, 450 | span, 69 | | variance, 20, 21, 56, 84 | subtraction, 497 | | biased, 24 | unit, 49, 498 | | ellipse, 28 | zero, 42, 494 | | explained, 25 | vectorization, 16, 378 | | inverse ellipse, 28 | vectors | | inverse ellipsoid, 139 | scaling | | matrix, 21 | linearity, 496 | | | ,, | weight, 389 gradient, 405, 421 hyperplane, 441 matrix, 152 centered, 436 Omar Hijab obtained his doctorate from the University of California at Berkeley, and is faculty at Temple University in Philadelphia, Pennsylvania.