
Omar Hijab*

Math for Data Science

Copyright ©2022 — 2025 Omar Hijab. All Rights Reserved.
Compiled 2025-01-03 15:54:08+03:00

Code boxes: 306

Exercises: 378
Figures: 178

Math boxes: 282

Pages: 583
Tables: 17

Preface

This text is a presentation of the mathematics underlying Data Science. The
text assumes the math background typical of an Electrical Engineering un-
dergraduate. In particular, we assume the reader has some prior calculus
exposure.

By contrast, because we outsource computations to Python, and focus
on conceptual understanding, Chapter 2, Linear Geometry, is developed in
depth.

Depending on the emphasis and supplementary material, the text is ap-
propriate for a course in the following programs

• Applied Mathematics,
• Business Analytics,
• Computer Science,
• Data Science,
• Engineering.

The level and pace of the text varies from gentle, at the start, to advanced,
at the end. Depending on the depth of coverage, the text is appropriate for
a one-semester course, or a two-semester course.

Chapters 1-3, together with some of the appendices, form the basis for
a leisurely one-semester course, and Chapters 4-7 form the basis for an ad-
vanced one-semester course.

The chapter ordering is chosen to allow for the two semesters being taught
simultaneously. The text was written while being repeatedly taught as a two-
semester course with the two semesters taught simultaneously.

The culmination of the text is Chapter 7, Machine Learning. Much of
the mathematics developed in prior chapters is used here. While only an
introduction to the subject, the material in Chapter 7 is carefully built up
from first principles.

As a consequence, the presentation and some results are new: The proofs
of heavy ball convergence and Nesterov convergence for accelerated gradient
descent are simplifications of the proofs in [37], and the connection between

vii

viii

hyperplane separability of a multi-class dataset and the existence of LR hy-
perplanes, while fundamental, is apparently not present in the literature.

Important principles or results are displayed in these boxes.

The ideas presented in the text are made concrete by interpreting them
in Python code. The standard Python data science packages are used, and
a Python index lists the functions used in the text. Because Python is used
to highlight concepts, the supporting code snippets are, as pedagogical tools,
sometimes longer than necessary.

Python code is displayed in these boxes.

Because SQL is usually part of a data scientist’s toolkit, an introduction
to using SQL, from within Python, is included in an appendix. Also, in case
the instructor wishes to de-emphasize it, integration is presented separately
in an appendix. Other appendices cover combinations and permutations, the
binomial theorem, the exponential function, complex numbers, asymptotics,
and minimizers, to be used according to the instructor’s emphasis and pref-
erences.

The bibiliography at the end is a listing of the references accessed while
writing the text. Throughout, we use iff to mean if and only if, and we use
≈ for asymptotic equality (§A.7).

To help navigate the text, in each section, to indicate a break, a new idea,
or a change in direction, we use a ship’s wheel .

Sections and figures are numbered sequentially within each chapter, and
equations and exercises are numbered sequentially within each section, so
§3.4 is the fourth section in the third chapter, Figure 4.14 is the fourteenth
figure in the fourth chapter, (3.2.1) is the first equation in the second section
of the third chapter, and Exercise 1.2.3 is the third exercise in the second
section of the first chapter. Also, [1] cites the first entry in the references.

I would like to express my sincere gratitude for the support of E. L. Grin-
berg, my friend and colleague, throughout this project. This endeavor began
at Rawa, and we are truly thankful for the generous hospitality they provided
during that time.

Omar Hijab
Spring 2025

Contents

Preface . vii

1 Datasets . 1
1.1 Introduction . 1
1.2 The MNIST Dataset . 5
1.3 Averages and Vector Spaces . 10
1.4 Mean and Variance . 18
1.5 High Dimensions . 35

2 Linear Geometry . 41
2.1 Vectors and Matrices . 41
2.2 Products . 48
2.3 Matrix Inverse . 61
2.4 Span and Linear Independence . 68
2.5 Zero Variance Directions . 84
2.6 Pseudo-Inverse . 88
2.7 Projections . 97
2.8 Basis . 107
2.9 Rank . 114

3 Principal Components . 121
3.1 Geometry of Matrices . 121
3.2 Eigenvalue Decomposition . 125
3.3 Graphs . 151
3.4 Singular Value Decomposition . 166
3.5 Principal Component Analysis . 174
3.6 Cluster Analysis . 183

4 Calculus . 187
4.1 Single-Variable Calculus . 187
4.2 Entropy and Information . 211
4.3 Multi-Variable Calculus . 218
4.4 Back Propagation . 226
4.5 Convex Functions . 239

ix

x Contents

5 Probability . 257
5.1 Probability . 257
5.2 Binomial Probability . 272
5.3 Random Variables . 287
5.4 Normal Distribution . 313
5.5 Chi-squared Distribution . 329
5.6 Multinomial Probability . 341

6 Statistics . 355
6.1 Estimation . 355
6.2 Z-test . 360
6.3 T -test . 370
6.4 Chi-Squared Tests . 376

7 Machine Learning . 387
7.1 Overview . 387
7.2 Neural Networks . 388
7.3 Gradient Descent . 408
7.4 Network Training . 421
7.5 Linear Regression . 429
7.6 Logistic Regression . 434
7.7 Regression Examples . 445
7.8 Strong Convexity . 456
7.9 Accelerated Gradient Descent . 463

Appendices . 471
A.1 Permutations and Combinations . 471
A.2 The Binomial Theorem . 477
A.3 The Exponential Function . 484
A.4 Two Dimensions . 494
A.5 Complex Numbers . 514
A.6 Integration . 524
A.7 Asymptotics and Convergence . 530
A.8 Existence of Minimizers . 536
A.9 SQL . 540

References . 553

Python Index . 555

Index . 559

List of Figures

1.1 Iris dataset [28]. 2
1.2 Images in the MNIST dataset. 3
1.3 A portion of the MNIST dataset. 5
1.4 Original and projections: n = 784, 600, 350, 150, 50, 10, 1. 6
1.5 The MNIST dataset (3d projection). 7
1.6 A crude copy of the image. 8
1.7 HTML colors. 11
1.8 The vector v joining the points µ and x. 12
1.9 Datasets of points versus datasets of vectors. 13
1.10 A dataset with its mean. 15
1.11 Vectorization of samples. 17
1.12 MSD for the mean (green) versus MSD for a random point

(red). 19
1.13 Projecting a vector b onto the line through u. 26
1.14 Unit variance ellipses (blue) and unit inverse variance ellipses

(red) with µ = 0. 28
1.15 Variance ellipses (blue) and inverse variance ellipses (red) for

a dataset. 30
1.16 Unit variance ellipse and unit inverse variance ellipse with

standard Q. 31
1.17 Positively and negatively correlated datasets (unit inverse

ellipses). 32
1.18 Ellipsoid and axes in 3d. 34
1.19 Disks inside the square. 36
1.20 Balls inside the cube. 36
1.21 Suspensions of interval [a, b] and disk D. 40

2.1 Numpy column space array. 71
2.2 The points 0, x, Ax, and b. 89
2.3 The points x, Ax, the points x∗, Ax∗, and the point x+. 89
2.4 Projecting onto a line. 98

xi

xii List of Figures

2.5 Projecting onto a plane, Pb = ru+ sv. 99
2.6 Dataset, reduced dataset, and projected dataset, n < d. 103
2.7 Relations between vector classes. 108
2.8 First defect for MNIST. 110
2.9 The dimension staircase with defects. 111
2.10 The dimension staircase for the MNIST dataset. 111
2.11 A 5× 3 matrix A is a linear transformation from R3 to R5. . . 114

3.1 Image of unit circle. 123
3.2 SVD decomposition A = USV . 124
3.3 Relations between matrix classes. 125
3.4 Inverse variance ellipse and centered dataset. 135
3.5 S = span(v1) and T = S⊥. 138
3.6 Three springs at rest and perturbed. 142
3.7 Six springs at rest and perturbed. 143
3.8 Two springs along a circle leading to Q(2). 144
3.9 Five springs along a circle leading to Q(5). 144
3.10 Plot of eigenvalues of Q(50). 147
3.11 Density of eigenvalues of Q(d) for d large. 148
3.12 Trace of pseudo-inverse (§2.3) of Q(d). 150
3.13 Directed and undirected graphs. 151
3.14 A weighed directed graph. 151
3.15 A double edge and a loop. 152
3.16 The complete graph K6, the cycle graph C6, and the wheel

graph W6. 153
3.17 The triangle K3 = C3. 153
3.18 An eighteenth-century map of Königsberg showing the seven

bridges. 156
3.19 An Eulerian graph. 157
3.20 Non-isomorphic graphs with degree sequence (3, 2, 2, 1, 1, 1). . . 161
3.21 Complete bipartite graph K5,3. 162
3.22 A graph. 165
3.23 MNIST eigenvalues as a percentage of the total variance. 176
3.24 MNIST eigenvalue percentage plot. 177
3.25 Original and projections: n = 784, 600, 350, 150, 50, 10, 1. 180
3.26 The full MNIST dataset (2d projection). 181
3.27 The Iris dataset (2d projection). 182

4.1 f ′(a) is the slope of the tangent line at a. 188
4.2 Composition of two functions. 190
4.3 Increasing or decreasing? . 193
4.4 Increasing or decreasing? . 194
4.5 The logarithm function log x. 197
4.6 Tangent parabolas pm(x) (green), pL(x) (red), L > m > 0. 200
4.7 The sine function. 206

List of Figures xiii

4.8 The sine function with π/2 tick marks. 207
4.9 Angle θ in the plane, P = (x, y). 207
4.10 The absolute entropy function H(p). 211
4.11 The absolute information I(p). 213
4.12 The relative information I(p, q) with q = .7. 215
4.13 Surface plot of I(p, q) over the square 0 ≤ p ≤ 1, 0 ≤ q ≤ 1. . . . 216
4.14 Composition of multiple functions. 221
4.15 Composition of three functions in a chain. 227
4.16 A network composition [33]. 230
4.17 The function g = max(y, z). 231
4.18 Forward and backward propagation [33]. 232
4.19 Graph, directed graph, weighed directed graph, network. 235
4.20 A network with outgoing signals. 238
4.21 Another network. 239
4.22 Level sets and sublevel sets in two dimensions. 239
4.23 Level curves in two dimensions. 240
4.24 Line segment [x0, x1]. 241
4.25 Convex hull of x1, x2, x3, x4, x5, x6, x7. 242
4.26 A convex hull with one facet highlighted. 243
4.27 A convex set has a unique nearest point to any x0. 244
4.28 Hyperplanes in two and three dimensions. 245
4.29 Separating hyperplane I. 246
4.30 Ellipsoids in three dimensions with supporting hyperplanes. . . . 247
4.31 Separating hyperplane II. 248
4.32 y = 1/x is a convex function. 253

5.1 Uniform probability density function. 261
5.2 Joint distribution of boys and girls [30]. 264
5.3 100,000 sessions, with 5, 15, 50, and 500 tosses per session. . . . 265
5.4 The histogram of Iris petal lengths. 267
5.5 Iris petal lengths sampled 100,000 times. 268
5.6 Iris petal lengths batch means sampled 100,000 times, batch

sizes 3, 5, 20. 269
5.7 Asymptotics of binomial coefficients. 277
5.8 The posterior density of p given 7 heads in 10 tosses. 281
5.9 The logistic function takes real numbers to probabilities. 283
5.10 The logistic function. 283
5.11 Decision boundary in R. 285
5.12 Decision boundary in R3. 286
5.13 When we sample X, we get x. 287
5.14 Probability mass function p(x) of a Bernoulli random variable. 294
5.15 Cumulative distribution function F (x) of a Bernoulli random

variable. 294
5.16 Confidence that X lies in interval [a, b]. 303
5.17 Continuous cumulative distribution function. 306

xiv List of Figures

5.18 Densities versus distributions. 306
5.19 When we sample X1, X2, . . . , Xn, we get x1, x2, . . . , xn. 309
5.20 The pdf of the standard normal distribution. 313
5.21 The binomial cdf and its CLT normal approximation. 318
5.22 z = Z.ppf(p) and p = Z.cdf(z). 320
5.23 Confidence (green) or significance (red) (lower-tail, two-tail,

upper-tail). 320
5.24 Cutoffs, confidence levels, p-values. 321
5.25 68%, 95%, 99% confidence cutoffs for standard normal. 322
5.26 p-values at 5% and at 1%. 322
5.27 68%, 95%, 99% cutoffs for non-standard normal. 323
5.28 (X,Y) inside the square and inside the disk. 329
5.29 Chi-squared distribution with different degrees. 331
5.30 With degree d ≥ 2, the chi-squared density peaks at d− 2. 333
5.31 Normal probability density on R2. 336
5.32 The softmax function takes vectors to probability vectors. . . . 343
5.33 The third row is the sum of the first and second rows, and

the H column is the negative of the I column. 352

6.1 Statistics flowchart: p-value p and significance α. 356
6.2 Histogram of sampling n = 25 students, repeated N = 1000

times. 360
6.3 The error matrix. 368
6.4 Student distribution, against normal (dashed). 371
6.5 2× 3 = d×N contingency table [30]. 380
6.6 Earthquake counts. 385
6.7 Sunset and rain counts. 386
6.8 Phone and accident counts. 386

7.1 A perceptron: weights, incoming signals, and outgoing signals. 390
7.2 A perceptron with bias: weights and outgoing signals. 391
7.3 Perceptrons in parallel (R in the figure is the retina) [22]. 392
7.4 Neural network: weights. 393
7.5 Neural network: incoming signals. 394
7.6 Neural network: outgoing signals. 394
7.7 Incoming and Outgoing signals. 396
7.8 Downstream, local, and upstream derivatives at node i. 402
7.9 Neural network: downstream derivatives. 403
7.10 A shallow dense layer with a bias input. 406
7.11 Layered neural network [11]. 407
7.12 Neural network with biases . 407
7.13 A network with six neurons, two outputs, and one input. 408
7.14 Downstream, local, and upstream derivatives at termination. . . 408
7.15 Double well newton descent. 411
7.16 Double well function and sublevel sets at w0 and at w1. 414

List of Figures xv

7.17 Double well gradient descent. 416
7.18 Neural network: weight gradients. 421
7.19 Loss decay as learning rate varies: single sample training. 423
7.20 Loss decay as learning rate varies: batch sample training. 426
7.21 Linear regression neural network with bias. 431
7.22 Logistic regression neural network with bias. 435
7.23 Longley Economic Data [20]. 446
7.24 Population versus employed: linear regression. 446
7.25 Polynomial regression: Degrees 2, 4, 6, 8, 10, 12. 449
7.26 Hours studied and outcomes. 451
7.27 Exam dataset: x. 451
7.28 Exam dataset: (x, p) [35]. 452
7.29 Exam dataset: (x, x0). 453
7.30 Hours studied and one-hot encoded outcomes. 453
7.31 Neural network for student exam outcomes. 454
7.32 Equivalent neural network for student exam outcomes. 454
7.33 Exam dataset: (x, x0, p). 454
7.34 Convex hulls of Iris classes in R2. 455
7.35 Convex hulls of MNIST classes in R2. 456

A.1 6 = 3! arrangements of 3 balls. 472
A.2 Pascal’s triangle. 480
A.3 The exponential function expx. 488
A.4 Convexity of the exponential function. 492
A.5 A vector v. 494
A.6 Vectors v1 and v2 and their shadows in the plane. 494
A.7 Adding v1 and v2 . 495
A.8 Scaling with t = 2 and t = −2/3 . 496
A.9 The polar representation of v = (x, y). 497
A.10 v and its antipode −v. 498
A.11 Two vectors v1 and v2. 499
A.12 Pythagoras for general triangles. 501
A.13 Proof of Pythagoras for general triangles. 502
A.14 P and P⊥ and v and v⊥. 503
A.15 Multiplying and dividing points on the unit circle. 515
A.16 Complex numbers . 517
A.17 The second, third, and fourth roots of unity 520
A.18 The fifth, sixth, and fifteenth roots of unity 521
A.19 Complex conjugate roots ρ±. 523
A.20 Areas under the graph. 525
A.21 Area under the parabola. 527
A.22 The graph and area under sinx. 528
A.23 Integral of sinx/x. 528
A.24 Dataframe from list-of-dicts. 543
A.25 Menu dataframe and SQL table. 544

xvi List of Figures

A.26 Rawa restaurant. 546
A.27 OrdersIn dataframe and SQL table. 547
A.28 OrdersOut dataframe and SQL table. 548

Chapter 1

Datasets

In this chapter we explore examples of datasets and some simple Python
code. We introduce the mean and variance of a dataset, then present a first
taste of what higher dimensions might look like.

1.1 Introduction

Geometrically, a dataset is a sample of N points x1, x2, . . . , xN in d-
dimensional space Rd. When manipulating datasets as vectors, they are usu-
ally arranged into d×N arrays. When displaying datasets, as in spreadsheets
or SQL tables, they are usually arranged into N × d arrays.

Practically speaking, as we shall see, the following are all representations
of datasets

matrix = CSV file = spreadsheet = SQL table = array = dataframe

Each point x = (t1, t2, . . . , td) in the dataset is a sample, an example, or
an observation. The components t1, t2, . . . , td of a sample point x are its
features or attributes.

Often one or several of the features are separated out as the label or target.
In this case, the dataset is a labeled or targeted dataset.

The Iris dataset contains N = 150 examples of d = 4 features of Iris
flowers, and there are three classes of Irises, Setosa, Versicolor, and Virginica,
with 50 samples from each class. For each example, the class is the label
corresponding to that example, so the Iris dataset is labeled.

The four features are sepal length and width, and petal length and width.
In Figure 1.1, the dataset is displayed as an N × d array.

1

2 CHAPTER 1. DATASETS

Fig. 1.1 Iris dataset [28].

The Iris dataset is loaded using the code

from sklearn import datasets

iris = datasets.load_iris()

iris["feature_names"]

This returns

['sepal length','sepal width','petal length','petal width'].

To return the data and the classes, the code is

dataset = iris["data"]

labels = iris["target"]

dataset, labels

The above code returns dataset as an N × d array. To return a d × N
array, take the transpose dataset = iris["data"].T.

The MNIST dataset consists of images of hand-written digits (Figure 1.2).
There are 10 classes of images, corresponding to each digit 0, 1, . . . , 9. We

1.1. INTRODUCTION 3

seek to compress the images while preserving as much as possible of the
images’ characteristics.

Each image is a grayscale 28x28 pixel image. Since 282 = 784, each image
is a point in d = 784 dimensions. Here there are N = 60000 samples and
d = 784 features.

Fig. 1.2 Images in the MNIST dataset.

This subsection is included just to give a flavor. All unfamiliar words are
explained in detail in Chapter 2. If preferred, just skip to the next subsection.

Suppose we have a dataset of N points

x1, x2, . . . , xN

in d-dimensional sample space. We seek to find a lower-dimensional space U ⊂
Rd so that the projections of these points onto U retain as much information
as possible about the data.

In other words, we are looking for an n-dimensional subspace U for some
n < d. Among all n-dimensional subspaces, which one should we pick? The
answer is to select the subspace U among all n-dimensional subspaces that
retains as much information about the dataset as possible.

Another issue is the choice of n, which is an integer satisfying 0 ≤ n ≤ d.
On the one hand, we want n to be as small as possible, to maximize data
compression. On the other hand, we want n to be big enough to capture most
of the features of the data. At one extreme, if we pick n = d, then we have
no compression and complete information. At the other extreme, if we pick
n = 0, then we have full compression and no information.

Projecting the data fromRd to a lower-dimensional space U is dimensional
reduction. The best alignment, the best fit, or the best choice of U is principal
component analysis. These issues will be taken up in §3.5.

If this is your first exposure to data science, there will be a learning curve,
because here there are three kinds of thinking: Data science (datasets, PCA,
descent, networks), math (linear algebra, probability, statistics, calculus), and
Python (numpy, pandas, scipy, sympy, matplotlib). It may help to read the

4 CHAPTER 1. DATASETS

code examples , and the important math principles first, then dive

into details as needed.
To illustrate and make concrete concepts as they are introduced, we use

Python code throughout. We run Python code in a jupyter notebook.
jupyter is an IDE, an integrated development environment. jupyter

supports many languages, including Python, Sage, Julia, and R. A useful
jupyter feature is the ability to measure the amount of execution time of a
jupyter cell by including at the start of the cell

%%time

It’s simplest to first install Python, then jupyter. To minimize overhead,
it’s best to install Python using a package built for your laptop’s OS, and
avoid extra packages or frameworks. If Python is installed from

https://www.python.org/downloads/,

then the Python package installer pip is also installed.
From within a shell,1 check the latest version of pip is installed using the

command

pip --version,

The versions of Python and pip used in this edition of the text are 3.12.*

and 24.*. The first step is to ensure updated versions of Python and pip are
installed on your laptop.

After this, from within a shell, use pip to install your first package:

pip install jupyter

After installing jupyter, all other packages are installed from within
jupyter. For this text, from within a jupyter cell, we ran

pip install numpy

pip install sympy

pip install scipy

pip install scikit-learn

pip install pandas

pip install matplotlib

pip install ipympl

pip install sqlalchemy

pip install pymysql

After installing these packages, restart jupyter to activate the packages.
The above is a complete listing of the packages used in this text.

Because one often has to repeatedly install different versions of Python,
it’s best to isolate your installations from whatever Python your laptop’s

1 Powershell in Windows or Terminal in macOS.

https://www.python.org/downloads/

1.2. THE MNIST DATASET 5

OS uses. This is achieved by carrying out the above steps within a venv, a
virtual environment. Then several venvs may be set up side-by-side, and, at
any time, any venv may be deleted without impacting any others, or the OS.

Exercises

Exercise 1.1.1 What is dataset.shape and labels.shape?

Exercise 1.1.2 What does sum(dataset[0]) return and why?

Exercise 1.1.3 What does sum(dataset) return and why?

Exercise 1.1.4 Let a be a list. What does list(enumerate(a)) return?
What does the code below return?

def uniq(a):

return [x for i, x in enumerate(a) if x not in a[:i]]

1.2 The MNIST Dataset

Fig. 1.3 A portion of the MNIST dataset.

6 CHAPTER 1. DATASETS

The MNIST2 dataset consists of 60,000 training images. Since this dataset is
for demonstration purposes, these images are coarse.

Each image consists of 28 × 28 = 784 pixels, and each pixel shading is a
byte, an integer between 0 and 255 inclusive. Therefore each image is a point
x in Rd = R784. Attached to each image is its label, a digit 0, 1, . . . , 9.

We assume the dataset is loaded onto your laptop as a CSV file mnist.csv,
with each row in the file consisting of the pixels for a single image, together
with the image label: Each row starts with the image’s label, followed by 784
bytes. The code

from pandas import *

from numpy import *

mnist = read_csv("mnist.csv").to_numpy()

separate rows into data and labels

first column is the labels

labels = mnist[:,0]

all other columns are the pixels

dataset = mnist[:,1:]

mnist.shape, dataset.shape, labels.shape

returns

(60000, 785), (60000, 784), (60000,)

Here the dataset is arranged into an N × d array.

Fig. 1.4 Original and projections: n = 784, 600, 350, 150, 50, 10, 1.

2 The National Institute of Standards and Technology (NIST) is a physical sciences labo-

ratory and non-regulatory agency of the United States Department of Commerce.

1.2. THE MNIST DATASET 7

To compress the image means to reduce the number of dimensions in the
point x while keeping maximum information. We can think of a single image
as a dataset itself, and compress the image, or we can design a compression
algorithm based on a collection of images. It is then reasonable to expect that
the procedure applies well to any image that is similar to the images in the
collection.

For the second image in Figure 1.2, reducing dimension from d = 784 to
n equal 600, 350, 150, 50, 10, and 1, we have the images in Figure 1.4.

Compressing each image to a point in n = 3 dimensions and plotting all
N = 60000 points yields Figure 1.5. All this is discussed in §3.5.

Fig. 1.5 The MNIST dataset (3d projection).

Here is an exercise. The top left image in Figure 1.4 is given by a 784-
dimensional point which is imported as an array pixels.

pixels = dataset[1].reshape((28,28))

Then pixels is an array of shape (28,28).

1. In Jupyter, return a two-dimensional plot of the point (2, 3) at size 50
using the code

8 CHAPTER 1. DATASETS

from matplotlib.pyplot import *

grid()

scatter(2,3,s = 50)

show()

2. Do for loops over i and j in range(28) and use scatter to plot points
at location (i,j) with size given by pixels[i,j], then show.

Fig. 1.6 A crude copy of the image.

Here is one possible code, returning Figure 1.6.

from matplotlib.pyplot import *

from numpy import *

pixels = dataset[1].reshape((28,28))

for i in range(28):

for j in range(28):

scatter(i,j, s = pixels[i,j])

grid()

show()

The top left image in Figure 1.4 is returned by the code

1.2. THE MNIST DATASET 9

from matplotlib.pyplot import *

imshow(pixels, cmap = "gray_r")

In recent versions of numpy, floats are displayed as follows

np.float64(5.843333333333335)

To display floats without their type, as follows,

5.843333333333335

insert this code

from numpy import *

set_printoptions(legacy = "1.25")

at the top of your jupyter notebook or in your jupyter configuration file

We end the section by discussing the Python import command. The code
snippet above can be rewritten

import matplotlib.pyplot as plt

plt.imshow(pixels, cmap = "gray_r")

or as

from matplotlib.pyplot import imshow

imshow(pixels, cmap = "gray_r")

So we have three versions of this code snippet.
In the second version, it is explicit that imshow is imported from the mod-

ule pyplot of the package matplotlib. Moreoever, the module matplotlib.pyplot
is referenced by a short nickname plt.

In the first version import from *, many commands, maybe not all, are
imported from the module matplotlib.pyplot.

10 CHAPTER 1. DATASETS

In the third version, only the command imshow is imported. Which import
style is used depends on the situation.

In this text, we usually use the first style, as it is visually lightest. To help
with online searches, in the Python index, Python commands are listed under
their full package path.

Exercises

Exercise 1.2.1 Run the code in this section on your laptop (all code is run
within jupyter).

Exercise 1.2.2 The first image in the MNIST dataset is an image of the
digit 5. What is the 43,120th image?

Exercise 1.2.3 Figure 1.6 is not oriented the same way as the top-left image
in Figure 1.4. Modify the code returning Figure 1.6 to match the top-left
image in Figure 1.4.

1.3 Averages and Vector Spaces

Suppose we have a population of things (people, tables, numbers, vectors,
images, etc.) and we have a sample of size N from this population:

L = [x_1,x_2,...,x_N].

The total population is the population or the sample space. For example, the
sample space consists of all real numbers and we take N = 5 samples from
this population

L_1 = [3.95, 3.20, 3.10, 5.55, 6.93].

Or, the sample space consists of all integers and we take N = 5 samples from
this population

L_2 = [35, -32, -8, 45, -8].

Or, the sample space consists of all rational numbers and we take N = 5
samples from this population

L_3 = [13/31, 8/9, 7/8, 41/22, 32/27].

1.3. AVERAGES AND VECTOR SPACES 11

Or, the sample space consists of all Python strings and we takeN = 5 samples
from this population

L_4 = ['a2e?','#%T','7y5,','kkk>><</','[[)*+']

Or, the sample space consists of all HTML colors and we take N = 5 samples
from this population

Fig. 1.7 HTML colors.

Here’s the code generating the colors

HTML color codes are #rrggbb (6 hexes)

from matplotlib.pyplot import *

from random import choice

def hexcolor():

chars = '0123456789abcdef'
return "#" + ''.join([choice(chars) for _ in range(6)])

for i in range(5): scatter(i,0, c = hexcolor())

show()

Let L be a list as above. The goal is to compute the sample average or
mean of the list, which is

µ =
x1 + x2 + · · ·+ xN

N
. (1.3.1)

In the first example, for real numbers, the average is

3.95 + 3.20 + 3.10 + 5.55 + 6.93

5
= 4.546.

In the second case, for integers, the average is 32/5. In the third case, the
average is 385373/73656. In the fourth case, while we can add strings, we
can’t divide them by 5, so the average is undefined. Similarly for colors: the
average is undefined.

12 CHAPTER 1. DATASETS

This leads to an important definition. A sample space or population V is
called a vector space if, roughly speaking, one can compute means or averages
in V . In this case, we call the members of the population “vectors”, even
though the members may be anything, as long as they satisfy the basic rules
of a vector space.

In a vector space V , the rules are:

1. vectors v, w can be added, yielding sum v + w,
2. vector addition is commutative, v + w = w + v,
3. vector addition is associative, u+ (v + w) = (u+ v) + w,
4. there is a zero vector 0,
5. vectors v have negatives −v, v + (−v) = 0,
6. vectors v can be scaled to rv by real numbers r,
7. double-scaling is the same as multiplying scalars, r(sv) = (rs)v,
8. scaling is distributive over addition both ways,

(r + s)v = rv + sv, r(u+ v) = ru+ rv,

9. scaling v by 1 and 0 returns the vector v and the zero vector, 1v = v and
0v = 0.

Let x1, x2, . . . , xN be a dataset. Is the dataset a collection of points, or
is the dataset a collection of vectors? In other words, what geometric picture
of datasets should we have in our heads? Here’s how it works.

A vector is an arrow joining two points (Figure 1.8). Given two points
µ = (a, b) and x = (c, d), the vector joining them is

v = x− µ = (c− a, d− b).

Then µ is the tail of v, and x is the head of v. For example, the vector joining
µ = (1, 2) to x = (3, 4) is v = (2, 2).

µ

v

x

Fig. 1.8 The vector v joining the points µ and x.

Given a point x, we would like to associate to it a vector v in a uniform
manner. However, this cannot be done without a second point, a reference

1.3. AVERAGES AND VECTOR SPACES 13

point. Given a dataset of points x1, x2, . . . , xN , the most convenient choice
for the reference point is the mean µ of the dataset. This results in a dataset
of vectors v1, v2, . . . , vN , where vk = xk − µ, k = 1, 2, . . . , N .

The dataset v1, v2, . . . , vN is centered, its mean is zero,

v1 + v2 + · · ·+ vN
N

= 0.

So datasets can be points x1, x2, . . . , xN with mean µ, or vectors v1, v2, . . . ,
vN with mean zero (Figure 1.9).

Centered Versus Non-Centered

If x1, x2, . . . , xN is a dataset of points with mean µ and

v1 = x1 − µ, v2 = x2 − µ, . . . , vN = xN − µ,

then v1, v2, . . . , vN is a centered dataset of vectors.

x2

x3

x1x4

x5

µ v1

v2

v3

v4

v5

0

Fig. 1.9 Datasets of points versus datasets of vectors.

Let us go back to vector spaces. When we work with vector spaces, numbers
are referred to as scalars, because 2v, 3v, −v, . . . are scaled versions of v.
When we multiply a vector v by a scalar r to get the scaled vector rv, we call
this vector scaling. This is to distinguish this multiplication from the inner
and outer products we see below.

For example, the samples in the list L1 form a vector space, the set of all
real numbers R. Even though one can add integers, the set Z of all integers
does not form a vector space because multiplying an integer by 1/2 does
not result in an integer. The set Q of all rational numbers (fractions) is a
vector space, so L3 is a sampling from a vector space. The set of strings is
not a vector space because even though one can add strings, addition is not
commutative:

14 CHAPTER 1. DATASETS

'alpha' + 'romeo' == 'romeo' + 'alpha'

returns False.

For the scalar dataset

x1 = 1.23, x2 = 4.29, x3 = −3.3, x4 = 555,

the average is

µ =
1.23 + 4.29− 3.3 + 555

4
= 139.305.

In Python, averages are computed using numpy.mean. For a scalar dataset,
the code

from numpy import *

dataset = array([1.23,4.29,-3.3,555])

mu = mean(dataset)

mu

returns the average.
For the two-dimensional dataset

x1 = (1, 2), x2 = (3, 4), x3 = (−2, 11), x4 = (0, 66),

the average is

µ =
(1, 2) + (3, 4) + (−2, 11) + (0, 66)

4
= (0.5, 20.75).

Note the features are summed separately: the x-components are summed, and
the y-components are summed, leading to a two-dimensional mean. (This is
vector addition, taken up in §A.4.)

In Python, a dataset of four points in R2 may be presented as a 2 × 4
array or as a 4× 2 array. As a 2× 4 array, the code is

from numpy import *

dataset = array([[1,3,-2,0],[2,4,11,66]])

mu = mean(dataset, axis = 1)

returning the mean (0.5, 20.75). Here the option axis = 1 indicates we sum
over the column index. This means summing the entries of the first row,

1.3. AVERAGES AND VECTOR SPACES 15

then summing the entries of the second row, resulting in a mean with two
components.

The default is to consider the row index i as index zero, and to consider the
column index j as index one. With this understood, presenting the dataset
as a 4× 2 array, the code is

from numpy import *

dataset = array([[1,2],[3,4],[-2,11],[0,66]])

mu = mean(dataset, axis = 0)

returns the same mean.
To transpose a numpy array is to switch rows with columns, so the transpose

dataset.T of a 2× 4 array dataset is a 4× 2 array.

Fig. 1.10 A dataset with its mean.

Here is a more involved example of a dataset of random points and their
mean:

from numpy import *

from matplotlib.pyplot import scatter, grid, show

from numpy.random import default_rng

samples = default_rng().random

N = 20

2xN array

dataset = samples((2,N))

mu = mean(dataset,axis = 1)

scatter(*mu)

scatter(*dataset)

16 CHAPTER 1. DATASETS

grid()

show()

This returns Figure 1.10.
In this code, scatter(x,y) expects two positional arguments, the x and

the y features, arranged as two scalars, for a single point, or two arrays of x
and y components separately, for several points. Similarly, plot(x,y) expects
the x and y features as two separate arrays.

The unpacking operator * unpacks mu and dataset from one pair each into
their separate x and y features *mu and *dataset. So while mu is one Python
object, a tuple, *mu are two Python objects, two floats. For this to work,
dataset must be 2 × N . When dataset is N × 2, we unpack its transpose
*dataset.T.

default_rng is the default random number generator in numpy. It is used
throughout the text.

The code random(tuple) returns a random array with shape tuple, so
samples((2,N)) above returns a random 2×N array.

Sometimes, a population is not a vector space, so we can’t take sample
means from it. Instead, we take the sample mean of a scalar or vector com-
puted from the samples. This computed quantity is a statistic associated to
the population.

A statistic is an assignment of a scalar or vector f(x) to each sample x
from the population, and the sample mean is then

f(x1) + f(x2) + · · ·+ f(xN)

N
. (1.3.2)

Since scalars and vectors do form vector spaces, this mean is well-defined. For
example, a population of cats is not a vector space (they can’t be added),
but their heights is a vector space (heights can be added). This process is
vectorization of the samples.

Vectorization is frequently used to count proportions: Samples are drawn
from finitely many categories, and we wish to count the proportion of samples
belonging to a particular category.

If we toss a coin N times, we obtain a list of heads and tails,

H,H, T, T, T,H, T, . . .

To count the proportion of heads, we define

f(x) =

{
(1, 0), if x is heads,

(0, 1), if x is tails.

1.3. AVERAGES AND VECTOR SPACES 17

If we add the vectorized samples f(x) using vector addition in the plane
(§A.4), the first component of the mean (1.3.2) is an average of ones and
zeroes, with ones matching heads, resulting in the proportion p̂ of heads.
Similarly, the second component is the proportion of tails. Hence (1.3.2) is
the pair (p̂, 1− p̂), where p̂ is the proportion of heads in N tosses.

More generally, if the label of a sample falls into d categories, we may let
f(x) be a vector with d components consisting of zeros and ones, according
to the category of the sample. This is one-hot encoding (see §2.4 and §7.6).

For example, suppose we take a sampling of size N from the Iris dataset,
and we look at the classes of the resulting samples. Since there are three
classes, in this case, we can define f(x) to equal

(1, 0, 0), (0, 1, 0), (0, 0, 1),

according to which class x belongs to. Then the mean (1.3.2) is a triple
p̂ = (p̂1, p̂2, p̂3) of proportions of each class in the sampling. Of course, p̂1 +
p̂2 + p̂3 = 1, so p̂ is a probability vector (§5.6).

sample space
f

vector space

Fig. 1.11 Vectorization of samples.

When there are only two possibilities, two classes, it’s simpler to encode
the classes as follows,

f(x) =

{
1, if x is heads,

0, if x is tails.

Then the mean (1.3.2) is the proportion p̂ of heads.

Even when the samples are already scalars or vectors, we may still want
to vectorize them. For example, suppose x1, x2, . . . , xN are the prices of a
sample of printers from across the country. Then the average price (1.3.1) is
well-defined. Nevertheless, we may set

18 CHAPTER 1. DATASETS

f(x) =

{
1, if x is greater than $100,
0, if x is ≤ $100.

Then the mean (1.3.2) is the sample proportion p̂ of printers that cost more
then $100.

In §6.4, we use vectorization to derive the chi-squared tests.

Exercises

Exercise 1.3.1 For the dataset = array([[1,3,-2,0],[2,4,11,66]]), the
commands mean(dataset,axis = 1) and mean(dataset,axis = 0) return
means in R2 and in R4. What does mean(dataset) return and why?

Exercise 1.3.2 What is the average petal length in the Iris dataset?

Exercise 1.3.3 What is the average shading of the pixels in the first image
in the MNIST dataset?

Exercise 1.3.4 What’s the difference between plot and scatter in

from numpy import *

from matplotlib.pyplot import scatter, plot

def f(x): return x**2

x = arange(0,1,.2)

plot(x,f(x))

scatter(x,f(x))

1.4 Mean and Variance

Let x1, x2, . . . , xN be a dataset in Rd, and let x be any point in Rd. The
mean-square distance of x to D is

MSD(x) =
1

N

N∑
k=1

|xk − x|2.

Above |x| stands for the length of the vector x, or the distance of the point
x to the origin. When d = 2 and we are in two dimensions, this was defined
in §A.4. For general d, this is defined in §2.1. In this section we continue to
focus on two dimensions d = 2.

1.4. MEAN AND VARIANCE 19

Fig. 1.12 MSD for the mean (green) versus MSD for a random point (red).

The mean or sample mean is

µ =
1

N

N∑
k=1

xk =
x1 + x2 + · · ·+ xN

N
. (1.4.1)

The mean µ is a point in Rd. The first result is

Point of Best-fit

The mean is the point of best-fit: The mean minimizes the mean-
square distance to the dataset (Figure 1.12).

Using (A.4.6),
|a+ b|2 = |a|2 + 2a · b+ |b|2

for vectors a and b, it is easy to derive the above result. Insert a = xk − µ
and b = µ− x, then sum over k = 1, 2, . . . , N , to get

MSD(x) = MSD(µ) +
2

N

N∑
k=1

(xk − µ) · (µ− x) + |µ− x|2.

Now the middle term vanishes

2

N

N∑
k=1

(xk − µ) · (µ− x) =
2

N

((
N∑

k=1

xk

)
−Nµ

)
· (µ− x)

= 2(µ− µ) · (µ− x) = 0,

20 CHAPTER 1. DATASETS

so we have
MSD(x) = MSD(µ) + |x− µ|2.

Since |x − µ|2 ≥ 0, the result follows. This result and its proof remain valid
in any dimension.

Here is the code for Figure 1.12.

from matplotlib.pyplot import *

from numpy import *

from numpy.random import default_rng

samples = default_rng().random

d, N = 2, 20

d x N array

dataset = samples((d,N))

mu = mean(dataset,axis=1)

p = samples((2,))

for v in dataset.T:

points = array([mu,v])

plot(*points.T,c = 'green')
points = array([p,v])

plot(*points.T,c = 'red')

scatter(*mu)

scatter(*dataset)

grid()

show()

The variance of a dataset is defined in any dimension d. When d = 1, the
dataset consists of scalars x1, x2, . . . , xN . If the dataset has mean µ, we can
center the dataset,

v1 = x1 − µ, v2 = x2 − µ, . . . , vN = xN − µ.

Then the variance q is the scalar

q =
v21 + v22 + · · ·+ v2N

N
=

1

N

N∑
k=1

v2k. (1.4.2)

Since the variance is nonnegative, we may take its square root: The square
root of the variance is the standard deviation σ =

√
q.

1.4. MEAN AND VARIANCE 21

If a scalar dataset has mean zero and variance one, it is standard. If the
variance q of scalar dataset is not zero, it may be standardized by centering
and dividing by the standard deviation,

x′
k =

xk − µ

σ
, k = 1, 2, . . . , N. (1.4.3)

The resulting dataset x′
1, x

′
2, . . . , x

′
N is then standard,

µ′ =
1

N

N∑
k=1

x′
k = 0, q′ =

1

N

N∑
k=1

x′
k
2
= 1.

Now suppose the dataset consists of points x1, x2, . . . , xN in Rd. If the
dataset has mean µ, we can center the dataset,

v1 = x1 − µ, v2 = x2 − µ, . . . , vN = xN − µ.

Then the variance is the matrix (see §A.4 for tensor product)

Q =
v1 ⊗ v1 + v2 ⊗ v2 + · · ·+ vN ⊗ vN

N
=

1

N

N∑
k=1

vk ⊗ vk. (1.4.4)

Since v⊗ v is a symmetric matrix, Q is a symmetric matrix. Below we see
Q is also nonnegative, in the sense v ·Qv ≥ 0 for all vectors v.

Let us unpack the variance Q in two dimensions. When d = 2, each sample
xk has two features, so we may write vk = (sk, tk), k = 1, 2, . . . , N . Since

vk ⊗ vk =

(
s2k sktk
sktk t2k

)
,

the variance is

Q =

(
a b
b c

)
, (1.4.5)

where

a =
1

N

N∑
k=1

s2k, b =
1

N

N∑
k=1

sktk, c =
1

N

N∑
k=1

t2k. (1.4.6)

From this, a is the variance of the first feature, c is the variance of the
second feature, and b measures the interaction between the two features. In
particular, both a and c are nonnegative.

22 CHAPTER 1. DATASETS

If a dataset is centered and each feature has variance one, it is standard.
When this happens, the variance has the form

Q′ =

(
1 ρ
ρ 1

)
, (1.4.7)

for some scalar ρ. In Exercise 1.4.12, it shown that Q′ can only be a variance
when |ρ| ≤ 1.

Let Σ be the diagonal matrix consisting of the standard deviations of the
features,

Σ =

(√
a 0
0

√
c

)
.

Then, as in the scalar case, if a > 0 and c > 0, we may set

x′
k = Σ−1vk = Σ−1(xk − µ), k = 1, 2, . . . , N. (1.4.8)

We claim x′
1, x

′
2, . . . , x

′
N is standard.

To see this, the key step is to use a tensor product identity (A.4.24) and
write

x′
k ⊗ x′

k = (Σ−1vk)⊗ (Σ−1vk) = Σ−1(vk ⊗ vk)Σ
−1, k = 1, 2, . . . , N.

Summing over k = 1, 2, . . . , N , we have

Q′ =
1

N

N∑
k=1

x′
k ⊗ x′

k = Σ−1

(
1

N

N∑
k=1

vk ⊗ vk

)
Σ−1 = Σ−1QΣ−1.

Multiplying out these three matrices, we conclude

Q′ =

(
1/
√
a 0

0 1/
√
c

)(
a b
b c

)(
1/
√
a 0

0 1/
√
c

)
=

(
1 ρ
ρ 1

)
,

with

ρ =
b√
ac

. (1.4.9)

This shows x′
1, x

′
2, . . . , x

′
N is standard.

For example,

Q =

(
9 2
2 4

)
=⇒ ρ =

1

3
=⇒ Q′ =

(
1 1/3

1/3 1

)
.

The scalar ρ is the correlation coefficient (“rho”) of the dataset, and the
variance Q′ of the standardized dataset x′

1, x
′
2, . . . , x

′
N is the correlation

matrix of the original dataset x1, x2, . . . , xN .
When ρ > 0, we say the features are positively correlated. When ρ < 0, we

say the features are negatively correlated.

1.4. MEAN AND VARIANCE 23

Summarizing the above,

Variance and Correlation Matrices in Two Dimensions

• If Q in (1.4.5) is the variance of a dataset, then a ≥ 0, c ≥ 0, and
b2 ≤ ac.

• If Q′ in (1.4.7) is the variance of a standard dataset, then |ρ| ≤ 1.
• If Q′ is the correlation matrix of a dataset with variance Q, then

ρ = b/
√
ac.

When the correlation coefficient is ρ = ±1, the dataset lies on a line passing
through the mean. When ρ = 1, the line has slope 1, and when ρ = −1, the
line has slope −1.

Here is a worked example. Suppose N = 5 and

x1 = (1, 2), x2 = (3, 4), x3 = (5, 6), x4 = (7, 8), x5 = (9, 10).
(1.4.10)

Then µ = (5, 6) and

v1 = x1 − µ = (−4,−4), v2 = x2 − µ = (−2,−2), v3 = x3 − µ = (0, 0),

v4 = x4 − µ = (2, 2), v5 = x5 − µ = (4, 4).

Since

(±4,±4)⊗ (±4,±4) =

(
16 16
16 16

)
,

(±2,±2)⊗ (±2,±2) =

(
4 4
4 4

)
,

(0, 0)⊗ (0, 0) =

(
0 0
0 0

)
,

summing and dividing by N leads to the variance

Q =

(
8 8
8 8

)
.

For this dataset,

Σ =

(
2
√
2 0

0 2
√
2

)
,

and

x′
1 = (−

√
2,−

√
2), x′

2 = (−1/
√
2,−1/

√
2), x′

3 = (0, 0),

x′
4 = (1/

√
2, 1/

√
2), x′

5 = (
√
2,
√
2)

24 CHAPTER 1. DATASETS

is the standardized dataset.

Here is code from scratch for the variance of a dataset.

from numpy import *

from numpy.random import default_rng

samples = default_rng().random

def tensor(u,v):

return array([[a*b for b in v] for a in u])

N, d = 20, 2

N x d array

dataset = samples((N,d))

mu = mean(dataset,axis = 0)

center dataset

vectors = dataset - mu

Q = mean([tensor(v,v) for v in vectors],axis = 0)

In numpy, variance is returned by

from numpy import *

from numpy.random import default_rng

samples = default_rng().random

N, d = 20, 2

d x N array

dataset = samples((d,N))

Q = cov(dataset,bias = True)

Q

This returns the same result as the previous code for Q. Here there is no
need to compute the mean, this is taken care of automatically.

The variance matrix in (1.4.4) is the biased variance matrix. If instead the
denominator is N − 1, the matrix is the unbiased variance matrix.

For datasets with large N , it doesn’t matter, since N and N−1 are almost
equal. For simplicity, here we divide by N , and we only consider the biased
variance matrix.

In practice, datasets are standardized before computing their variance. The
variance of standard datasets — the correlation matrix — is the same whether
one starts with bias or not.

1.4. MEAN AND VARIANCE 25

In the numpy code above, the option bias = True indicates division by
N , returning the biased variance. To return the unbiased variance and divide
by N − 1, change the option to bias = False, or remove it, since that is the
default.

In numpy, the correlation matrix Q′ is returned by

from numpy import *

dataset is d x N array

corrcoef(dataset)

Since trace(v ⊗ v) = |v|2, if Q is the variance matrix (1.4.4),

trace(Q) =
1

N

N∑
k=1

|vk|2 =
1

N

N∑
k=1

|xk − µ|2 = MSD(µ). (1.4.11)

We call trace(Q) the total variance or explained variance of the dataset.
In Python,

from numpy import *

dataset is d x N array

Q = cov(dataset,bias = True)

Q.trace()

Let let v1, v2, . . . , vN be a centered dataset in the plane. Let u be a unit
vector (a vector of length one, |u| = 1). We wish to project this dataset onto
the line through u, resulting in a scalar dataset.

According to Figure 1.13, when a vector b is projected onto the line through
u, the length of the projected vector Pb equals |b| cos θ, where θ is the angle
between the vectors b and u. Since |u| = 1, this length equals the dot product
b · u. Since Pb is a multiple of u,

Pb = (b · u)u.

Repeating this with b replaced by each vector v1, v2, . . . , vN , we conclude:
the projected dataset onto the line through u is

26 CHAPTER 1. DATASETS

(v1 · u)u, (v2 · u)u, . . . , (vN · u)u.

These vectors are all multiples of u, as they should be. The projected dataset
is two-dimensional.

u

b

Pb

Fig. 1.13 Projecting a vector b onto the line through u.

Alternately, discarding u and retaining the scalar coefficients, we have the
scalar dataset

v1 · u, v2 · u, . . . , vN · u.

This is the reduced dataset. The reduced dataset is one-dimensional.
Since the vector u is fixed, the reduced dataset and the projected dataset

contain the same information. The formulas for the projected and reduced
datasets are correct only when u is a unit vector. For a non-unit vector u,
replace u by u/|u|.

The reduced dataset is centered, since

v1 · u+ v2 · u+ · · ·+ vN · u
N

=

(
v1 + v2 + · · ·+ vN

N

)
· u = 0 · u = 0,

and the mean of the projected dataset is also 0.
The variance of the reduced dataset

q =
1

N

N∑
k=1

(vk · u)2

is a scalar that is positive or zero. According to (A.4.22), this equals

q =
1

N

N∑
k=1

u · (vk ⊗ vk)u = u ·Qu.

Thus we conclude

1.4. MEAN AND VARIANCE 27

Variance of Reduced Dataset

Let Q be the variance matrix of a dataset and let u be a unit vector.
Then the variance of the dataset reduced onto the line through u
equals u ·Qu.

A matrix Q is positive if it is symmetric and u · Qu > 0 for any nonzero
vector u. A matrix Q is nonnegative if it is symmetric and u ·Qu ≥ 0 for any
vector u.

A matrix Q is a variance matrix if Q is the variance matrix of some dataset.
As a consequence of the above, since q = u ·Qu is the variance of the reduced
dataset, we have

Variance Matrix is Nonnegative

Every variance matrix is nonnegative: u ·Qu is nonnegative for every
vector u.

Later (§3.2), we see every nonnegative matrix is a variance matrix. Here
is code for computing the variance of the projected dataset.

from numpy import *

dataset is d x N array

Q = cov(dataset,bias = True)

project along unit vector u

q = dot(u,dot(Q,u))

Going back to the dataset (1.4.10), xk−µ, k = 1, 2, 3, 4, 5, are all multiples
of (1, 1). If we select u = (1,−1), then (xk − µ) · u = 0, so the variance Q
satisfies u ·Qu = 0. This can also be seen by

Qu = 8((1, 1)⊗ (1, 1))u = 8(1, 1) · u (1, 1) = 0.

This shows that the dataset lies on the line passing through µ and perpen-
dicular to (1,−1).

We describe the variance ellipses associated to a dataset. Let Q be a vari-
ance matrix and µ a point in R2. The contour of all points x satisfying

(x− µ) ·Q(x− µ) = k

28 CHAPTER 1. DATASETS

is the variance ellipse corresponding to level k. When k = 1, the ellipse is the
unit variance ellipse.

The contour of all points x satisfying

(x− µ) ·Q−1(x− µ) = k

is the inverse variance ellipse corresponding to level k. When k = 1, the
ellipse is the unit inverse variance ellipse.

In two dimensions, a variance matrix has the form

Q =

(
a b
b c

)
.

If v = x−µ has features (s, t), the variance ellipse equation centered at µ = 0
is

v ·Qv = as2 + 2bst+ ct2 = k.

The inverse variance ellipse centered at µ = 0 is given by the same equation
with Q replaced by Q−1.

Fig. 1.14 Unit variance ellipses (blue) and unit inverse variance ellipses (red) with µ = 0.

The code for rendering ellipses is

from matplotlib.pyplot import *

from numpy import *

from scipy.linalg import inv

def ellipse(Q,mu,padding = .5,levels = [1],render = "var"):

scatter(*mu,c = "red",s = 5)

a, b, c = Q[0,0],Q[0,1],Q[1,1]

d,e = mu

delta = .01

x = arange(d-padding,d+padding,delta)

y = arange(e-padding,e+padding,delta)

1.4. MEAN AND VARIANCE 29

x, y = meshgrid(x, y)

if render == "var" or render == "both":

matrix_text(Q,mu,padding,'blue')
eq = a*(x-d)**2 + 2*b*(x-d)*(y-e) + c*(y-e)**2

contour(x,y,eq,levels = levels,colors = "blue",linewidths = .5)

if render == "inv" or render == "both":

draw_major_minor_axes(Q,mu)

Q = inv(Q)

matrix_text(Q,mu,padding,'red')
A, B, C = Q[0,0],Q[0,1],Q[1,1]

eq = A*(x-d)**2 + 2*B*(x-d)*(y-e) + C*(y-e)**2

contour(x,y,eq,levels = levels,colors = "red",linewidths = .5)

With this code, ellipse(Q,mu) returns the unit variance ellipse in the unit
square centered at µ. The codes for the functions draw_major_minor_axes
and matrix_text are below.

Depending on whether render is var, inv, or both, the code renders the
variance ellipse (blue), the inverse variance ellipse (red), or both. The code
renders several ellipses, one for each level in the list levels. The default is
levels = [1], so the unit ellipse is returned. Also padding can be adjusted
to enlarge the plot.

The code for Figure 1.14 is

mu = array([0,0])

Q = array([[9,0],[0,4]])

ellipse(Q,mu,padding = 4,render = "both")

grid()

show()

Q = array([[9,2],[2,4]])

ellipse(Q,mu,padding = 4,render = "both")

grid()

show()

To use TEX to display the matrices in Figure 1.14, insert the function

rcParams['text.usetex'] = True

rcParams['text.latex.preamble'] = r'\usepackage{amsmath}'

def matrix_text(Q,mu,padding,color):

a, b, c = Q[0,0],Q[0,1],Q[1,1]

d,e = mu

valign = e + 3*padding/4

if color == 'blue': halign = d - padding/2; tex = "$Q="
else: halign = d; tex = "$Q^{-1}="
r"..." means raw string

30 CHAPTER 1. DATASETS

tex += r"\begin{pmatrix}" + str(round(a,2)) + "&" + str(round(b,2))

tex += r"\\" + str(round(b,2)) + "&" + str(round(c,2))

tex += r"\end{pmatrix}$"
return text(halign,valign,tex,fontsize = 15,color = color)

A minimal TEX installation is included in matplotlib.pyplot. To display
matrices, this is not enough, and access to your laptop’s TEX installation is
needed. The rcParams lines enable this access. If TEX is installed on your
laptop, uncomment matrix_text in ellipse.

Fig. 1.15 Variance ellipses (blue) and inverse variance ellipses (red) for a dataset.

Figure 1.15 shows variance ellipses with levels = [.005,.01,.02], and
inverse variance ellipses with levels = [.5,1,2], corresponding to a ran-
dom dataset. The code for this is

from numpy.random import default_rng

samples = default_rng().random

N = 50

N x d array

dataset = samples((N,2))

Q = cov(dataset.T,bias = True)

mu = mean(dataset,axis = 0)

scatter(*dataset.T,s = 5)

ellipse(Q,mu,render = "var",padding = .5,levels = [.005,.01,.02])

grid()

show()

scatter(*dataset.T,s = 5)

ellipse(Q,mu,render = "inv",padding = .5,levels = [.5,1,2])

grid()

show()

1.4. MEAN AND VARIANCE 31

When Q is diagonal, the lengths of the major and minor axes of the unit
inverse variance ellipse equal 2

√
a and 2

√
c, and the lengths of the major and

minor axes of the unit variance ellipse equal 2/
√
a and 2/

√
c.

When the dataset is standard, the ellipses are particularly simple (Fig-
ure 1.16).

Fig. 1.16 Unit variance ellipse and unit inverse variance ellipse with standard Q.

We say a unit vector u is best-aligned or best-fit with the dataset if u
maximizes the variance v ·Qv over all unit vectors v,

u ·Qu = max
|v|=1

v ·Qv.

We calculate the best-aligned unit vector. When the dataset is standard,
this is particularly straightforward.

The variance of a dataset projected onto a unit vector v = (cos θ, sin θ)
equals

v ·Qv = a cos2 θ + 2b sin θ cos θ + c sin2 θ.

When the dataset is standard, by the double-angle formula,

v ·Qv = cos2 θ + sin2 θ + 2ρ sin θ cos θ = 1 + ρ sin(2θ).

Since the sine function varies between +1 and −1, we conclude the pro-
jected variance varies between

1− ρ ≤ v ·Qv ≤ 1 + ρ,

and

θ =
π

4
, v+ =

(
1√
2
,
1√
2

)
=⇒ v+ ·Qv+ = 1 + ρ,

32 CHAPTER 1. DATASETS

θ =
3π

4
, v− =

(
−1√
2
,
1√
2

)
=⇒ v− ·Qv− = 1− ρ.

Thus the best-aligned vector v+ is at 45◦, and the worst-aligned vector is at
135◦ (Figure 1.16).

Actually, the above is correct only if ρ > 0. When ρ < 0, it’s the other
way. The correct answer is

1− |ρ| ≤ v ·Qv ≤ 1 + |ρ|,

and v± must be switched when ρ < 0. We study best-aligned vectors in Rd

in §3.2.

Fig. 1.17 Positively and negatively correlated datasets (unit inverse ellipses).

Here are two randomly generated datasets. The dataset on the left in
Figure 1.17 is positively correlated. Its mean and variance are

(0.53626891, 0.54147513)

(
0.08016526 0.01359483
0.01359483 0.08589097

)
.

The dataset on the right in Figure 1.17 is negatively correlated. Its the
mean and variance are

(0.46979642, 0.48347168)

(
0.08684941 −0.00972569

−0.00972569 0.09409118

)
.

In general, for non-standard datasets, the projected variance v ·Qv varies
between two extremes λ±,

1.4. MEAN AND VARIANCE 33

λ− ≤ v ·Qv ≤ λ+, |v| = 1.

where λ± are given by

λ± =
a+ c

2
±

√(
a− c

2

)2

+ b2. (1.4.12)

When the dataset is standard, as we saw above, λ± = 1± |ρ|.
The major axis of the inverse variance ellipse v · Q−1v = 1 has length

2
√
λ+, and the minor axis has length 2

√
λ−. These are the principal axes of

the dataset.
When the dataset is not standard, let

v± = (−b, a− λ±), and w± = (λ± − c, b), (1.4.13)

If the inverse variance ellipse is not a circle, then Q is not a multiple of the
identity, and either v+ or w+ is nonzero. If v+ ̸= 0, v+ is the best-aligned
vector. If v+ = 0, w+ is the best-aligned vector.

If the inverse variance ellipse is not a circle, then Q is not a multiple of the
identity, and either v− or w− is nonzero. If v− ̸= 0, v− is the worst-aligned
vector. If v− = 0, w− is the worst-aligned vector.

If Q is a multiple of the identity, then any vector is best-aligned and
worst-aligned. All this follows from solutions of homogeneous 2 × 2 systems
(A.4.10). The general d× d case is in §3.2. For the 2× 2 case discussed here,
see Exercise 3.2.3.

The code for rendering the major and minor axes of the inverse variance
ellipse uses (1.4.12) and (1.4.13),

def draw_major_minor_axes(Q,mu):

a, b, c = Q[0,0],Q[0,1],Q[1,1]

d, e = mu

label = { 1:"major", -1:"minor" }

for pm in [1,-1]:

lamda = (a+c)/2 + pm * sqrt(b**2 + (a-c)**2/4)

sigma = sqrt(lamda)

lenv = sqrt(b**2 +(a-lamda)**2)

lenw = sqrt(b**2 +(c-lamda)**2)

if lenv: deltaX, deltaY = b/lenv, (a-lamda)/lenv

elif lenw: deltaX, deltaY = (lamda-c)/lenw, b/lenw

elif pm == 1: deltaX, deltaY = 1, 0

else: deltaX, deltaY = 0, 1

axesX = [d+sigma*deltaX,d-sigma*deltaX]

axesY = [e-sigma*deltaY,e+sigma*deltaY]

plot(axesX,axesY,linewidth = .5,label = label[pm])

legend()

34 CHAPTER 1. DATASETS

Fig. 1.18 Ellipsoid and axes in 3d.

In three dimensions, when d = 3, the ellipses are replaced by ellipsoids
(Figure 1.18).

Exercises

Exercise 1.4.1 The dataset is

from numpy import *

d = 10

100 x 2 array

dataset = array([array([i+j,j]) for i in range(d) for j in range(d)

↪→])

Compute the mean and variance, and plot the dataset and the mean.

Exercise 1.4.2 Let the dataset be the petal lengths against the petal widths
in the Iris dataset. Compute the mean and variance, and plot the dataset and
the mean.

Exercise 1.4.3 Project the dataset in Exercise 1.4.1 onto the line through
the vector (1, 2). What is the projected dataset? What is the reduced dataset?

Exercise 1.4.4 Project the dataset in Exercise 1.4.2 onto the line through
the vector (1, 2). What is the projected dataset? What is the reduced dataset?

Exercise 1.4.5 Plot the variance ellipse and inverse variance ellipses of the
dataset in Exercise 1.4.1.

Exercise 1.4.6 Plot the variance ellipse and inverse variance ellipses of the
dataset in Exercise 1.4.2.

1.5. HIGH DIMENSIONS 35

Exercise 1.4.7 Plot the dataset in Exercise 1.4.1 together with its mean
and the line through the vector of best fit.

Exercise 1.4.8 Plot the dataset in Exercise 1.4.2 together with its mean
and the line through the vector of best fit.

Exercise 1.4.9 Standardize the dataset in Exercise 1.4.1. Plot the stan-
dardized dataset. What is the correlation matrix?

Exercise 1.4.10 Standardize the dataset in Exercise 1.4.2. Plot the stan-
dardized dataset. What is the correlation matrix?

Exercise 1.4.11 Let Q =

(
a b
b a

)
. Show Q is nonnegative when a ≥ |b|.

(Compute v ·Qv with v = (cos θ, sin θ) as in the text.)

Exercise 1.4.12 With Q as in (1.4.5), let u = (x, 1)/
√
1 + x2. Calculate the

projected variance u·Qu and use it to show the parabola q(x) = ax2+bx+c is
nonnegative. Compute the bottom of q(x) to conclude b2 ≤ ac. In particular,
for Q′ as in (1.4.9), |ρ| ≤ 1.

Exercise 1.4.13 Let ρ be a number satisfying −1 ≤ ρ ≤ 1. Compute the
variance of the centered dataset in R2

x1 = (1, ρ), x2 = −x1, x3 =
(
0,
√

1− ρ2
)
, x4 = −x3.

1.5 High Dimensions

Although not used in later material, this section is here to boost intuition
about high dimensions. Draw four disks inside a square, and a fifth disk in
the center.

In Figure 1.19, the edge-length of the square is 4, and the radius of each
blue disk is 1. Draw the diagonal of the square. Then the diagonal passes
through two blue disks

Since the length of the diagonal of the square is 4
√
2, and the diameters

of the two blue disks add up 4, the portions of the diagonal outside the blue
disks add up to 4

√
2− 4. Hence the radius of the red disk is

1

4
(4
√
2− 4) =

√
2− 1.

In three dimensions, draw eight balls inside a cube, as in Figure 1.20, and
one ball in the center. Since the edge-length of the cube is 4, the radius of
each blue ball is 1. Since the length of the diagonal of the cube is 4

√
3, the

radius of the red ball is

36 CHAPTER 1. DATASETS

1

4
(4
√
3− 4) =

√
3− 1.

.

Fig. 1.19 Disks inside the square.

Fig. 1.20 Balls inside the cube.

Now we repeat in d dimensions. Here the edge-length of the cube remains
4, the radius of each blue ball remains 1, and there are 2d blue balls. Since
the length of the diagonal of the cube is 4

√
d, the same calculation results in

the radius of the red ball equal to r =
√
d− 1.

1.5. HIGH DIMENSIONS 37

In two dimensions, when a region is scaled by a factor t, its area increases
by the factor t2. In three dimensions, when a region is scaled by a factor t,
its volume increases by the factor t3. The general result is

Scaling Principle: Dependence on Dimension

In d dimensions, when a region is scaled by a factor t, its volume scales
by the factor td.

The radius of the red ball is r =
√
d − 1. By the scaling principle, in d

dimensions, the volume of the red ball equals rd times the volume of the blue
ball. We conclude the following:

• Since r =
√
d− 1 = 1 exactly when d = 4, we have: In four dimensions,

the red ball and the blue balls are the same size.
• Since there are 2d blue balls, the ratio of the volume of the red ball over
the total volume of all the blue balls is rd/2d.

• Since rd = 2d exactly when r = 2, and since r =
√
d−1 = 2 exactly when

d = 9, we have: In nine dimensions, the volume of the red ball equals the
sum total of the volumes of all blue balls.

• Since r =
√
d − 1 > 2 exactly when d > 9, we have: In ten or more

dimensions, the red ball sticks out of the cube.
• Since the length of the cube’s diagonal is 4

√
d, for any dimension d, the

radius of the red ball r =
√
d − 1 is less than 1/4 the length of the

diagonal. As the dimension grows without bound, the proportion of the
cube’s diagonal covered by the red ball converges to 1/4.

The following code returns Figure 1.19.

from matplotlib.pyplot import *

from matplotlib.patches import Circle, Rectangle

from numpy import *

from itertools import product

initialize figure

ax = axes()

square = Rectangle((0,0), 4, 4,color = 'lightblue')
ax.add_patch(square)

xcent = ycent = [1,3]

blue disks

38 CHAPTER 1. DATASETS

for center in product(xcent,ycent):

circle = Circle(center, radius = 1, color = 'blue')
ax.add_patch(circle)

red disk

circle = Circle((2, 2), radius = sqrt(2)-1, color = 'red')
ax.add_patch(circle)

ax.set_axis_off()

ax.axis('equal')
show()

The code for Figure 1.20 is as follows.

%matplotlib ipympl

from matplotlib.pyplot import *

from numpy import *

from itertools import product

build sphere mesh

N = 40

theta = linspace(0,2*pi,N)

phi = linspace(0,pi,N)

theta,phi = meshgrid(theta,phi)

spherical coordinates theta, phi

x = cos(theta)*sin(phi)

y = sin(theta)*sin(phi)

z = cos(phi)

initialize figure

ax = axes(projection = "3d")

render ball

def ball(a,b,c,r,color):

return ax.plot_surface(a + r*x,b + r*y, c + r*z,color = color)

xcent = ycent = zcent = [1,3]

blue balls

for center in product(xcent,ycent,zcent): ball(*center,1,"blue")

red ball

ball(2,2,2,sqrt(3)-1,"red")

cube grid

cube = ones((4,4,4),dtype = bool)

ax.voxels(cube, edgecolors = 'black',lw = .5,alpha = 0)

ax.set_aspect("equal")

ax.set_axis_off()

show()

1.5. HIGH DIMENSIONS 39

If theta and phi have shapes (m,) and (n,) then

theta,phi = meshgrid(theta,phi)

returns arrays theta and phi having shapes (m,n), with

theta[i,j] = theta[i], phi[i,j] = phi[j].

Here this is used to build a 2d mesh of 3d points

(x[i,j],y[i,j],z[i,j])

lying on a sphere. The cube grid is rendered using a voxel grid. Voxels are
the 3d counterparts of 2d pixels.

In jupyter, a magic command starts with a %. A magic command is sent to
jupyter, not to Python. The magic command %matplotlib ipympl allows
for rotating the figure.

Another phenomenon that happens in high dimensions, discussed in §6.1,
is that the angle between two randomly chosen vectors in a high-dimensional
space is not arbitrary, it is pre-determined. This is a consequence of the law
of large numbers.

Scaling and dimensionality work together in suspensions. (Figure 1.21).
Let [a, b] be an interval and let V be a point not in the interval. To suspend

the interval from V , draw line segments between V and all points in the
interval. You end up with a triangle with vertex V . Therefore the suspension
of an interval is a triangle. Here the dimension of the interval is one, and the
dimension of the triangle is two.

Let D be a disk and let V be a point not in the disk. To suspend the disk
from V , draw line segments between V and all points in the disk. You end
up with a cone with vertex V . Therefore the suspension of a disk is a cone.
Here the dimension of the disk is two, and the dimension of the cone is three.

In general, the suspension Ĝ of G is obtaining by drawing line segments
from a point V not in G to every point x in G,

Ĝ = {(tx, 1− t) : 0 ≤ t ≤ 1, x in G}.

When t = 1, the suspension’s base is the original region G, and when
t = 0, we have the vertex at the top. For each 0 < t < 1, the cross-section at
level t of the suspension is tG, which is G scaled by the factor t.

40 CHAPTER 1. DATASETS

Fig. 1.21 Suspensions of interval [a, b] and disk D.

We assume the point V is in a dimension orthogonal to the dimensions of
G. Then the dimension of Ĝ is one more than the dimension of G: If G is d-
dimensional, then Ĝ is (d+1)-dimensional, and the cross-sections at distinct
levels do not intersect.

The volume of Ĝ is obtained by integrating over cross-sections,

Vol(Ĝ) =

∫ 1

0

Vol(tG) dt.

By the scaling principle and (A.6.3),

Vol(Ĝ) =

∫ 1

0

tdVol(G) dt = Vol(G)
td+1

d+ 1

∣∣∣∣t=1

t=0

=
Vol(G)

d+ 1
.

Thus

Vol(Ĝ) =
Vol(G)

d+ 1
.

Exercises

Exercise 1.5.1 Why is the diagonal length of the square 4
√
2?

Exercise 1.5.2 Why is the diagonal length of the cube 4
√
3?

Exercise 1.5.3 Why does dividing by 4 yield the red disk radius and the red
ball radius?

Exercise 1.5.4 Suspend the unit circle G : x2+y2 = 1 from its center. What
is the suspension Ĝ? Conclude area(unit disk) = length(unit circle)/2.

Exercise 1.5.5 Suspend the unit sphere G : x2+y2+z2 = 1 from its center.
What is the suspension Ĝ? Conclude volume(unit ball) = area(unit sphere)/3.

Chapter 2

Linear Geometry

In the present chapter, we study linear geometry in any dimension d. Readers
with no prior exposure to linear geometry may wish to start with geometry
in two dimensions §A.4.

The material in this chapter is usually referred to as Linear Algebra. We
prefer the term Linear Geometry, to emphasize that the material is, like much
of data science, geometric.

Even though parts of this chapter are heavy-going, all included material
is necessary for later chapters. In particular, the derivations of chi-squared
distribution (§5.5) and the chi-squared tests (§6.4) are clarified by the appro-
priate use of vectors and matrices.

2.1 Vectors and Matrices

A vector is a list of scalars

v = (t1, t2, . . . , td).

The scalars are the components or the features of v. If there are d features,
we say the dimension of v is d. We call v a d-dimensional vector.

A point x is also a list of scalars, x = (t1, t2, . . . , td). The relation between
points x and vectors v is discussed in §1.3. The set of all d-dimensional vectors
or points is d-dimensional space Rd.

In Python, we use numpy or sympy for vectors and matrices. In Python,
if L is a list, then numpy.array(L) or sympy.Matrix(L) return a vector or
matrix.

from numpy import *

41

42 CHAPTER 2. LINEAR GEOMETRY

v = array([1,2,3])

v.shape

from sympy import *

v = Matrix([1,2,3])

v.shape

The first v.shape returns (3,), and the second v.shape returns (3,1). In
either case, v is a 3-dimensional vector.

Vectors are added and scaled component by component: With

v = (t1, t2, . . .) and v = (t′1, t
′
2, . . .),

we have

v + v′ = (t1 + t′1, t2 + t′2, . . .), and sv = (st1, st2, . . .).

Addition v + v′ only works when v and v′ have the same shape.
The zero vector is the vector 0 = (0, 0, 0, . . .). The zero vector is the only

vector satisfying 0 + v = v = v + 0 for every vector v. Even though the zero
scalar and the zero vector are distinct objects, we use 0 to denote both. A
vector v is nonzero if v is not the zero vector.

In R4, the vectors

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1)

together are the standard basis. Similarly, in Rd, we have the standard basis
e1, e2, . . . , ed.

A matrix is a listing arranged in a rectangle of rows and columns. Specifi-
cally, an d×N matrix A has d rows and N columns,

A =


a11 a12 . . . a1N
a21 a22 . . . a2N
.
ad1 ad2 . . . adN

 .

In Python, if L is a list of lists, then both array(L) and Matrix(L) return
a matrix. The code

from numpy import *

numpy vectors

2.1. VECTORS AND MATRICES 43

u = array([1,2,3,4,5])

v = array([6,7,8,9,10])

w = array([11,12,13,14,15])

A = column_stack([u,v,w])

A.shape

from sympy import *

column vectors

u = Matrix([1,2,3,4,5])

v = Matrix([6,7,8,9,10])

w = Matrix([11,12,13,14,15])

A = Matrix.hstack(u,v,w)

A.shape

returns (5,3), so A is a 5× 3 matrix,

A =


1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

 .

The transpose of a matrix A is the matrix B = At resulting from turning
A on its side, so

B = At =

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

 .

In numpy, the default is to arrange vectors as rows, so we may write

B = array([u,v,w])

The transpose interchanges rows and columns: the rows of At are the columns
of A. In both numpy or sympy, the transpose of A is A.T.

A vector v may be written as a 1×N matrix

v =
(
t1 t2 . . . tN

)
.

In this case, we call v a row vector.
A vector v may be written as a d× 1 matrix

v =


t1
t2
. . .
td

 .

44 CHAPTER 2. LINEAR GEOMETRY

In this case, we call v a column vector.

We will be considering matrices with different properties, and we use the
following notation

• A, B: any matrix
• U , V : orthonormal rows or orthonormal columns
• Q: symmetric matrix
• P : projection or permutation matrix

Vectors v1, v2, . . . , vN in Rd may be horizontally stacked as columns of a
d×N matrix,

A =
(
v1 v2 . . . vN

)
.

Similarly, vectors v1, v2, . . . , vN in Rd may be vertically stacked as rows of
an N × d matrix,

A =


v1
v2
. . .
vN

 .

By default, sympy creates column vectors. Because of this, it is easiest to
build matrices as columns,

from sympy import *

5x3 matrix

A = Matrix.hstack(u,v,w)

column vector

b = Matrix([1,1,1,1,1])

5x4 matrix

M = Matrix.hstack(A,b)

In general, for any sympy matrix A, column vectors can be hstacked and
row vectors can be vstacked. For any matrix A, the code

from sympy import *

A == Matrix.hstack(*[A.col(j) for j in range(A.cols)])

2.1. VECTORS AND MATRICES 45

returns True. Note we use the unpacking operator * to unpack the list, before
applying hstack.

In numpy, there is column_stack and row_stack, so the code

from numpy import *

A == row_stack([row for row in A])

A == column_stack([col for col in A.T])

returns True. In numpy, the input is a list, there is no unpacking.

In numpy, a matrix A is a list of rows, so

A == array([row for row in A])

A.T == array([col for col in A.T])

both return True. Here col is a row of At, hence is a column of A.
In numpy, the number of rows is len(A), and the number of columns is

len(A.T). To access row i, use A[i]. To access column j, access row j of the
transpose, A.T[j]. To access the j-th entry in row i, use A[i,j] or A[i][j].

In sympy, the number of rows in a matrix A is A.rows, and the number of
columns is A.cols, so

A.shape == (A.rows,A.cols)

returns True. To access row i, use A.row(i). Similarly, to access column j,
use A.col(j). So,

A == Matrix([A.row(i) for i in range(A.rows)])

A.T == Matrix([A.col(j) for j in range(A.cols)])

both return True.
A matrix is square if the number of rows equals the number of columns,

N = d. A matrix is diagonal if it looks like one of these
a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 , or

a 0 0 0
0 b 0 0
0 0 c 0

 , or


a 0 0
0 b 0
0 0 c
0 0 0

 ,

where some of the numbers on the diagonal a, b, c, d may be zero.

46 CHAPTER 2. LINEAR GEOMETRY

Matrices are added and scaled as follows. With

A =


a11 a12 . . . a1N
a21 a22 . . . a2N
.
ad1 ad2 . . . adN

 and A′ =


a′11 a′12 . . . a′1N
a′21 a′22 . . . a′2N
.
a′d1 a′d2 . . . a′dN

 ,

we have matrix addition

A+A′ =


a11 + a′11 a12 + a′12 . . . a1n + a′1N
a21 + a′21 a22 + a′22 . . . a2n + a′2N

.
ad1 + a′d1 ad2 + a′d2 . . . adN + a′dN


and matrix scaling

tA =


ta11 ta12 . . . ta1N
ta21 ta22 . . . ta2N
.
tad1 tad2 . . . tadN

 .

Matrices may be added only if they have the same shape.
In Python, matrix scaling and matrix addition are t*A and A + B. The

code

from sympy import *

A = zeros(2,3)

B = ones(2,2)

C = Matrix([[1,2],[3,4]])

D = B + C

E = 5 * C

F = eye(4)

A, B, C, D, E, F

and the code

from numpy import *

A = zeros((2,3))

B = ones((2,2))

C = array([[1,2],[3,4]])

D = B + C

E = 5 * C

F = eye(4)

A, B, C, D, E, F

both return

2.1. VECTORS AND MATRICES 47

(
0 0 0
0 0 0

)
,

(
1 1
1 1

)
,

(
1 2
3 4

)
,

(
2 3
4 5

)
,

(
5 10
15 20

)
,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Diagonal matrices are constructed using diag. The code

from sympy import *

A = diag(1,2,3,4)

B = diag(-1, ones(2, 2), Matrix([5, 7, 5]))

A, B

from numpy import *

from scipy.linalg import block_diag

A = diag([1,2,3,4])

B = block_diag(-1, ones((2, 2)), array([[5], [7], [5]]))

A, B

returns 
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 ,


−1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 5
0 0 0 7
0 0 0 5

 .

It is straightforward to convert back and forth between numpy and sympy.
In the code

from sympy import *

A = diag(1,2,3,4)

from numpy import *

B = array(A)

C = Matrix(B)

In Data Science, numpy is the default, but sympy is easier to digest.

Exercises

Exercise 2.1.1 A vector is one-hot encoded if all features are zero, except for
one feature which is one. For example, in R3 there are three one-hot encoded

48 CHAPTER 2. LINEAR GEOMETRY

vectors
(1, 0, 0), (0, 1, 0), (0, 0, 1).

A matrix is a permutation matrix if it is square and all rows and all columns
are distinct and one-hot encoded. How many 3× 3 permutation matrices are
there? What about d× d? For more on permutations, see §A.1.

2.2 Products

Let t be a scalar, u, v, w be vectors, and let A, B be matrices. We already
know how to compute tu, tv, and tA, tB. In this section, we study the dot
product u · v, the matrix-vector product Av, the matrix-matrix product AB,
and the tensor product u ⊗ v. In the appendix §A.4, this is worked out for
2× 2 matrices and vectors in R2.

Suppose u, v are vectors in Rd. Then their dot product u · v is the scalar
obtained by multiplying corresponding features and then summing the prod-
ucts. In other words, if u = (s1, s2, . . . , sd) and v = (t1, t2, . . . , td), then

u · v = s1t1 + s2t2 + · · ·+ sdtd. (2.2.1)

It’s best to think of this as “row-times-column” multiplication,

u · v =
(
s1 s2 s3

)t1
t2
t3

 = s1t1 + s2t2 + s3t3.

As in §A.4, it’s always rows on the left, and columns on the right.
In Python,

from numpy import *

u = array([1,2,3])

v = array([4, 5, 6])

dot(u,v) == 1*4 + 2*5 + 3*6

from sympy import *

u = Matrix([1,2,3])

v = Matrix([4, 5, 6])

u.T * v == 1*4 + 2*5 + 3*6

both return True.

2.2. PRODUCTS 49

For clarity, sometimes we write (u.T)*v; the parentheses don’t change
anything. In sympy, we take the transpose, since vectors are by default column
vectors, and it’s always row × column.

As in two dimensions, the length or norm or magnitude of a vector v =
(t1, t2, . . . , td) is the square root of the dot product v · v,

|v| =
√
v · v =

√
t21 + t22 + · · ·+ t2d.

In Python, the length of a vector v is

from numpy import *

sqrt(dot(v,v))

from sympy import *

sqrt(v.T * v)

In numpy, this returns a scalar; in sympy, a 1× 1 matrix.
A vector is a unit vector if its length equals 1. When |v| = 0, all the features

of v equal zero. It follows the zero vector is the only vector with zero length.
All nonzero vectors have positive length.

Let v be any nonzero vector. By dividing v by its length |v|, we obtain a
unit vector u = v/|v|.

As in §A.4, the dot product may be expressed geometrically.

Dot Product Identity

The dot product u · v (2.2.1) satisfies

u · v = |u| |v| cos θ, (2.2.2)

where θ is the angle between u and v.

In two dimensions, this was equation (A.4.5) in §A.4. Since any two vectors
lie in a two-dimensional plane, this remains true in any dimension. More
exactly, we take (2.2.2) as the definition of cos θ.

Based on this, we can compute the angle θ,

cos θ =
u · v√
|u| |v|

=
u · v√

(u · u)(v · v)
.

50 CHAPTER 2. LINEAR GEOMETRY

Since | cos θ| ≤ 1, we have the

Cauchy-Schwarz Inequality

The dot product of two vectors is absolutely less or equal to the prod-
uct of their lengths,

|u · v| ≤ |u| |v| or (u · v)2 ≤ (u · u)(v · v). (2.2.3)

Strictly speaking, the Cauchy-Schwarz inequality must be verified inde-
pendently of the geometric definition, because it is used to define cos θ. But
this is easy: The parabola

p(t) = |u+ tv|2 = (u+ tv) · (u+ tv) = |u|2 + 2tu · v + t2|v|2 = a+ 2tb+ ct2

is nonnegative, hence its bottom is nonnegative. By completing the square,
the bottom is a−b2/c. Since the bottom is nonnegative, we conclude b2 ≤ ac,
which is (2.2.3).

Vectors u and v are said to be perpendicular or orthogonal if u · v = 0. In
this case we often write u ⊥ v. A collection of vectors is orthogonal if any
pair of vectors in the collection are orthogonal.

With this understood, the zero vector is orthogonal to every vector: 0·v = 0
for every v. The converse is true as well: If u · v = 0 for every v, then, by
choosing v = u, u · u = 0, which implies u = 0.

Vectors v1, . . . , vN are said to be orthonormal if they are both unit vectors
and orthogonal. Orthogonal nonzero vectors can be made orthonormal by
dividing each vector by its length.

An important application of the Cauchy-Schwarz inequality is the triangle
inequality

|a+ b| ≤ |a|+ |b|. (2.2.4)

To see this, let u be any unit vector. Then

(a+ b) · u = a · u+ b · u ≤ |a||u|+ |b||u| = |a|+ |b|.

If we select u = (a+ b)/|a+ b|, then u is a unit vector and

(a+ b) · u = (a+ b) · (a+ b)

|a+ b|
=

|a+ b|2

|a+ b|
= |a+ b|,

hence

2.2. PRODUCTS 51

|a+ b| = (a+ b) · u ≤ |a|+ |b|.

Suppose v is a vector and A is a matrix. If the rows of A have the same
dimension as that of v, we can take the dot product of each row of A with v,
obtaining the matrix-vector product Av: Av is the vector whose features are
the dot products of the rows of A with v.

In other words,

from numpy import *

dot(A,v) == array([dot(row,v) for row in A])

from sympy import *

A*v == Matrix([A.row(i) * v for i in range(A.rows)])

both return True.
If u and v are vectors, we can think of u as a row vector, or a matrix

consisting of a single row. With this interpretation, the matrix-vector product
uv equals the dot product u · v.

If u and v are vectors, we can think of u as a column vector, or a matrix
consisting of a single column. With this interpretation, ut is a single row, and
the matrix-vector product utv equals the dot product u · v.

Let A and B be two matrices. If the rows of A are a1, a2, . . . , aN , and the
columns of B are b1, b2, . . . , bd,

A =


a1
a2
. . .
aN

 , B =
(
b1 b2 . . . bd

)
,

then the matrix-matrix product AB is the N × d matrix whose (i, j)-th entry
is the dot product

(AB)ij = ai · bj .

Note the dot product is defined only if the rows of A and the columns of B
have the same dimension.

Alternatively, using the definition of matrix-vector product, AB is the
matrix with columns Ab1, Ab2, . . . , Abd,

AB =
(
Ab1 Ab2 . . . Abd

)
.

52 CHAPTER 2. LINEAR GEOMETRY

Unpacking the dot product, and using summation notation, if A = (aij)
and B = (bij), then

(AB)ij =

d∑
k=1

aikbkj , 1 ≤ i ≤ N, 1 ≤ j ≤ d. (2.2.5)

In Python,

from numpy import *

C = array([[dot(row,col) for col in B.T] for row in A])

dot(A,B) == C

from sympy import *

C = Matrix([[A.row(i)*B.col(j) for j in range(B.cols)] for i in

↪→ range(A.rows)])

A*B == C

both return True, and, with

A =

(
1 2 3 4
5 6 7 8

)
, B =


1 2 3
4 5 6
7 8 9
10 11 12

 ,

the code

A,B,dot(A,B)

A,B,A*B

returns

AB =

(
70 80 90
158 184 210

)
.

The trace of a square matrix

A =

a b c
b d e
c e f


is the sum of its diagonal elements,

2.2. PRODUCTS 53

trace(A) = trace

a b c
b d e
c e f

 = a+ d+ f.

In general, the trace of a d× d matrix is

trace(A) =

d∑
i=1

aii. (2.2.6)

Even though in general AB ̸= BA, it is always true that

trace(AB) = trace(BA), (2.2.7)

This can be verified by switching the i and the k in the sums

trace(AB) =

d∑
i=1

(AB)ii =

d∑
i=1

d∑
k=1

aikbkj .

A matrix Q is symmetric if Q = Qt. For any matrix A, Q = AAt and
Q = AtA are symmetric.

A symmetric matrix Q satisfying v · Qv ≥ 0 for every vector v is non-
negative. When Q is nonnegative, we write Q ≥ 0. A symmetric matrix Q
satisfying v · Qv > 0 for every nonzero vector v is positive. When Q is pos-
itive, we write Q > 0. Since any vector may be rescaled into a unit vector,
the vectors v in these definitions may be assumed to be unit vectors.

For any d×N matrix A, AtA is a symmetric N ×N matrix, and AAt is
a symmetric d× d matrix.

As we saw in §1.4, the variance matrix of a dataset is nonnegative. In fact,
when a dataset in Rd fills up all d dimensions, the variance matrix is positive
(see §2.5).

As in §A.4, we have

Dot Product Transpose Identity

For any vectors u, v, and matrices A, we have

(Au) · v = u · (Atv) and (Atu) · v = u ·Av, (2.2.8)

whenever the shapes of u, v, A are compatible.

54 CHAPTER 2. LINEAR GEOMETRY

The is established by the same proof as in §A.4.
In Python,

dot(dot(A,u),v) == dot(u,dot(A.T,v))

dot(dot(A.T,u),v) == dot(u,dot(A,v))

(A*u).T * v == u.T * (A.T*v)

(A.T*u).T * v == u.T * (A*v)

all return True.
As a consequence, we have, as in §A.4,

(AB)t = BtAt.

In Python,

dot(A,B).T == dot(B.T,A.T)

(A * B).T == B.T * A.T

both return True.

Let A be a matrix. We compute useful expressions for AAt and AtA.
Assume the columns of A are v1, v2, . . . , vN , so A is d × N . Since the

transpose interchanges rows and columns, v1, v2, . . . , vN are the rows of At.
Since matrix-matrix multiplication is row × column, we have

AtA =


v1 · v1 v1 · v2 . . . v1 · vN
v2 · v1 v2 · v2 . . . v2 · vN
.

vN · v1 vN · v2 . . . vN · vN

 . (2.2.9)

As a consequence,1

Orthonormal Rows and Columns

Let U be a matrix.

• U has orthonormal columns iff U tU = I.
• U has orthonormal rows iff UU t = I.

The second statement follows from the first by substituting U t for U .

1 Iff is short for if and only if.

2.2. PRODUCTS 55

To compute AAt, we bring in the tensor product (see §A.4 for vectors in
the plane). If u and v are vectors, the tensor product u⊗ v is the matrix

(u⊗ v)ij = uivj .

If u is in RN and v is in Rd, then u⊗ v is an N × d matrix.
From the definition,

(u⊗ v)t = v ⊗ u

and
trace(u⊗ v) = u · v, (2.2.10)

the latter valid when u⊗ v is square.
The basic tensor identities in §A.4, and the proofs presented there, remain

valid in any dimension. Here they are again.

Tensor Product Identities

The following identities hold, as long as the shapes of the matrices
and the vectors are compatible.

1. If u, v, w are vectors,

(u⊗ v)w = (v · w)u. (2.2.11)

2. If a, b, c, d are vectors,

a · (b⊗ c)d = (a · b)(c · d). (2.2.12)

3. If Q = v ⊗ v,

u ·Qu = u · (v ⊗ v)u = (u · v)2. (2.2.13)

4. If A has columns v1, v2, . . . , vN ,

AAt = v1 ⊗ v1 + v2 ⊗ v2 + · · ·+ vN ⊗ vN . (2.2.14)

5. For matrices A, B, and vectors u, v,

A(u⊗ v)Bt = (Au)⊗ (Bv). (2.2.15)

If A = (aij) is any matrix, then the norm squared of A is

56 CHAPTER 2. LINEAR GEOMETRY

∥A∥2 =
∑
i,j

a2ij .

This equals trace(AtA) which equals trace(AAt). By taking the trace in
(2.2.14),

Norm Squared of Matrix

Let A be a matrix with columns v1, v2, . . . , vN . Then

∥A∥2 = |v1|2 + |v2|2 + · · ·+ |vN |2, (2.2.16)

and
∥A∥2 = trace(AtA) = trace(AAt). (2.2.17)

By replacing A by At, the same results hold for rows.

If x1, x2, . . . , xN is a dataset of points, and v1, v2, . . . , vN is the corre-
sponding centered dataset, then the variance matrix Q = (qij) is the average
of tensor products (§1.4),

Q =
v1 ⊗ v1 + v2 ⊗ v2 + · · ·+ vN ⊗ vN

N
. (2.2.18)

Let A be the matrix with columns v1, v2, . . . , vN ,

A =
(
v1 v2 . . . vN

)
. (2.2.19)

By (2.2.14),

Q =
1

N
AAt. (2.2.20)

Let A be the centered dataset matrix (2.2.19). By (2.2.20), each qij is the
dot product of the i-th row and the j-th row of A. In particular, qii and
qjj are the lengths squared of the i-th and j-th rows of A. Hence, by the
Cauchy-Schwarz inequality, q2ij ≤ qiiqjj .

Let dataset be the Iris dataset. If centered is the corresponding centered
dataset, code for the variance is

from numpy import *

from sklearn import datasets

iris = datasets.load_iris()

dataset = iris["data"]

2.2. PRODUCTS 57

mu = mean(dataset, axis = 0)

centered = dataset - mu

N = len(dataset)

dot(centered.T,centered) / N

Of course, it is simpler to avoid centering and just do directly

Q = cov(dataset.T,bias=True)

The mean, variance, and total variance of the Iris dataset are

mu, Q, trace(Q)

array([5.84, 3.06, 3.76, 1.2]),

array([

[0.68, -0.04, 1.27, 0.51],

[-0.04, 0.19, -0.33, -0.12],

[1.27, -0.33, 3.1 , 1.29],

[0.51, -0.12, 1.29, 0.58]

]),

4.54

If a dataset is centered and each feature has variance one, it is standard.
When this happens, the variance Q′ = (q′ij) satisfies q′ii = 1, and, by the
Cauchy-Schwarz inequality, |q′ij | ≤ 1.

In §1.4, we standardized datasets in R2. To do this in Rd, let Q = (qij)
be the variance of a dataset x1, x2, . . . , xN in Rd, and set

Σ =


σ1 0 0 . . . 0
0 σ2 0 . . . 0
.
0 0 0 . . . σd

 =


√
q11 0 0 . . . 0
0

√
q22 0 . . . 0

.
0 0 0 . . .

√
qdd

 .

Then the inverse Σ−1 is (inverse is studied in §2.3),

Σ−1 =


1/σ1 0 0 . . . 0
0 1/σ2 0 . . . 0
.
0 0 0 . . . 1/σd

 .

and, by the same calculation as in §1.4,

x′
k = Σ−1(xk − µ), k = 1, 2, . . . , N,

is a standard dataset, with variance given by

58 CHAPTER 2. LINEAR GEOMETRY

Q′ = Σ−1QΣ−1.

Multiplying these three matrices, Q′ = (q′ij) has entries

q′ij =
qij√
qiiqjj

, i, j = 1, 2, . . . , d.

Since q′ii = 1, this shows x′
1, x

′
2, . . . , x

′
N is standard.

The variance matrix of the standardized dataset equals the correlation
matrix of the original dataset, and the correlation q′ij between feature i and
feature j satisfies |q′ij | ≤ 1.

As in §1.4, we say feature i and feature j are positively correlated or neg-
atively correlated if q′ij > 0 or q′ij < 0 respectively.

Summarizing the above,

Variance and Correlation Matrices

• If Q = (qij) is the variance of a dataset, then qii ≥ 0 and q2ij ≤
qiiqjj .

• If Q′ = (q′ij) is the variance of a standard dataset, then |q′ij | ≤ 1.
• If Q′ is the correlation matrix of a dataset with variance Q, then

q′ij = qij/
√
qiiqjj .

In Python,

from numpy import *

from scipy.linalg import inv

from sklearn.preprocessing import StandardScaler

standardize dataset

standardized = StandardScaler().fit_transform(dataset)

Qcorr = corrcoef(dataset.T)

Qcov = cov(standardized.T,bias=True)

Sigma = sqrt(diag(diagonal(Q)))

Qprime = dot(inv(Sigma),dot(Q,inv(Sigma)))

Sigma, Qcov, Qcorr, Qprime

returns

array([

[[0.83, 0. , 0. , 0.],

[0. , 0.43, 0. , 0.],

[0. , 0. , 1.76, 0.],

[0. , 0. , 0. , 0.76]],

2.2. PRODUCTS 59

[[1. , -0.12, 0.87, 0.82],

[-0.12, 1. , -0.43, -0.37],

[0.87, -0.43, 1. , 0.96],

[0.82, -0.37, 0.96, 1.]],

[[1. , -0.12, 0.87, 0.82],

[-0.12, 1. , -0.43, -0.37],

[0.87, -0.43, 1. , 0.96],

[0.82, -0.37, 0.96, 1.]],

[[1. , -0.12, 0.87, 0.82],

[-0.12, 1. , -0.43, -0.37],

[0.87, -0.43, 1. , 0.96],

[0.82, -0.37, 0.96, 1.]]

])

Exercises

Exercise 2.2.1 In the Iris dataset, are the sepal length and sepal width pos-
itively or negatively correlated? What about sepal length and petal length?

Exercise 2.2.2 For n = 1, 2, 3, . . . , let v be the vector

v = (1, 2, 3, . . . , n).

Let |v| =
√
v · v be the length of v. Then, for example, when n = 1, |v| = 1

and, when n = 2, |v| =
√
5. There is one other n for which |v| is a whole

number. Use Python to find it.

Exercise 2.2.3 If µ is a unit vector and Q = I − µ⊗ µ, then Q2 = Q.

Exercise 2.2.4 Give an example of a 3× 3 matrix A satisfying A2 = 0 but
A ̸= 0.

Exercise 2.2.5 If Q2 = 0 and Qt = Q, then Q = 0.

Exercise 2.2.6 Matrices A and B commute if AB = BA. For what condition
on a and b do these matrices commute?

A =

1 0 0
a 1 0
0 0 1

 , B =

1 0 0
0 1 0
0 b 1

 .

Exercise 2.2.7 Use (2.2.10) and (2.2.15) to show

Au · v = trace(A(u⊗ v)). (2.2.21)

60 CHAPTER 2. LINEAR GEOMETRY

Exercise 2.2.8 Let Q and Q′ be symmetric d×dmatrices. Show that Q = Q′

iff
x ·Qx = x ·Q′x, for all x.

(Replace x by u+ v and expand, then insert u and v standard basis vectors.)

Exercise 2.2.9 Compute the means and variances µ1, µ2, µ3 and Q1, Q2,
Q3 of the classes of the Iris dataset.

Exercise 2.2.10 With

from sympy import *

def row(i,d): return [(-1)**(i+j) for j in range(d)]

def R(d): return Matrix([row(i,d) for i in range(d)])

print R(d) for d = 1, 2, 3,

Exercise 2.2.11 With R(d) as in Exercise 2.2.10,

R(d)3 = c(d)×R(d)

for some scalar c(d). Use Python to find c(d). Here d = 1, 2, 3,

Exercise 2.2.12 Suppose A and B are matrices with rows and columns

A =


u1

u2

. . .
uN

 and B = (v1, v2, . . . , vd),

all with the same dimension. Show that

AB =


u1 · v1 u1 · v2 . . . u1 · vd
u2 · v1 u2 · v2 . . . u2 · vd
.

uN · v1 uN · v2 . . . uN · vd

 .

This generalizes (2.2.9).

Exercise 2.2.13 Suppose A and B are matrices with columns and rows

A = (u1, u2, . . . , ud) and B =


v1
v2
. . .
vd

 .

Use (2.2.5) to show

AB = u1 ⊗ v1 + u2 ⊗ v2 + · · ·+ ud ⊗ vd.

2.3. MATRIX INVERSE 61

This generalizes (2.2.14).

Exercise 2.2.14 Let P andQ be d×d permutation matrices (Exercise 2.1.1).
Show that PQ is a permutation matrix.

Exercise 2.2.15 Let P be a 3×3 permutation matrix (Exercise 2.1.1). Show
that P 6 = I. Check this for every 3 × 3 permutation matrix. What about
d× d?

Exercise 2.2.16 The matrix exponential of a a square matrix A is

eA = I +A+
1

2!
A2 +

1

3!
A3 + . . .

Let

N =

0 1 1
0 0 1
0 0 0

 .

Compute the matrix exponential of N and I+N (for N the series terminates
after finitely many terms).

2.3 Matrix Inverse

Let A be any matrix and b a vector. The goal is to solve the linear system

Ax = b. (2.3.1)

In this section, we use the inverse A−1 and the pseudo-inverse A+ to solve
(2.3.1).

Of course, the system (2.3.1) doesn’t even make sense unless

A.shape == b.shape, x.shape

In what follows, we assume this equality is true and dimensions are appro-
priately compatible.

Even then, it’s very easy to construct matrices A and vectors b for which
the linear system (2.3.1) has no solutions at all! For example, take A the zero
matrix and b any non-zero vector. Because of this, we must take some care
when solving (2.3.1).

Given a square matrix A, the inverse matrix is the matrix B satisfying

AB = I = BA. (2.3.2)

62 CHAPTER 2. LINEAR GEOMETRY

Here I is the identity matrix. Since I is a square matrix, A must also be a
square matrix.

Only square matrices may have inverses. Moreover, not every square ma-
trix has an inverse. For example, the zero matrix does not have an inverse.
When A has an inverse, we say A is invertible.

If a matrix is d× d, then the inverse is also d× d. We write B = A−1 for
the inverse matrix of A. For example, it is easy to check

A =

(
a b
c d

)
=⇒ A−1 =

1

ad− bc

(
d −b
−c a

)
.

Since we can’t divide by zero, a 2× 2 matrix is invertible only if ad− bc ̸= 0.
Since

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I,

we have
(AB)−1 = B−1A−1.

When A is invertible, the inverse A−1 provides a conceptual framework for
solving the linear system Ax = b. Of course, a framework is not the same as
a computational procedure. Many issues arise in the numerical construction
of the inverse. These we sweep under the rug and ignore by accessing the
inverse code inv in numpy and sympy.

Solution of Ax = b when A invertible

If A is invertible, then

Ax = b =⇒ x = A−1b. (2.3.3)

This is easy to check, since

Ax = A(A−1b) = (AA−1)b = Ib = b.

from sympy import *

solving Ax=b

x = A.inv() * b

from numpy import *

from scipy.linalg import inv

2.3. MATRIX INVERSE 63

solving Ax=b

x = dot(inv(A) , b)

In general, a matrix A is not invertible, and Ax = b is solved using the
pseudo-inverse x = A+b. The definition and framework of the pseudo-inverse
is in §2.6. The upshot is: every (square or non-square) matrix A has a pseudo-
inverse A+. Here is the general result.

Solution of Ax = b for General A

If Ax = b is solvable, then

x+ = A+b =⇒ Ax+ = b.

If Ax = b is not solvable, then x+ minimizes the residual |Ax− b|2.

This says if Ax = b has some solution, then x+ = A+b is also a solution.
On the other hand, Ax = b may have no solution, in which case the error
|Ax− b|2 is minimized. From this point of view, it’s best to think of x+ as a
candidate for a solution. It’s a solution only after confirming equality of Ax+

and b. All this is worked out in §2.6.
To put this in context, there are three possibilities for a linear system

(2.3.1). A linear system Ax = b can have

• no solutions, or
• exactly one solution, or
• infinitely many solutions.

As examples of these three possibilities, we have

• A = 0 and b ̸= 0,
• A is invertible,
• A = 0 and b = 0.

The pseudo-inverse provides a conceptual framework for deciding among
these three possibilities. Of course, a framework is not the same as a com-
putational procedure. Many issues arise in the numerical construction of the
pseudo-inverse. These we sweep under the rug and ignore by accessing the
pseudo-inverse code pinv in numpy and sympy.

In this section, we focus on using Python to solve Ax = b, and in §2.6, we
explore the pseudo-inverse framework.

How do we use the above result? Given A and b, using Python, we compute
x = A+b. Then we check, by multiplying in Python, equality of Ax and b.

64 CHAPTER 2. LINEAR GEOMETRY

The rest of the section consists of examples of solving linear systems. The
reader is encouraged to work out the examples below in Python. However,
because some linear systems have more than one solution, and the implemen-
tations of Python on your laptop and on my laptop may differ, our solutions
may differ.

It can be shown that if the entries of A are integers, then the entries of A+

are fractions. This fact is reflected in sympy, but not in numpy, as the default
in numpy is to work with floats.

Let

u = (1, 2, 3, 4, 5), v = (6, 7, 8, 9, 10), w = (11, 12, 13, 14, 15),

and let A be the matrix with columns u, v, w, and rows a, b, c, d, e,

A =
(
u v w

)
=


1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

 =


a
b
c
d
e

 . (2.3.4)

from numpy import *

vectors

u = array([1,2,3,4,5])

v = array([6,7,8,9,10])

w = array([11,12,13,14,15])

arrange as columns

A = column_stack([u,v,w])

For this A, the code

from scipy.linalg import pinv

pinv(A)

returns

A+ =
1

150

−37 −20 −3 14 31
−10 −5 0 5 10
17 10 3 −4 −11

 .

Alternatively, in sympy,

2.3. MATRIX INVERSE 65

from sympy import *

column vectors

u = Matrix([1,2,3,4,5])

v = Matrix([6,7,8,9,10])

w = Matrix([11,12,13,14,15])

A = Matrix.hstack(u,v,w)

A.pinv()

returns the same result.

Let A be as in (2.3.4) and let

b1 = (8, 9, 10, 11, 12), b2 = (11, 6, 1,−4,−9).

We solve Ax = b1 and Ax = b2 by computing the candidates

x+ = A+b1 =
1

15
(2, 5, 8),

and

x+ = A+b2 =
1

30
(−173,−50, 73).

Then we check that the candidates are actually solutions, which they are, by
comparing Ax+ and b1, in the first case, and Ax+ and b2, in the second case.

For
b3 = (−9,−3, 3, 9, 10),

we have

x+ = A+b3 =
1

15
(82, 25,−32).

However, for this x+, we have

Ax+ = (−8,−3, 2, 7, 12),

which is not equal to b3. From this, not only do we conclude x+ is not a
solution of Ax = b3, but also, by the general result above, the system Ax = b3
is not solvable at all.

66 CHAPTER 2. LINEAR GEOMETRY

Let B be the matrix with columns b1 and b2,

B = (b1, b2) =


8 11
9 6
10 1
11 −4
12 −9

 .

We solve
Bx = u, Bx = v, Bx = w

by constructing the candidates

B+u, B+v, B+w,

obtaining the solutions

x+ =
1

51
(16,−7), x+ =

1

51
(41,−2), x+ =

1

51
(66, 3).

Let

C = At =

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15


and let f = (0,−5,−10). By Exercise 2.6.8, C+ = (A+)t, so

C+ = (A+)t =
1

150


−37 −10 17
−20 −5 10
−3 0 3
14 5 −4
31 10 −11


and

x+ = C+f =
1

50
(32, 35, 38, 41, 44).

Once we confirm equality of Cx+ and f , which is the case, we obtain a
solution x+ of Cx = f .

Let D be the matrix with columns a and f ,

D = (a, f) =

 1 0
6 −5
11 −10

 ,

2.3. MATRIX INVERSE 67

where a, b, c, d, e are the rows of A, or, equivalently, the columns of C. Then

D+ =
1

30

(
25 10 −5
28 10 −8

)
.

We solve

Dx = a, Dx = b, Dx = c, ,Dx = d, Dx = e,

by constructing the candidates

D+a, D+b, D+c, D+d, D+e,

obtaining the solutions

x+ = (1, 0), x+ = (2, 1), x+ = (3, 2), x+ = (4, 3), x+ = (5, 4).

Exercises

Exercise 2.3.1 Verify the computations in this section using Python.

Exercise 2.3.2 With R(d) as in Exercise 2.2.10, find the formula for the
inverse and pseudo-inverse of R(d), whichever exists. Here d = 1, 2, 3,

Exercise 2.3.3 The sum matrix and difference matrix are

S =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 , D =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

 .

Compute SD and DS. What do you conclude?

Exercise 2.3.4 Let D = D(d) be the d × d difference matrix as in Exer-
cise 2.3.3. Compute DDt and DtD, and SSt and StS.

Exercise 2.3.5 Let u and v be vectors in Rd and let A = I + u ⊗ v. Show
that

A−1 = I − u⊗ v

1 + u · v
.

Exercise 2.3.6 Let P be a d×d permutation matrix (Exercise 2.1.1). Show
that P t is the inverse of P .

Exercise 2.3.7 Let a, b, c be three distinct (non-equal) numbers, and let

68 CHAPTER 2. LINEAR GEOMETRY

V =

1 a a2

1 b b2

1 c c2

 .

Let x = (r, s, t) and p(z) = r + sz + tz2. Show V x = (p(a), p(b), p(c)). Using
Exercise A.5.10, conclude V is invertible.

2.4 Span and Linear Independence

Let u, v, w be three vectors. Then

3u− 1

6
v + 9w, 5u+ 0v − w, 0u+ 0v + 0w

are linear combinations of u, v, w.
In general, a linear combination of vectors v1, v2, . . . , vd is

t1v1 + t2v2 + · · ·+ tdvd. (2.4.1)

Here the coefficients t1, t2, . . . , td are scalars. In short, a linear combination
is a sum of scaled vectors.

In terms of matrices, let

u = (1, 2, 3, 4, 5), v = (6, 7, 8, 9, 10), w = (11, 12, 13, 14, 15),

and let A be the matrix with columns u, v, w, as in (2.3.4). Let x be the vector
(r, s, t) = (1, 2, 3). Then an explicit calculation shows (do this calculation!)
the matrix-vector product Ax equals ru+ sv + tw,

Ax = ru+ sv + tw.

The code

dot(A,x) == r*u + s*v + t*w

returns

array([True, True, True, True, True])

To repeat, the linear combination ru+ sv+ tw is the same as the matrix-
vector product Ax. This is a general fact on which everything depends:

2.4. SPAN AND LINEAR INDEPENDENCE 69

Column Linear Combination Equals Matrix-Vector Product

Let A be a matrix with columns v1, v2, . . . , vd, and let

x = (t1, t2, . . . , td).

Then
Ax = t1v1 + t2v2 + · · ·+ tdvd, (2.4.2)

In other words,

Ax = b is the same as b = t1v1 + t2v2 + · · ·+ tdvd. (2.4.3)

The span of vectors v1, v2, . . . , vd consists of all linear combinations

t1v1 + t2v2 + · · ·+ tdvd

of the vectors. For example, span(b) of a single vector b is the line through
b, and span(u, v, w) is the set of all linear combinations ru+ sv + tw.

Span Definition I

The span of v1, v2, . . . , vd is the set S of all linear combinations of
v1, v2, . . . , vd, and we write

S = span(v1, v2, . . . , vd).

When we don’t want to specify the vectors v1, v2, v3, . . . , vd, we simply
say S is a span.

From (2.4.2), we have

Span Definition II

Let A be the matrix with columns v1, v2, v3, . . . , vd. Then
span(v1, v2, . . . , vd) is the set S of all vectors of the form Ax.

If each vector vk is a linear combination of vectors w1, w2, . . . , wN , then
every vector v in span(v1, v2, . . . , vd) is a linear combination of w1, w2, . . . ,
wN , so span(v1, v2, . . . , vd) is contained in span(w1, w2, . . . , wN).

If also each vector wk is a linear combination of vectors v1, v2, . . . , vd,
then every vector w in span(w1, w2, . . . , wN) is a linear combination of v1,
v2, . . . , vd, so span(w1, w2, . . . , wN) is contained in span(v1, v2, . . . , vd).

When both conditions hold, it follows

70 CHAPTER 2. LINEAR GEOMETRY

span(v1, v2, . . . , vd) = span(w1, w2, . . . , wN).

Thus there are many choices of spanning vectors for a given span.
For example, let u, v, w be the columns of A in (2.3.4). Let ⊂ mean “is

contained in”. Then

span(u, v) ⊂ span(u, v, w),

since adding a third vector can only increase the linear combination possibil-
ities. On the other hand, since w = 2v − u, we also have

span(u, v, w) ⊂ span(u, v).

It follows that
span(u, v, w) = span(u, v).

Let A be a matrix. The column space of A is the span of its columns. For
A as in (2.3.4), the column space of A is span(u, v, w). The code

from sympy import *

column vectors

u = Matrix([1,2,3,4,5])

v = Matrix([6,7,8,9,10])

w = Matrix([11,12,13,14,15])

A = Matrix.hstack(u,v,w)

returns minimal spanning set for column space of A

A.columnspace()

returns a minimal list of vectors spanning the column space of A. The column
rank of A is the length of the list, i.e. the number of vectors returned.

For example, for A as in (2.3.4), this code returns the list

[u, v] =



1
2
3
4
5

 ,


6
7
8
9
10


 .

Why is this? Because w = 2v − u, so

span(u, v, w) = span(u, v).

We conclude the column rank of A equals 2.

2.4. SPAN AND LINEAR INDEPENDENCE 71

If the columns of A are v1, v2, . . . , vd, and x = (t1, t2, . . . , td) is a vector,
then by definition of matrix-vector multiplication,

Ax = t1v1 + t2v2 + · · ·+ tdvd.

By (2.4.3),

Column Space and Ax = b

The column space of a matrix A consists of all vectors of the form Ax.
A vector b is in the column space of A when Ax = b has a solution.

The corresponding code in numpy is

from numpy import *

from scipy.linalg import orth

vectors

u = array([1,2,3,4,5])

v = array([6,7,8,9,10])

w = array([11,12,13,14,15])

A = column_stack([u,v,w])

returns minimal orthonormal spanning set

for column space of A

orth(A)

This code returns the array in Figure 2.1.

Fig. 2.1 Numpy column space array.

To explain this, let

b1 = (8, 9, 10, 11, 12), b2 = (11, 6, 1,−4,−9).

72 CHAPTER 2. LINEAR GEOMETRY

Then b1 · b2 = 0, |b1| =
√
510, |b2| =

√
255, and the columns of the array

in Figure 2.1 are the two orthonormal vectors −b1/|b1| and b2/|b2|. (Why
−b1/|b1| instead of b1/|b1|? Because numpy has to make an arbitrary choice
among the unit vectors ±b1/|b1|.)

We conclude the column space of A can be described in at least three ways,

span(b1, b2) = span(u, v, w) = span(u, v).

Explicitly, b1 and b2 are linear combinations of u, v, w,

15b1 = 2u+ 5v + 8w, 30b2 = −173u− 50v + 73w, (2.4.4)

and u, v, w are linear combinations of b1 and b2,

51u = 16b1 − 7b2, 51v = 41b1 − 2b2, w = 2v − u. (2.4.5)

By (2.4.3), to derive (2.4.4), we solve Ax = b1 and Ax = b2 for x. But this
was done in §2.3.

Similarly, let B be the matrix with columns b1 and b2, and solve Bx = u,
Bx = v, Bx = w, obtaining (2.4.5). This was also done in §2.3.

As a general rule, sympy.columnspace returns lists of spanning vectors,
and scipy.linalg.orth returns arrays of orthonormal spanning vectors.

Let A be a matrix, and let b be a vector. How can we tell if b is in the
column space of A? Given the above tools, here is an easy way to tell.

Write the augmented matrix Ā = (A, b); Ā obtained by adding b as an
extra column next to the columns of A. If A is d×N , then Ā is d× (N +1).

Given A and Ā = (A, b), compute their column ranks. Let v1, v2, . . . , vN
be the columns of A. If these ranks are equal, then

span(v1, v2, . . . , vN) = span(v1, v2, . . . , vN , b),

so b is a linear combination of the columns, or b is in the column space of A.

Column Space of Augmented Matrix

Let Ā be the matrix A augmented by a vector b. Then Ax = b is
solvable iff b is in the column space of A iff

column rank(A) = column rank(Ā). (2.4.6)

For example, let b3 = (−9,−3, 3, 9, 10) and let Ā = (A, b3). Using Python,
check the column rank of Ā is 3. Since the column rank of A is 2, we conclude
b3 is not in the column space of A, so b3 is not a linear combination of u, v,
w.

2.4. SPAN AND LINEAR INDEPENDENCE 73

When (2.4.6) holds, b is a linear combination of the columns of A. However,
(2.4.6) does not tell us which linear combination. According to (2.4.3), finding
the specific linear combination is equivalent to solving Ax = b.

R3 consists of all vectors (r, s, t) in three dimensions. If

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

then
(r, s, t) = re1 + se2 + te3.

This shows the vectors e1, e2, e3 span R3, or

R3 = span(e1, e2, e3).

As a consequence, R3 is a span. Similarly, in dimension d, we can write

e1 = (1, 0, 0, . . . , 0, 0)

e2 = (0, 1, 0, . . . , 0, 0)

e3 = (0, 0, 1, . . . , 0, 0)

. . . = . . .

ed = (0, 0, 0, . . . , 0, 1)

(2.4.7)

Then e1, e2, . . . , ed span Rd, so

Standard Basis Spans

Rd is a span.

Following machine-learning terminology, a vector v = (v1, v2, . . . , vd) is
one-hot encoded at slot j if all components of v are zero except the j-th
component. For example, when d = 3, the vectors

(a, 0, 0), (0, a, 0), (0, 0, a)

are one-hot encoded.
Sometimes one-hot encoded also means the nonzero slot must be a one.

With this interpretation, when d = 3, the only one-hot encoded vectors

(1, 0, 0), (0, 1, 0), (0, 0, 1).

We use both interpretations.
The vectors e1, e2, . . . , ed are one-hot encoded. These vectors are the

standard basis for Rd, or the one-hot encoded basis for Rd.

74 CHAPTER 2. LINEAR GEOMETRY

The row space of a matrix is the span of its rows.

from sympy import *

returns minimal spanning set for row space of A

A.rowspace()

The row rank of a matrix is the number of vectors returned by rowspace().
This is the minimal number of vectors spanning the row space of A.

For example, call the rows of A in (2.3.4) a, b, c, d, e. Let

f = (0,−5,−10).

Then sympy.rowspace returns the vectors a and f , so

span(a, b, c, d, e) = span(a, f).

Explicitly, the linear combination

50f = 32a+ 35b+ 38c+ 41d+ 44e

is derived using C = At and solving Cx = f . The linear combinations

a = a+ 0f, b = 2a− 5f, c = 3a− 10f, d = 4a− 15f, e = 5a− 20f

are derived using D = (a, f) and solving Dx = a, Dx = b, Dx = c, Dx = d,
Dx = e. Again, these linear systems were solved in §2.3.

Since the transpose interchanges rows and columns, the row space of A
equals the column space of At. Using this, we compute the row space in numpy

by

from numpy import *

from scipy.linalg import orth

returns minimal spanning set for row space of A

orth(A.T)

Numpy returns orthonormal vectors.
Clearly, when Q is symmetric, the row space of Q equals the column space

of Q.
It turns out the column rank equals the row rank, for any matrix. Even

though we won’t establish this till (2.9.1), we state this result here, because
it helps ground the concepts.

2.4. SPAN AND LINEAR INDEPENDENCE 75

Column Rank Equals Row Rank

For any matrix, the row rank equals the column rank.

Because of this, we refer to this common number as the rank of the matrix.

A linear combination t1v1 + t2v2 + · · ·+ tdvd is trivial if all the coefficients
are zero, t1 = t2 = · · · = td = 0. Otherwise it is non-trivial, if at least one
coefficient is not zero. A linear combination t1v1 + t2v2 + · · ·+ tdvd vanishes
if it equals the zero vector,

t1v1 + t2v2 + · · ·+ tdvd = 0.

For example, with u, v, w as above, we have w = 2v − u, so

ru+ sv + tw = 1u− 2v + 1w = 0 (2.4.8)

is a vanishing non-trivial linear combination of u, v, w.
We say v1, v2, . . . , vd are linearly dependent if there is a vanishing non-

trivial linear combination of v1, v2, . . . , vd. Otherwise, if there is no non-trivial
vanishing linear combination, we say v1, v2, . . . , vd are linearly independent.
For example, u, v, w above are linearly dependent.

Suppose u, v, w are any three vectors, and suppose u, v, w are linearly
dependent. Then we have ru+ sv + tw = 0 for some scalars r, s, t, where at
least one is not zero. If r ̸= 0, then we may solve for u, obtaining

u = −(s/r)v − (t/r)w.

If s ̸= 0, then we may solve for v, obtaining

v = −(r/s)u− (t/s)w.

If t ̸= 0, then
w = −(r/t)u− (s/t)v.

Hence linear dependence of u, v, w means one of the three vectors is a multiple
of the other two vectors.

In general, a vanishing non-trivial linear combination of v1, v2, . . . , vd, or
linear dependence of v1, v2, . . . , vd, is the same as saying one of the vectors
is a linear combination of the remaining vectors.

In terms of matrices,

76 CHAPTER 2. LINEAR GEOMETRY

Homogeneous Linear Systems

Let A be the matrix with columns v1, v2, . . . , vd. Then

• v1, v2, . . . , vd are linearly dependent when Ax = 0 has a nonzero
solution x, and

• v1, v2, . . . , vd are linearly independent when Ax = 0 has only the
zero solution x = 0.

The set of vectors x satisfying Ax = 0, or the set of solutions x of Ax = 0,
is the nullspace of the matrix A.

With this terminology, v1, v2, . . . , vd are linearly dependent when there is
a nonzero nullspace for the matrix A.

For example, with A as in (2.3.4), the sympy code

from sympy import *

A.nullspace()

returns a list with a single vector,r
s
t

 =

 1
−2
1

 .

This says the nullspace of A consists of all multiples of (1,−2, 1). Since the
code

[r,s,t] = A.nullspace()[0]

r*u + s*v + t*w

returns the column vector 
0
0
0
0
0

 ,

we have Ax = 0, in agreement with (2.4.8).

The corresponding numpy code is

2.4. SPAN AND LINEAR INDEPENDENCE 77

from scipy.linalg import null_space

null_space(A)

This code returns the unit vector

−1√
6

 1
−2
1

 ,

which is a multiple of (1,−2, 1). scipy.linalg.null_space always returns
orthonormal vectors.

Here is a simple result that is used frequently.

A Versus AtA

Let A be any matrix. The nullspace of A equals the nullspace of AtA.

If x is in the nullspace of A, then Ax = 0. Multiplying by At leads to
AtAx = 0, so x is in the nullspace of AtA.

Conversely, if x is in the nullspace of AtA, then AtAx = 0. By the dot-
product-transpose identity (2.2.8),

|Ax|2 = Ax ·Ax = x ·AtAx = 0,

so Ax = 0, which means x is in the nullspace of A.

An important example of linearly independent vectors are orthonormal
vectors.

Orthonormal Implies Linearly Independent

If v1, v2, . . . , vd are orthonormal, they are linearly independent.

To see this, suppose we have a vanishing linear combination

t1v1 + t2v2 + · · ·+ tdvd = 0.

Take the dot product of both sides with v1. Since the dot products of any
two vectors is zero, and each vector has length one, we obtain

78 CHAPTER 2. LINEAR GEOMETRY

t1 = t1v1 · v1 = t1v1 · v1 + t2v2 · v1 + · · ·+ tdvd · v1 = 0.

Similarly, all other coefficients tk are zero. This shows v1, v2, . . . , vd are
linearly independent.

In general, nullspace() returns a minimal set of vectors spanning the
nullspace of A. The nullity of A is the number of vectors returned by the
method nullspace().

For example, to compute the nullspace of the matrix

C = At =

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

 ,

we solve Cx = 0. Since the code

from sympy import *

u = Matrix([1,2,3,4,5])

v = Matrix([6,7,8,9,10])

w = Matrix([11,12,13,14,15])

A = Matrix.hstack(u,v,w)

C = A.T

C.nullspace()

returns the list of three vectors


1
−2
1
0
0

 ,


2
−3
0
1
0

 ,


3
−4
0
0
1


 ,

here we can make three conclusions: (1) the nullspace of C is spanned by
three vectors, (2) this is the least number of vectors that spans the nullspace
of C, and (3) the nullity of C is 3.

Let u be a nonzero vector, and let

u⊥ = {v : u · v = 0} . (2.4.9)

2.4. SPAN AND LINEAR INDEPENDENCE 79

Then u⊥ (pronounced “u-perp”), the orthogonal complement of u, is a span
and consists of all vectors orthogonal to u.

When u is in R2, u⊥ is a line, and we previously defined u⊥ in §A.4 to be
a vector spanning that line. Specifically, when u = (x, y), in §A.4 we defined
u⊥ = (−y, x).

More generally, suppose S is any collection of vectors, not necessarily a
span, and let

S⊥ = {v : u · v = 0 for all u in S} .

Then S⊥ (pronounced “S-perp”), the orthogonal complement of S, is a span
(even if S isn’t) and consists of all vectors orthogonal to all vectors in S.

Suppose S consists of five vectors a, b, c, d, e. How do we compute S⊥?
The answer is by using nullspace: Let A be the matrix with rows a, b, c, d,
e. By matrix-vector multiplication,

0 = Ax =


a
b
c
d
e

x =


a · x
b · x
c · x
d · x
e · x

 .

This shows x is orthogonal to a, b, c, d, e exactly when x is in the nullspace
of A. Thus S⊥ equals the nullspace of A.

In general, if S = span(v1, v2, . . . , vN), let A be the matrix with rows v1,
v2, . . . , vN . Then S⊥ equals the nullspace of A.

An important example of orthogonality is the relation between row space
and the nullspace. Suppose A has rows v1, v2, . . . , vN , and x is a vector, all
of the same dimension. Then, by definition, the matrix-vector product is

Ax = (v1 · x, v2 · x, . . . , vN · x).

If x is in the nullspace, Ax = 0, then

v1 · x = 0, v2 · x = 0, . . . , vN · x = 0,

so x is orthogonal to the rows of A. Conversely, if x is orthogonal to the rows
of A, then Ax = 0.

This shows the nullspace of A and the row space of A are orthogonal com-
plements. Summarizing, we write

80 CHAPTER 2. LINEAR GEOMETRY

Row Space and Null Space are Orthogonal

Every vector in the row space is orthogonal to every vector in the
nullspace,

rowspace⊥ = nullspace and nullspace⊥ = rowspace. (2.4.10)

Actually, the above paragraph only established the first identity. For the
second identity, we need to use (2.7.9), as follows

rowspace =
(
rowspace⊥

)⊥
= nullspace⊥.

Since the row space is the orthogonal complement of the nullspace, and
the nullspace of A equals the nullspace of AtA, we conclude

A Versus AtA

Let A be any matrix. Then the row space of A equals the row space
of AtA.

Now replace A by At in this last result. Since the row space of At equals
the column space of A, and AAt is symmetric, we also have

A Versus AAt

Let A be any matrix. Then the column space of A equals the column
space of AAt.

Let A be a matrix and b a vector. So far we’ve met four spaces,

• the nullspace: all x’s satisfying Ax = 0,
• the row space: the span of the rows of A,
• the column space: the span of the columns of A,
• the solution space: the solutions x of Ax = b.

A set S of vectors is a subspace if x1+x2 is in S whenever x1 and x2 are in
S, and tx is in S whenever x is in S. When this happens, we say S is closed
under addition and scalar multiplication: A subspace is a set of vectors closed
under addition and scalar multiplication.

Since a linear combination of linear combinations is a linear combination,
every span is a subspace. In particular, Rd is a subspace.

2.4. SPAN AND LINEAR INDEPENDENCE 81

It’s important to realize the first three are subspaces, but the fourth is
not.

• If x1 and x2 are in the nullspace, and r1 and r2 are scalars, then so is
r1x1 + r2x2, because

A(r1x1 + r2x2) = r1Ax1 + r2Ax2 = r10 + r20 = 0.

This shows the nullspace is a subspace. In particular, S⊥ is a subspace
for any S.

• The row space is a span, so is a subspace.
• The column space is a span, so is a subspace.
• The solution space S of Ax = b is not a subspace, nor a span: If x is in
S, then Ax = b, so A(5x) = 5Ax = 5b, so 5x is not in S.

If x1 and x2 are solutions of Ax = b, then A(x1+x2) = 2b, so the solution
space is not a subspace. However

A(x1 − x2) = b− b = 0, (2.4.11)

so the difference x1 −x2 of any two solutions x1 and x2 is in the nullspace of
A, which is a span.

Let A be an N × d matrix. Then matrix multiplication by A transforms a
vector x to the vector b = Ax. Since A is N ×d, x is in Rd, and Ax is in RN .
From this point of view, the source space of A is Rd, and the target space of
A is RN .

Locations of Column, Row, and Null Spaces

Let A be any matrix. The nullspace of A and the row space of A are
in the source space of A, and the column space of A is in the target
space of A.

Let A be a d × d invertible matrix. Then the source space is Rd and the
target space is Rd. If Ax = 0, then

x = (A−1A)x = A−1(Ax) = A−10 = 0.

This shows the nullspace of an invertible matrix is zero, hence the nullity is
zero.

82 CHAPTER 2. LINEAR GEOMETRY

Since the row space is the orthogonal complement of the nullspace, we
conclude the row space is all of Rd.

In §2.9, we see that the column rank and the row rank are equal. From
this, we see also the column space is all of Rd. In summary,

Null Space of Invertible Matrix

Let A be a d×d invertible matrix. Then the nullspace is zero, and the
row space and column space are both Rd. In particular, the nullity is
0, and the row rank rank and column rank are both d.

Exercises

Exercise 2.4.1 For what condition on a, b, c do the vectors (1, a), (2, b),
(3, c) lie on a line?

Exercise 2.4.2 Let

C =

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

 , x =


16
17
18
19
20

 .

Compute Cx in two ways, first by row times column, then as a linear combi-
nation of the columns of C.

Exercise 2.4.3 Check that the array in Figure 2.1 matches with b1, b2 as
explained in the text, and the vectors b1 and b2 are orthogonal.

Exercise 2.4.4 [32] Let a = (1, 1, 0, 0), b = (0, 0, 1, 1), c = (1, 0, 1, 0), d =
(0, 1, 0, 1). Check whether or not a, b, c, d are linearly independent by solving
ra+ sb+ tc+ ud = 0. Is ra+ sb+ tc+ ud = (0, 0, 0, 1) solvable? Do a, b, c, d
span R4?

Exercise 2.4.5 LetA = (u, v, w) be as in (2.3.4) and let b = (16, 17, 18, 19, 20).
Is b in the column space of A? If yes, solve b = ru+ sv + tw.

Exercise 2.4.6 Let A = (u, v, w) be as in (2.3.4) and let Q = AtA. What
are the source and target spaces for A and Q? Calculate column spaces, row
spaces, and nullspaces of A and Q. How are they related?

Exercise 2.4.7 Let A = (u, v, w) be as in (2.3.4) and let Q = AAt. What
are the source and target spaces for A and Q? Calculate column spaces, row
spaces, and nullspaces of A and Q. How are they related?

2.4. SPAN AND LINEAR INDEPENDENCE 83

Exercise 2.4.8 [32] Let A be a 64 × 17 matrix with rank 11. How many
linearly independent vectors x solve Ax = 0? How many linearly independent
vectors x solve Atx = 0?

Exercise 2.4.9 Let A(N, d) be the matrix returned by the code

from sympy import *

def col(N,j): return Matrix([1+i+j*N for i in range(N)])

def A(N,d): return Matrix.hstack(*[col(N,j) for j in range(d)])

What are A(5, 3) and A(3, 5)? What are the source and target spaces for
A(N, d)?

Exercise 2.4.10 Calculate the column rank of the matrix A(N, d) for all
N ≥ 2 and all d ≥ 2. (Column rank is the length of the list columnspace

returns.)

Exercise 2.4.11 What is the nullity of the matrix A(N, d) for all N ≥ 2 and
all d ≥ 2?

Exercise 2.4.12 Show directly from the definition the vectors

u = (2, ∗, ∗, ∗, ∗, ∗), v = (0, 7, ∗, ∗, ∗, ∗), w = (0, 0, 0, 1, ∗, ∗), x = (0, 0, 0, 0, 0, 3)

are linearly independent.

Exercise 2.4.13 Let a, b, c, d be the rows of the matrix

E =


2 1 0 1 3 7
0 7 7 2 0 5
0 0 0 1 3 1
0 0 0 0 0 3


Show directly from the definition a, b, c, d are linearly independent. A

matrix with this staircase pattern is in echelon form.

Exercise 2.4.14 Let E be the matrix in Exercise 2.4.4. Solve Ex = 0 to
obtain the nullspace of E and the nullity of E.

Exercise 2.4.15 [27] Let x, y, z be three nonzero vectors, and w = 2y −
2x + z. If z = x − y, find r and s with w = rx + sy. Which of the following
must be true?

1. span(x, y, z) = span(w, y, z),
2. span(w, z) = span(y, z),
3. span(x, z) = span(x, z, w),
4. span(x, z) = span(w, x),
5. span(w, x, y) = span(w, x, z).

84 CHAPTER 2. LINEAR GEOMETRY

Exercise 2.4.16 [27] Let a be a linear combination of x, y, z. Select the best
statement.

1. span(u, v, w) is contained or equal to span(u, v, w, a),
2. span(u, v, w) is equal to span(u, v, w, a),
3. There is no obvious relationship between span(u, v, w) and span(u, v, w, a),
4. span(u, v, w) is not equal to span(u, v, w, a).

2.5 Zero Variance Directions

Let x1, x2, . . . , xN be a dataset in Rd. Then x1, x2, . . . , xN are N points in
Rd, and each x has d features, x = (t1, t2, . . . , td). From §1.4, the mean is

µ =
x1 + x2 + · · ·+ xN

N
.

Center the dataset (see §1.3)

v1 = x1 − µ, v2 = x2 − µ, . . . , vN = xN − µ,

and let A be the dataset matrix with columns v1, v2, . . . , vN . By (2.2.14),
the variance is

Q =
v1 ⊗ v1 + v2 ⊗ v2 + · · ·+ vN ⊗ vN

N
=

1

N
AAt. (2.5.1)

If u is a unit vector, the projection of the centered dataset onto the line
through u results in the reduced dataset

v1 · u, v2 · u, . . . , vN · u.

This reduced dataset is centered, and, by (2.2.13), its variance is

q =
(v1 · u)2 + (v2 · u)2 + · · ·+ (vN · u)2

N
=

1

N
vtAtAu = u ·Qu. (2.5.2)

We obtain this result, which was first stated in §1.4.

Variance of Reduced Dataset

Let Q be the variance matrix of a dataset and let u be a unit vector.
Then the variance of the reduced dataset onto the line through the
vector u equals the quadratic function u ·Qu.

A vector u is a zero variance direction if the reduced variance is zero,

u ·Qu = 0.

2.5. ZERO VARIANCE DIRECTIONS 85

We investigate zero variance directions, but first we need a definition.
Let b be a scalar and u a nonzero vector in Rd. A hyperplane orthogonal

to v is the set of points x satisfying the equation

u · x+ b = 0.

In R3, a hyperplane is a plane, in R2, a hyperplane is a line, and in R,
a hyperplane is a point, a threshhold. In general, in Rd, a hyperplane is
(d − 1)-dimensional, one less than the ambient dimension. When b = 0, the
hyperplane orthogonal to u is u⊥ (2.4.9).

The hyperplane passes through a point µ if

u · µ+ b = 0.

By subtracting the last two equations, the equation of a hyperplane orthog-
onal to u and passing through µ is

u · (x− µ) = 0.

Zero Variance Directions

Let µ and Q be the mean and variance of a dataset in Rd. Then
u · Qu = 0 is equivalent to every point in the dataset being in the
hyperplane passing through µ and orthogonal to u,

u · (x− µ) = 0.

This is easy to see. Let the dataset be x1, x2, . . . , xN , and center it to v1,
v2, . . . , vN . If u ·Qu = 0, then, by (2.5.2), vk ·u = 0 for k = 1, 2, . . . , N . Thus
x1, x2, . . . , xN lie on the hyperplane u · (x−µ) = 0. Here are some examples.

In two dimensions R2, a line is determined by a point on the line and a
vector orthogonal to the line. If u = (a, b) is the vector orthogonal to the line
and (x0, y0), (x, y) are points on the line, then (x, y)− (x0, y0) is orthogonal
to u, or

(a, b) · ((x, y)− (x0, y0)) = 0.

Writing this out, the equation of the line is

a(x− x0) + b(y − y0) = 0, or ax+ by = c,

where c = ax0 + by0.
If the mean and variance of a dataset are µ = (2, 3) and

Q =

(
1 −1
−1 1

)
,

86 CHAPTER 2. LINEAR GEOMETRY

and u = (1, 1), then Qu = 0, so u · Qu = 0. Since the line x + y = 5 passes
through the mean, the dataset lies on this line. We conclude this dataset is
one-dimensional.

If

Q =

(
3 0
0 1

)
,

and u = (x, y), then
u ·Qu = 3x2 + y2,

so u ·Qu is never zero unless v = 0. In this case, we conclude the dataset is
two-dimensional, because it does not lie on a line.

In three dimensions R3, a plane is determined by a point (x0, y0, z0) and
a vector u = (a, b, c). The point is in the plane, and the vector is orthogonal
to the plane. If (x, y, z) is any point in the plane, then (x, y, z)− (x0, y0, z0)
is orthogonal to u, so the equation of the plane is

(a, b, c) · ((x, y, z)− (x0, y0, z0)) = 0, or ax+ by + cz = d,

where d = ax0 + by0 + cz0.
Suppose we have a dataset in R3 with mean µ = (3, 2, 1), and variance

Q =

1 1 1
1 1 1
1 1 1

 . (2.5.3)

Let u = (2,−1,−1). Then Qu = 0, so u · Qu = 0. We conclude the dataset
lies in the plane

(2,−1,−1) · ((x, y, z)− (x0, y0, z0)) = 0, or 2x− y − z = 3.

In this case, the dataset is two-dimensional, it lies in a plane.
If a dataset has variance the 3 × 3 identity matrix I, then u · Iu is never

zero unless u = 0. Such a dataset is three-dimensional, it does not lie in a
plane.

Sometimes there may be several zero variance directions. For example, for
the variance (2.5.3) and u = (2,−1,−1), v = (0, 1,−1), we have both

u ·Qu = 0 and v ·Qv = 0.

From this we see the dataset corresponding to this Q lies in two planes: the
plane orthogonal to u, and the plane orthogonal v. Since the intersection of
two planes is a line, the dataset lies in a line, it is one-dimensional.

Which line does this dataset lie in? Well, the line has to pass through the
mean, and is orthogonal to u and v. If we find a vector b satisfying b · u = 0
and b · v = 0, then the line will pass through the mean and will be parallel to

2.5. ZERO VARIANCE DIRECTIONS 87

b. But we know how to find such a vector. Let A be the matrix with rows u, v.
Then b in the nullspace of A fulfills the requirements. We obtain b = (1, 1, 1).

Let v1, v2, . . . , vN be a centered dataset of vectors in Rd, and let Q be
the variance matrix of the dataset. If u is in the nullspace of Q, then Qu = 0,
so u · Qu = 0. This shows every vector in the nullspace is a zero variance
direction. What is less clear is that this works in the other direction.

Zero Variance Directions and Nullspace I

Let Q be a variance matrix. Then the nullspace of Q equals the zero
variance directions of Q.

To see this, we use the quadratic equation. If Q is symmetric, then u·Qv =
v ·Qu. For t scalar and u, v vectors, since Q ≥ 0, the function

(v + tu) ·Q(v + tu)

is nonnegative for all t scalar. Expanding this function into powers of t, we
see

t2u ·Qu+ 2tu ·Qv + v ·Qv = at2 + 2bt+ c

is nonnegative for all t scalar. Thus the bottom of the parabola at2 + 2bt+ c
is nonnegative. By completing the square, the bottom is c− b2/a, so b2 ≤ ac,
which yields

(u ·Qv)2 ≤ (u ·Qu) (v ·Qv). (2.5.4)

Now we can derive the result. If u is a zero variance direction, then u·Qu =
0. By (2.5.4), this implies u·Qv = 0 for all v, soQu = 0, so u is in the nullspace
of Q. This derivation is valid for any nonnegative matrix Q, not just variance
matrices. Later (§3.2) we see every nonnegative matrix is the variance matrix
of a dataset.

Based on the above result, here is code that returns zero variance direc-
tions.

from numpy import *

from scipy.linalg import null_space

from numpy.random import default_rng

samples = default_rng().random

88 CHAPTER 2. LINEAR GEOMETRY

d, N = 2, 20

dataset = samples((d,N))

def zero_variance(dataset):

Q = cov(dataset)

return null_space(Q)

zero_variance(dataset)

Let A be an N×d dataset matrix, and let Q be the variance of the dataset.
If the dataset is centered, by (2.2.20), Q = AtA/N . Then the nullspace of Q
equals the nullspace of AtA, which equals the nullspace of A. We conclude

Zero Variance Directions and Nullspace II

Let Q be a variance matrix of a centered dataset A. Then the nullspace
of A equals the zero variance directions of Q.

Suppose the dataset is

(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15), (16, 17, 18, 19, 20).

This is four vectors in R5. Since it is only four vectors, it is at most a four-
dimensional dataset. The code zero_variance returns three vectors

(1,−2, 1, 0, 0), (2,−3, 0, 1, 0), (3,−4, 0, 0, 1).

Thus this dataset is orthogonal to three directions, hence lies in the intersec-
tion of three hyperplanes. Each hyperplane is one condition, so each hyper-
plane cuts the dimension down by one, so the dimension of this dataset is
5− 3 = 2. Dimension of a dataset is discussed further in §2.9.

2.6 Pseudo-Inverse

What is the pseudo-inverse? In §2.3, we used both the inverse and the pseudo-
inverse to solve Ax = b, but we didn’t explain the framework behind them. It
turns out the framework is best understood geometrically. Throughout this
section, we refer to

Ax = b

as the linear system.
Think of b and Ax as points, and measure the distance between them, and

think of x and the origin 0 as points, and measure the distance between them
(Figure 2.2).

2.6. PSEUDO-INVERSE 89

0

x

source space

A−−−−−−−−→

Ax

b

target space

Fig. 2.2 The points 0, x, Ax, and b.

If the linear system is solvable, then, among all solutions x∗, select the
solution x+ closest to 0.

More generally, if the linear system is not solvable, select the points x∗ so
that Ax∗ is closest to b, then, among all such x∗, select the point x+ closest
to the origin (this is “closest twice”).

Even though the point x+ may not solve the linear system, this procedure
results in a uniquely determined x+: While there may be several points x∗,
there is only one x+. Figure 2.3 summarizes the situation for a 2× 2 matrix
A with rank(A) = 1.

0

x+

rowspace

v
v nullspace

x∗ x∗

x

x

x

A−−−−−−−−→

b

Ax∗

column space

Ax
Ax

Ax

Fig. 2.3 The points x, Ax, the points x∗, Ax∗, and the point x+.

Key concepts in this section are the residual

|Ax− b|2 (2.6.1)

and the regression equation

AtAx = Atb. (2.6.2)

Then

90 CHAPTER 2. LINEAR GEOMETRY

Zero Residual

x is a solution of the linear system iff the residual (2.6.1) is zero.

The results in this section are as follows. Let A be any matrix. There is a
unique matrix A+ — the pseudo-inverse of A—with the following properties.

• The linear system is solvable when b = AA+b.
• The regression equation is always solvable.
• x+ = A+b is a solution of

1. the linear system, if it is solvable.
2. the regression equation, always.

• In either case,

1. there is exactly one solution x∗ with minimum norm.
2. Among all solutions, x+ has minimum norm.
3. Every other solution is x∗ = x+ + v for some v in the nullspace of A.

For A as in (2.3.4) and b = (−9,−3, 3, 9, 10), the linear system is

x+ 6y + 11z = −9

2x+ 7y + 12z = −3

3x+ 8y + 13z = 3

4x+ 9y + 14z = 9

5x+ 10y + 15z = 10

(2.6.3)

and the regression equation is

11x+ 26y + 41z = 16

13x+ 33y + 53z = 13

41x+ 106y + 171z = 36.

(2.6.4)

Let b be any vector, not necessarily in the column space of A. To see how
close we can get to solving the linear system, we minimize the residual (2.6.1).
We say x∗ is a residual minimizer if

2.6. PSEUDO-INVERSE 91

|Ax∗ − b|2 = min
x

|Ax− b|2. (2.6.5)

A residual minimizer always exists.

Existence of Residual Minimizer

There is a residual minimizer x∗ in the row space of A.

The derivation of this technical result is in §4.3, see (4.3.10), (4.3.11).

Regression Equation

x∗ is a residual minimizer iff x∗ solves the regression equation.

To see this, let v be any vector, and t a scalar. Insert x = x∗ + tv into the
residual and expand in powers of t to obtain

|Ax− b|2 = |Ax∗ − b|2 + 2t(Ax∗ − b) ·Av + t2|Av|2 = f(t).

If x∗ is a residual minimizer, then f(t) is minimized when t = 0. But a
parabola

f(t) = α+ 2βt+ γt2

is minimized at t = 0 only when β = 0. Thus the linear coefficient vanishes,
β = (Ax∗ − b) ·Av = 0. This implies

At(Ax∗ − b) · v = (Ax∗ − b) ·Av = 0.

Since v is any vector, this implies

At(Ax∗ − b) = 0,

which is the regression equation. Conversely, if the regression equation holds,
then the linear coefficient in the parabola f(t) vanishes, so t = 0 is a mini-
mum, establishing that x∗ is a residual minimizer.

If x1 and x2 are solutions of the regression equation, then

AtA(x1 − x2) = AtAx1 −AtAx2 = Atb−Atb = 0,

so x1 − x2 is in the nullspace of AtA. But from §2.4, the nullspace of AtA
equals the nullspace of A. We conclude x1 − x2 is in the nullspace of A. This
establishes

92 CHAPTER 2. LINEAR GEOMETRY

Multiple Solutions

Any two residual minimizers differ by a vector in the nullspace of A.

We say x+ is a minimum norm residual minimizer if x+ is a residual
minimizer and

|x+|2 ≤ |x∗|2

for any residual minimizer x∗.
Since any two residual minimizers differ by a vector in the nullspace of A,

x+ is a minimum norm residual minimizer if x+ is a residual minimizer and

|x+|2 ≤ |x+ + v|2

for any v in the nullspace of A.

Minimum Norm Residual Minimizer

Let x∗ be a residual minimizer. Then x∗ is a minimum norm residual
minimizer iff x∗ is in the row space of A.

Since we know from above there is a residual minimizer in the row space
of A, we always have a minimum norm residual minimizer.

Let v be in the nullspace of A, and write

|x∗ + v|2 = |x∗|2 + 2x∗ · v + |v|2.

This shows x∗ is a minimum norm solution of the regression equation iff

2x∗ · v + |v|2 ≥ 0. (2.6.6)

If x∗ is in the row space of A, then x∗ · v = 0, so (2.6.6) is valid.
Conversely, if (2.6.6) is valid for every v in the nullspace of A, replacing v

by tv yields
2tx∗ · v + t2|v|2 ≥ 0.

Dividing by t and inserting t = 0 yields

x∗ · v ≥ 0.

Since both ±v are in the nullspace of A, this implies ±x∗ · v ≥ 0, hence
x∗ ·v = 0. Since the row space is the orthogonal complement of the nullspace,
the result follows.

2.6. PSEUDO-INVERSE 93

Now we use this to show

Uniqueness

There is exactly one minimum norm residual minimizer x+.

If x+
1 and x+

2 are minimum norm residual minimizers, then v = x+
1 − x+

2

is both in the row space and in the nullspace of A, so x+
1 − x+

2 = 0. Hence
x+
1 = x+

2 .
Putting the above all together, each vector b leads to a unique x+. Defining

A+ by setting
x+ = A+b,

we obtain A+, the pseudo-inverse of A.
Notice if A is, for example, 5× 4, then Ax = b implies x is a 4-vector and

b is a 5-vector. Then from x = A+b, it follows A+ is 4× 5. Thus the shape of
A+ equals the shape of At.

Summarizing what we have so far,

Regression Equation is Always Solvable

The regression equation is always solvable. The solution of minimum
norm is x+ = A+b. Any other solution differs by a vector in the
nullspace of A.

For A as in (2.3.4) and b = (−9,−3, 3, 9, 10),

x+ = A+b =
1

15

 82
25
−32


is the minimum norm solution of the regression equation (2.6.4).

Returning to the linear system Ax = b, we show

Linear System Versus Regression Equation

If the linear system is solvable, then every solution of the regression
equation is a solution of the linear system, and vice-versa.

We know any two solutions of the linear system differ by a vector in the
nullspace of A (2.4.11), and any two solutions of the regression equation
(2.6.2) differ by a vector in the nullspace of A (above).

If x is a solution of the linear system, then, by multiplying the linear system
by At, x is a solution of the regression equation (2.6.2). Since x+ = A+b is

94 CHAPTER 2. LINEAR GEOMETRY

a solution of the regression equation, x+ = x+ v for some v in the nullspace
of A, so

Ax+ = A(x+ v) = Ax+Av = b+ 0 = b.

This shows x+ is a solution of the linear system. Since all other solutions
differ by a vector v in the nullspace of A, this establishes the result.

Now we can state when the linear system is solvable,

Solvability of Ax = b

The linear system is solvable iff b = AA+b. When this happens, x+ =
A+b is the solution of minimum norm.

If the linear system is solvable, then from above, x+ is a solution, so

AA+b = A(A+b) = Ax+ = b.

Conversely, if AA+b = b, then clearly x+ = A+b is a solution of the linear
system.

When the linear system is solvable, the linear system and the regression
equation have the same solutions, so x+ is the minimum norm solution of the
linear system.

For example, let b = (−9,−3, 3, 9, 10), and let A be as in (2.3.4). Since

AA+b =


−8
−3
2
7
12

 (2.6.7)

is not equal to b, the linear system Ax = b is not solvable.

Suppose A is invertible. Then the linear system has only the solution
x = A−1b, so A−1b is the minimum norm residual minimizer. We conclude

Inverse Equals Pseudo-Inverse

If A is invertible, then A+ = A−1.

The key properties [25] of A+ are

2.6. PSEUDO-INVERSE 95

Properties of Pseudo-Inverse

The pseudo-inverse of A is the unique matrix A+ satisfying

A. AA+A = A

B. A+AA+ = A+

C. AA+ is symmetric

D. A+A is symmetric

(2.6.8)

The verification of these properties is very enlightening, so we do it care-
fully. Let u be a vector and set b = Au. Then the residual

|Ax− b|2 = |Ax−Au|2

is minimized at x = u. Since A+b = A+Au is the minimum norm residual
minimizer, u and A+Au differ by a vector v in the nullspace of A,

u = A+Au+ v. (2.6.9)

Since Av = 0, multiplying both sides by A leads to

Au = AA+Au.

Since u was any vector, this yields A.
Now let w be a vector and set u = A+w. Inserting into (2.6.9) yields

A+w = A+AA+w + v

for some v in the nullspace of A. But both A+w and A+AA+w are in the row
space of A, hence so is v. Since v is in both the nullspace and the row space,
v is orthogonal to itself, so v = 0. This implies A+AA+w = A+w. Since w
was any vector, we obtain B.

Since A+b solves the regression equation, AtAA+b = Atb for any vector b.
Hence AtAA+ = At. With P = AA+,

P tP = (AA+)t(AA+) = (A+)tAtAA+ = (A+)tAt = P t.

Since the left side is symmetric, so is P t. Hence P is symmetric, obtaining
C.

For any vector x,

A(x−A+Ax) = Ax−AA+Ax = 0,

so x − A+Ax is in the nullspace of A. For any y, A+Ay is in the row space
of A. Since the row space and the nullspace are orthogonal,

96 CHAPTER 2. LINEAR GEOMETRY

(x−A+Ax) ·A+Ay = 0.

Let P = A+A. This implies

x · Py = Px · Py = x · P tPy

Since this is true for any vectors x and y, P = P tP . This shows P = A+A is
symmetric, obtaining D.

Having arrived at A, B, C, D, the reasoning is reversible: It can be shown
any matrix A+ satisfying A, B, C, D must equal the pseudo-inverse (see
Exercise 2.7.12).

An immediate consequence of (2.6.8) is

Pseudo-Inverse of Pseudo-Inverse

(A+)
+
= A for any matrix A.

Also we have

Pseudo-Inverse and Transpose

If U has orthonormal columns or orthonormal rows, then U+ = U t.

From (2.2.9), such a matrix U satisfies UU t = I or U tU = I. In either
case, A, B, C, D are immediate consequences.

In general, (AB)+ = B+A+ is not correct. However, in special cases, it is
correct.

Exercises

Exercise 2.6.1 Let A be the 1× 3 matrix (1, 2, 3). What is A+?

Exercise 2.6.2 Let A(N, d) be as in Exercise 2.4.9, and let A = A(6, 4).
Let b = (1, 1, 1, 1, 1, 1). Write out Ax = b as a linear system. How many
equations, how many unknowns?

Exercise 2.6.3 With A and b as in Exercise 2.6.2, is Ax = b solvable? If so,
provide a solution.

2.7. PROJECTIONS 97

Exercise 2.6.4 Continuing with the same A and b, write out the correspond-
ing regression equation. How many equations, how many unknowns?

Exercise 2.6.5 With A and b as in Exercise 2.6.2, is the regression equation
solvable? If so, provide a solution.

Exercise 2.6.6 With A and b as in Exercise 2.6.2, what is the minimum
norm residual minimizer x+?

Exercise 2.6.7 Let µ be a unit vector, and let Q = I − µ ⊗ µ. Use (2.6.8)
and Exercise 2.2.3 to show Q+ = Q.

Exercise 2.6.8 Use (2.6.8) to show the transpose of the pseudo-inverse is
the pseudo-inverse of the transpose,

(At)+ = (A+)t.

Exercise 2.6.9 Let Q be symmetric. Show Q+ is symmetric.

Exercise 2.6.10 Let Q be symmetric. Show Q and Q+ commute,

QQ+ = Q+Q.

Exercise 2.6.11 Let A be any matrix. Then the nullspace of A equals the
nullspace of A+A. Use (2.6.8).

Exercise 2.6.12 Let A be any matrix. Then the row space of A equals the
row space of A+A.

Exercise 2.6.13 Let A be any matrix. Then the column space of A equals
the column space of AA+.

Exercise 2.6.14 Let A be any matrix and Q = AtA. Then Q+ = A+(A+)t.

Exercise 2.6.15 Let A be a matrix with Q = AtA invertible. Show A+ =
Q−1At and A+A = I. In this case, A+ is called a left inverse.

Exercise 2.6.16 Let A be a matrix with Q = AAt invertible. Show A+ =
AtQ−1 and AA+ = I. In this case, A+ is called a right inverse.

2.7 Projections

Let A be any matrix. In this section, we study projection matrices P , and
we show

• P = AA+ is the projection matrix onto the column space of A,
• P = A+A is the projection matrix onto the row space of A,

98 CHAPTER 2. LINEAR GEOMETRY

• P = I −A+A is the projection matrix onto the null space of A,

Let u be a unit vector, and let b be any vector. Let span(u) be the line
through u (Figure 2.4). The projection of b onto span(u) is the vector v in
span(u) that is closest to b.

It turns out this closest vector v equals Pb for some matrix P , the projec-
tion matrix. Since span(u) is a line, the projected vector Pb is a multiple tu
of u.

From Figure 2.4, b− Pb is orthogonal to u, so

0 = (b− Pb) · u = b · u− Pb · u = b · u− t u · u = b · u− t.

Solving for t, this implies t = b · u. Thus

Pb = (b · u)u = (u⊗ u)b. (2.7.1)

From here, we conclude P = u⊗ u. Equivalently, if U is the matrix with the
single column u, we obtain P = UU t.

Notice Pb = b when b is already on the line through u. In other words,
the projection of a vector onto a line equals the vector itself when the vector
is already on the line.

To summarize, the projected vector is the vector (b · u)u, and the reduced
vector is the scalar b ·u. If U is the matrix with the single column u, then the
reduced vector is U tb and the projected vector is UU tb.

u

b

Pb = tu

b− Pb

Fig. 2.4 Projecting onto a line.

Now we project onto a plane. Let u, v be an orthonormal pair of vectors,
so u ·v = 0, u ·u = 1 = v ·v. We project a vector b onto span(u, v). As before,

2.7. PROJECTIONS 99

there is a matrix P , the projection matrix, such that the projection of b onto
the plane equals Pb. Then b − Pb is orthogonal to the plane (Figure 2.5),
which means b− Pb satisfies

(b− Pb) · u = 0 and (b− Pb) · v = 0.

Since Pb lies in the plane, Pb = ru + sv is a linear combination of u and v.
Inserting Pb = ru+ sv, we obtain

r = b · u, s = b · v.

If U is the matrix with columns u, v, by (2.2.11) and (2.2.14), this yields,

Pb = (b · u)u+ (b · v)v = (u⊗ u+ v ⊗ v)b = UU tb,

Hence the projection matrix is P = UU t.
Notice Pb = b when b is already in the plane. In other words, the projection

of a vector onto a plane equals the vector itself when the vector is already in
the plane.

To summarize, here the projected vector is the vector UU tb, and the reduced
vector is the vector U tb. The projected vector has the same dimension as the
original vector, and the reduced vector is in R2.

u

v

Pb

b

b− Pb

Fig. 2.5 Projecting onto a plane, Pb = ru+ sv.

We define projection matrices in general. Let S be a span. A matrix P is
the projection matrix onto S if

100 CHAPTER 2. LINEAR GEOMETRY

1. Pv is in S for any vector v,
2. Pv = v if v is in S,
3. v − Pv is orthogonal to S for any vector v.

We say the projection matrix onto S because there is only one such matrix
corresponding to a given S, see Exercise 2.7.10.

Here is a characterization without mentioning S. A matrix P is a projection
matrix if

1. P 2 = P ,
2. P t = P .

What is the relation between these two versions? We show they are the same.

Characterization of Projections

If P is the projection matrix onto a span S, then P is a projection
matrix. Conversely, if P is a projection matrix, then P is the projection
matrix onto the column space S of P .

To prove this, suppose P is the projection matrix onto some span S. For
any v, by 1., Pv is in S. By 2., P (Pv) = Pv. Hence P 2 = P . Also, for any u
and v, Pv is in S, and u− Pu is orthogonal to S. Hence

(u− Pu) · Pv = 0

which implies
u · Pv = (Pu) · (Pv).

Switching u and v,
v · Pu = (Pv) · (Pu),

Hence
u · (Pv) = (Pu) · v,

which implies P = P t.
For the other direction, suppose P is a projection matrix, and let S be the

column space of P . Then a vector x is in S iff x is of the form x = Pv. This
establishes 1. above. Since

Px = P (Pv) = P 2v = Pv = x,

this establishes 2. above. Similarly, P t = P implies 3. above.

2.7. PROJECTIONS 101

Projection Onto Column Space

Let A be any matrix. Then the projection matrix onto the column
space of A is

P = AA+. (2.7.2)

To see this, let P = AA+. By (2.6.8),

P 2 = AA+AA+ = (AA+A)A+ = AA+ = P,

and P is symmetric. Hence P is a projection matrix. By the previous result,
P is the projection matrix onto the column space of P = AA+. But by
Exercise 2.6.13, the column spaces of A and of P agree. Thus P is the
projection matrix onto the column space of A.

Now let x = A+b. Then Ax = AA+b = Pb is the projection of b onto
the column space of A. If the columns of A are v1, v2, . . . , vd, and x =
(t1, t2, . . . , td), then by matrix-vector multiplication,

Pb = t1v1 + t2v2 + · · ·+ tdvd.

Since the reduced vector x consists of the coefficients when writing Pb as a
linear combination of the columns of A, this shows A+b is the reduced vector.

from numpy import *

from scipy.linalg import pinv

projection of column vector b

onto column space of A

assume len(b) == len(A.T)

def project(A,b):

Aplus = pinv(A)

x = dot(Aplus,b) # reduced

return dot(A,x) # projected

Projected and Reduced Vectors

Let A be a matrix and b a vector, and project onto the column space
of A. Then the projected vector is Pb = AA+b and the reduced vector
is x = A+b.

For A as in (2.3.4) and b = (−9,−3, 3, 9, 10) the reduced vector onto the
column space of A is

102 CHAPTER 2. LINEAR GEOMETRY

x = A+b =
1

15
(82, 25,−32),

and the projected vector onto the column space of A is

Pb = Ax = AA+b = (−8,−3, 2, 7, 12).

The projection matrix onto the column space of A is

P = AA+ =
1

10


6 4 2 0 −2
4 3 2 1 0
2 2 2 2 2
0 1 2 3 4
−2 0 2 4 6

 .

In the same way, one can show

Projection Onto Row Space

The projection matrix onto the row space of A is

P = A+A. (2.7.3)

For A as in (2.3.4), the projection matrix onto the row space is

P = A+A =
1

6

 5 2 −1
2 2 2
−1 2 5



When the columns of a matrix U are orthonormal, in the previous section
we saw U+ = U t, so we have

Projection onto Orthonormal Vectors

If the columns of U are orthonormal, the projection matrix onto the
column space of U is

P = UU t (2.7.4)

Here the projected vector is UU tb, and the reduced vector is U tb. The
code here is

2.7. PROJECTIONS 103

from numpy import *

projection of column vector b

onto column space of U

with orthonormal columns

assume len(b) == len(U)

def project_to_ortho(U,b):

x = dot(U.T,b) # reduced

return dot(U,x) # projected

Let v1, v2, . . . , vN be a dataset in Rd, and let U be a d× n matrix with
orthonormal columns. Then the projection matrix onto the column space of
U is P = UU t, and P is the projection onto an orthonormal span.

In this case, the dataset U tv1, U
tv2, . . . , U

tvN is the reduced dataset, and
UU tv1, UU tv2, . . . , UU tvN is the projected dataset.

The projected dataset is in Rd, and the reduced dataset is in Rn. Table
2.6 summarizes the relationships.

dataset vk in Rd, k = 1, 2, . . . , N

reduced Utvk in Rn, k = 1, 2, . . . , N

projected UUtvk in Rd, k = 1, 2, . . . , N

Table 2.6 Dataset, reduced dataset, and projected dataset, n < d.

from numpy import *

from scipy.linalg import pinv

projection of dataset

onto column space of A

Aplus = A.T # orthonormal columns

Aplus = pinv(A) # any matrix

reduced = array([dot(Aplus,v) for v in dataset])

projected = array([dot(A,x) for x in reduced])

Let S and T be spans. Let S + T consist of all sums of vectors u+ v with
u in S and v in T . Then a moment’s thought shows S + T is itself a span.

104 CHAPTER 2. LINEAR GEOMETRY

When the intersection of S and T is the zero vector, we write S ⊕ T , and we
say S ⊕ T is the direct sum of S and T .

Let S be a span and let S⊥ consist of all vectors orthogonal to S. We call
S⊥ the orthogonal complement. This is pronounced “S-perp”. If v is in both
S and in S⊥, then v is orthogonal to itself, hence v = 0. From this, we see
S + S⊥ is a direct sum S ⊕ S⊥.

Direct Sum and Orthogonal Complement I

If S is a span in Rd, then

Rd = S ⊕ S⊥. (2.7.5)

This is an immediate consequence of what we already know. Let P be the
projection matrix onto S. Since any vector v in Rd may be written

v = Pv + (v − Pv),

we see any vector is a sum of a vector in S and a vector in S⊥.
Let S be the span of a dataset x1, x2, . . . , xN . If S does not equal Rd,

then there is a nonzero vector in S⊥. This shows

Direct Sum and Orthogonal Complement II

If a dataset spans Rd and v is orthogonal to the dataset, then v = 0.
If v is not zero and is orthogonal to the dataset, then the dataset does
not span Rd.

Another way of saying the same thing: A vector v is orthogonal to the
whole space iff v is zero.

An important example of (2.7.5) is the relation between the row space and
the nullspace of a matrix. In §2.4, we saw that, for any matrix A, the row
space and the nullspace are orthogonal complements.

Taking S = nullspace in (2.7.5), we have the important

Null space plus Row Space Equals Source Space

If A is an N × d matrix,

nullspace⊕ rowspace = Rd, (2.7.6)

and the nullspace and row space are orthogonal to each other.

2.7. PROJECTIONS 105

From this,

Projection Onto Null Space

The projection matrix onto the nullspace of A is

P = I −A+A. (2.7.7)

For A as in (2.3.4), the projection matrix onto the nullspace is

P = I −A+A =
1

6

 1 −2 1
−2 4 −2
1 −2 1


Here P = u⊗ u, where u = (1,−2, 1)/

√
6, in agreement with (2.7.1).

The result (2.7.6) can be written as

Row Rank plus Nullity equals Source Space Dimension

For any matrix, the row rank plus the nullity equals the dimension of
the source space. If the matrix is N × d, r is the rank, and n is the
nullity, then

r + n = d.

Let S be the column space of a matrix A, and let P be the projection
matrix onto S. We end the section by establishing the claim made at the
start of the section, that Pb is the point in S that is closest to b.

Since every point in S is of the form Ax, we need to check

|Pb− b|2 = min
x

|Ax− b|2.

But this was already done in §2.3, since Pb = AA+b = Ax+ where x+ = A+b
is a residual minimizer.

Projection is the Nearest Point in the Span

Let Pb = AA+b be the projection of b onto the column space of A,
and let x+ = A+b be the reduced vector. Then

|Ax+ − b|2 = min
x

|Ax− b|2. (2.7.8)

106 CHAPTER 2. LINEAR GEOMETRY

Exercises

Exercise 2.7.1 Let A be a 7 × 12 matrix. What is the greatest the rank of
A can be? What is the least the rank of A can be? What if A is 12× 7?

Exercise 2.7.2 Let A be a 7 × 12 matrix. What is the greatest the nullity
of A can be? What is the least the nullity of A can be? What if A is 12× 7?

Exercise 2.7.3 Let A be a matrix and let u1, u2, . . . , ur be an orthonormal
basis for the column space of A. Show that the projection onto the column
space of A is

P = u1 ⊗ u1 + u2 ⊗ u2 + · · ·+ ur ⊗ ur.

Exercise 2.7.4 Let P be the projection matrix onto the column space of a
matrix A. Use Exercise 2.7.3 to show trace(P) equals the rank of A.

Exercise 2.7.5 Let A be a 10× 7 matrix and let Q = AtA. Then Q is 7× 7.
If the row rank of A is 5, what is the row rank of Q?

Exercise 2.7.6 Let A be the dataset matrix of the centered MNIST dataset,
so the shape of A is 60000× 784. Using Exercise 2.7.4 and sympy, compute
the rank of A.

Exercise 2.7.7 If µ is a unit vector, then P = I − µ⊗ µ is a projection.

Exercise 2.7.8 If µ and ν are orthogonal unit vectors, then P = I−µ⊗µ−
ν ⊗ ν is a projection.

Exercise 2.7.9 Let S be a span, and let P be the projection matrix onto S.
Use P to show (

S⊥)⊥ = S. (2.7.9)

(S ⊂ (S⊥)⊥ is easy. For S ⊃ (S⊥)⊥, show |v − Pv|2 = 0 when v in (S⊥)⊥.)

Exercise 2.7.10 Let S be a span and suppose P and Q are both projection
matrices onto S. Show

P = Q.

Exercise 2.7.11 Let A be any matrix. Then the nullspace and row space
of A equal the nullspace and row space of (A+)t. (Write out the projections
onto the row spaces.)

Exercise 2.7.12 Suppose ABA = A, BAB = B, and BA, AB are symmet-
ric. Show B = A+ in four steps. Let b be any vector. Step 1: (BA)(A+A) is
symmetric. Step 2: A+A = BA. Step 3: x = Bb satisfies AtAx = Atb. Step
4: x = Bb is in the row space of A.

2.8. BASIS 107

2.8 Basis

Let S be the span of vectors v1, v2, . . . , vN . Then there are many other
choices of spanning vectors for S. For example, v1 + v2, v2, v3, . . . , vN also
spans S.

If S cannot be spanned by fewer than N vectors, then we say v1, v2, . . . ,
vN . is a basis for S, and we call N is the dimension of S.

In other words, when N is the smallest number of spanning vectors, we
say N is the dimension dimS of S, and v1, v2, . . . , vN is a minimal spanning
set for S. This definition is important enough to repeat,

Basis and Dimension Definition

A basis for a span S is a minimal spanning set of vectors. The dimen-
sion of S is the number of vectors in any basis for S.

A span has many choices for minimal spanning sets, but a span’s dimen-
sion, as the number of vectors in any minimal spanning set, is uniquely de-
termined.

Here are two immediate consequences of this terminology.

Span of N Vectors

If S = span(v1, v2, . . . , vN), then dimS ≤ N .

Larger Span has Larger Dimension

If a span S1 is contained in a span S2, then dimS1 ≤ dimS2.

With this terminology,

• rowspace() returns a basis of the row space,
• columnspace() returns a basis of the column space,
• nullspace() returns a basis for the nullspace,
• row rank equals the dimension of the row space,
• column rank equals the dimension of the column space,
• nullity equals the dimension of the nullspace.

Let S be the span of vectors v1, v2, . . . , vN . How can we check if these
vectors constitute a basis for S? The answer is the main result of the section.

108 CHAPTER 2. LINEAR GEOMETRY

Spanning Plus Linearly Independent Equals Basis

Let S be the span of vectors v1, v2, . . . , vN . Then the vectors are a
basis for S iff they are linearly independent.

Remember, to check for linear independence of given vectors, assemble the
vectors as columns of a matrix A, and check whether A.nullspace() equals
zero. If that is the case, the vectors are a basis for their span. If not, the
vectors are not a basis for their span. The proof of the main result is at the
end of the section.

When a basis v1, v2, . . . , vN consists of orthogonal vectors, we say v1, v2,
. . . , vN is an orthogonal basis. When v1, v2, . . . , vN are also unit vectors, we
say v1, v2, . . . , vN is an orthonormal basis.

As we saw in §2.4, orthonormal vectors v1, v2, . . . , vN are linearly inde-
pendent, so, by the main result, v1, v2, . . . , vN are an orthonormal basis for
their span.

vectors

spanning

linearly
independent

basis
orthogonal

basis
orthonormal

basis

orthogonal orthonormal

Fig. 2.7 Relations between vector classes.

Here is an example. The columns of the 3 × 3 identity matrix I are e1 =
(1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Since the nullspace of I is zero, e1, e2, e3

2.8. BASIS 109

are linearly independent. Hence the standard basis e1, e2, e3 is indeed a basis
for R3, i.e. a minimal spanning set of vectors for R3. From this, we conclude
dimR3 = 3.

The statement dimR3 = 3 may at first seem trivial or obvious. But, if
we flesh this out following our terminology above, the statement is saying
that any minimal spanning set of vectors in R3 must have exactly 3 vectors.
Stated in this manner, the statement has content.

Since we can do the same calculation with the standard basis

e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

. . . = . . .

ed = (0, 0, . . . , 0, 1),

in Rd, we conclude e1, e2, . . . , ed are linearly independent, so

Dimension of Euclidean Space

The dimension of Rd is d.

The MNIST dataset consists of vectors v1, v2, . . . , vN in Rd, where N =
60000 and d = 784. For the MNIST dataset, the dimension is 712, as returned
by the code

from numpy.linalg import matrix_rank

dataset is Nxd array

mu = mean(dataset,axis=0)

vectors = dataset - mu

matrix_rank(vectors)

In particular, since 712 < 784, approximately 10% of pixels are never
touched by any image. For example, a likely pixel to remain untouched is
at the top left corner (0, 0). For this dataset, there are 784 − 712 = 72 zero
variance directions.

We pose the following question: What is the least n for which the first n
images are linearly dependent? Since the dimension of the sample space is
784, we must have n ≤ 784. To answer the question, we compute the rank
of the first n vectors for n = 1, 2, 3, . . . , and continue until we have linear
dependence of v1, v2, . . . , vn.

110 CHAPTER 2. LINEAR GEOMETRY

If we load MNIST as dataset, as in §1.2, and run the code below, we
obtain n = 560 (Figure 2.8). matrix_rank is discussed in §2.9.

from numpy import *

from numpy.linalg import matrix_rank

dataset is Nxd array

def find_first_defect(dataset):

d = len(dataset[0])

previous = 0

for n in range(len(dataset)):

r = matrix_rank(dataset[:n+1,:])

print((r,n+1),end=",")

if r == previous: break

if r == d: break

previous = r

Fig. 2.8 First defect for MNIST.

Let v1, v2, . . . , vN be a dataset. We want to compute the dimensions of
the first n vectors, n = 1, 2, 3, . . . ,

d1 = dim(v1), d2 = dim(v1, v2), d3 = dim(v1, v2, v3), and so on

This we call the dimension staircase. For example, Figure 2.9 is the di-
mension staircase for

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1, 1, 0), v4 = (3, 4, 0), v5 = (0, 0, 1).

In Figure 2.9, we call the points (3, 2) and (4, 2) defects.

2.8. BASIS 111

In the code, the staircase is drawn by stairs(X,Y), where the horizontal
points X and the vertical values Y satisfy len(X)== len(Y)+1. In Figure 2.9,
X = [1,2,3,4,5,6], and Y = [1,2,2,2,3].

Fig. 2.9 The dimension staircase with defects.

Fig. 2.10 The dimension staircase for the MNIST dataset.

With the MNIST dataset loaded as vectors, here is code returning Fig-
ures 2.9 and 2.10. This code is not efficient, but it works. Ideally the code
should be run in sympy using exact arithmetic. However, this takes too long,
so we use numpy.linalg.matrix_rank. Because datasets consist of floats in

112 CHAPTER 2. LINEAR GEOMETRY

numpy, the matrix_rank and dimensions are approximate not exact. For more
on this, see approximate rank in §3.2.

from numpy import *

from matplotlib.pyplot import *

from numpy.linalg import matrix_rank

dataset is Nxd array

def dimension_staircase(dataset):

N = len(dataset)

rmax = matrix_rank(dataset)

dimensions = []

for n in range(N):

r = matrix_rank(dataset[:n+1,:])

dimensions.append(r)

if r == rmax: break

title("number of vectors = " + str(n+1) + ", rank = " + str(rmax))

stairs(dimensions, range(1,n+3),linewidth=2,color='red')
grid()

show()

Proof of main result. Here we derive: Let S be the span of v1, v2, . . . ,
vN . Then v1, v2, . . . , vN is a basis for S iff v1, v2, . . . , vN are linearly
independent.

Suppose v1, v2, . . . , vN are not linearly independent. Then v1, v2, . . . , vN
are linearly dependent, which means one of the vectors, say v1, is a linear
combination of the other vectors v2, v3, . . . , vN . Then any linear combination
of v1, v2, . . . , vN is necessarily a linear combination of v2, v3, . . . , vN , thus

span(v1, v2, . . . , vN) = span(v2, v3, . . . , vN).

This shows v1, v2, . . . , vN is not a minimal spanning set, and completes the
derivation in one direction.

In the other direction, suppose v1, v2, . . . , vN are linearly independent,
and suppose b1, b2, . . . , bd is a minimal spanning set. Since b1, b2, . . . , bd is
minimal, we must have d ≤ N . Once we establish d = N , it follows v1, v2,
. . . , vN is minimal, and the proof will be complete.

Since by assumption,

span(v1, v2, . . . , vN) = span(b1, b2, . . . , bd),

v1 is a linear combination of b1, b2, . . . , bd,

v1 = t1b1 + t2b2 + · · ·+ tdbd.

2.8. BASIS 113

Since v1 ̸= 0, at least one of the t coefficients is not zero. By rearranging the
vectors, assume t1 ̸= 0. Then we can solve for b1,

b1 =
1

t1
(v1 − t2b2 − t3b3 − · · · − tdbd).

This shows

span(v1, v2, . . . , vN) = span(v1, b2, b3, . . . , bd).

Repeating the same logic, v2 is a linear combination of v1, b2, b3, . . . , bd,

v2 = s1v1 + t2b2 + t3b3 + · · ·+ tdbd.

If all the coefficients of b2, b3, . . . , bd are zero, then v2 is a multiple of v1,
contradicting linear independence of v1, v2, . . . , vN . Thus at least one of the
t coefficients is not zero. By rearranging the vectors, assume t2 ̸= 0. Then we
can solve for b2, obtaining

b2 =
1

t2
(v2 − s1v1 − t3b3 − · · · − tdbd).

This shows

span(v1, v2, . . . , vN) = span(v1, v2, b3, b4, . . . , bd).

Repeating the same logic, v3 is a linear combination of v1, v2, b3, b3, . . . ,
bd,

v3 = s1v1 + s2v2 + t3b3 + t4b4 + · · ·+ tdbd.

If all the coefficients of b3, b4, . . . , bd are zero, then v3 is a linear combination
of v1, v2, contradicting linear independence of v1, v2, . . . , vN . Thus at least
one of the t coefficients is not zero. By rearranging the vectors, assume t3 ̸= 0.
Then we can solve for b3, obtaining

b3 =
1

t3
(v3 − s1v1 − s2v2 − t4b4 − · · · − tdbd).

This shows

span(v1, v2, . . . , vN) = span(v1, v2, v3, b4, b5, . . . , bd).

Continuing in this manner, we eventually arrive at

span(v1, v2, . . . , vN) = · · · = span(v1, v2, . . . , vd).

This shows vN is a linear combination of v1, v2, . . . , vd. This shows N =
d, because N > d contradicts linear independence. Since d is the minimal
spanning number, this shows v1, v2, . . . , vN is a minimal spanning set for S.

114 CHAPTER 2. LINEAR GEOMETRY

2.9 Rank

If A is an N×d matrix, then (Figure 2.11) x 7→ Ax is a linear transformation
that sends a vector x in Rd to the vector b = Ax in RN . When this happens,
we call Rd the source space and RN the target space. The transpose At goes
in the reverse direction: The linear transformation b 7→ Atb sends a vector b
in the target space RN to the vector Atb in the source space Rd.

It follows that for an N × d matrix, the dimension of the source space is
d, and the dimension of the target space is N ,

dim(source space) = d, dim(target space) = N.

from sympy import *

d = A.cols # source space dimension

N = A.rows # target space dimension

x

Atb

R3

source space

A

At
Ax

b

R5

target space

Fig. 2.11 A 5× 3 matrix A is a linear transformation from R3 to R5.

By (2.4.2), the column space is in the target space, and the row space is
in the source space. Thus we always have

0 ≤ row rank ≤ d and 0 ≤ column rank ≤ N.

For

A =


1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

 ,

the column rank is 2, the row rank is 2, and the nullity is 1. Thus the column
space is a plane in R5, the row space is a plane in R3, and the nullspace is
a line in R3.

2.9. RANK 115

The main result in this section is

Rank Theorem

Let A be any matrix. Then

row rank(A) = column rank(A). (2.9.1)

This is established at the end of the section.
Because the row rank and the column rank are equal, below we just say

rank of a matrix, and we write rank(A). In Python,

from sympy import *

A.rank()

from numpy.linalg import matrix_rank

matrix_rank(A)

returns the rank of a matrix. The main result implies

Rank of the Transpose

For any matrix A, rank(A) = rank(At). In particular, the rank of an
N × d matrix is never greater than min(N, d).

AnN×dmatrix A is full-rank if its rank is the highest it can be, rank(A) =
min(N, d). Here are some consequences of the main result.

• When N ≥ d, full-rank is the same as rank(A) = d, which is the same as
saying the columns are linearly independent and the rows span Rd.

• When N ≤ d, full-rank is the same as rank(A) = N , which is the same
as saying the rows are linearly independent and the columns span RN .

• When N = d, full-rank is the same as saying the rows are a basis of Rd,
and the columns are a basis of RN .

When A is a square matrix, we can say more:

Full Rank Square Equals Invertible

Let A be a square matrix. Then A is full-rank iff A is invertible.

116 CHAPTER 2. LINEAR GEOMETRY

Suppose A is d×d. If A is invertible and B is its inverse, then AB = I. Since
ABx = A(Bx) = Ay with y = Bx, the column space of AB is contained in
the column space of A. Since the column space of AB = I is Rd, we conclude
the column space of A is Rd, thus rank(A) = d.

Conversely, suppose A is full-rank. This means the columns of A span Rd.
By (2.4.3), this implies

Ax = b

is solvable for any b. Let e1, e2, . . . , ed be the standard basis. If we set
successively b = e1, b = e2, . . . , b = ed, we then get solutions x1, x2, . . . , xd.
If B is the matrix with columns x1, x2, . . . , xd, then

AB = A(x1, x2, . . . , xd) = (Ax1, Ax2, . . . , Axd) = (e1, e2, . . . , ed) = I.

Thus we found a matrix B satisfying AB = I.
Repeating the same argument with rows instead of columns, we find a

matrix C satisfying CA = I. Then

C = CI = CAB = IB = B,

so B = C is the inverse of A.

Orthonormal Rows and Columns

Let U be a matrix.

• U has orthonormal rows iff UU t = I.
• U has orthonormal columns iff U tU = I.

If U is square and either holds, then they both hold.

The first two assertions are in §2.2. For the last assertion, assume UU t = I.
Then the rows are orthonormal, which implies U is full-rank. Since U is
square, this implies U has an inverse U−1. Multiplying UU t = I on the left
by U−1,

U−1 = U−1I = U−1UU t = U t.

Since U−1U = I = UU−1, we have both UU t = I and U tU = I. Similarly,
U tU = I implies both UU t = I and U tU = I.

A square matrix U satisfying

UU t = I = U tU (2.9.2)

is an orthogonal matrix. Summarizing the above discussion, we can say

2.9. RANK 117

Orthogonal Matrix

A square matrix U is orthogonal iff its rows are an orthonormal basis
iff its columns are an orthonormal basis.

Since
Uu · Uv = u · U tUv = u · v,

U preserves dot products. Since lengths squared are dot products, U also pre-
serves lengths. Since angles are computed from dot products, U also preserves
angles. Summarizing,

Angles, Lengths, and Dot Products

Orthogonal matrices preserve angles, lengths, and dot products of
vectors.

As a consequence,

Orthogonal Matrix sends ON Vectors to ON Vectors

Let U be an orthogonal matrix. If u1, u2, . . . , ud are orthonormal,
and v1 = Uu1, v2 = Uu2, . . . , vd = Uud are orthonormal, then v1, v2,
. . . , vd are orthonormal.

In two dimensions, d = 2, an orthogonal matrix must have two orthonor-
mal columns, so must be of the form

U =

(
cos θ − sin θ
sin θ cos θ

)
or U =

(
cos θ sin θ
sin θ − cos θ

)
.

In the first case, U is a rotation, while in the second, U is a rotation followed
by a reflection.

If u1, u2, . . . , ud is an orthonormal basis of Rd, and U has columns u1,
u2, . . . , ud, then U is square and UU t = I = U tU . By (2.2.14), we have

I = u1 ⊗ u1 + u2 ⊗ u2 + · · ·+ ud ⊗ ud. (2.9.3)

Multiplying both sides by u, we obtain

118 CHAPTER 2. LINEAR GEOMETRY

Orthonormal Basis Expansion

If u1, u2, . . . , ud is an orthonormal basis, and u is any vector, then

u = (u · u1)u1 + (u · u2)u2 + · · ·+ (u · ud)ud (2.9.4)

and
|u|2 = (u · u1)

2 + (u · u2)
2 + · · ·+ (u · ud)

2. (2.9.5)

Let x1, x2, . . . , xN be a dataset, and let A be the dataset matrix with rows
x1, x2, . . . , xN . The dataset is full-rank if A is full-rank. Since A is full-rank
iff its rows span (we assume N >> d, which means there are more samples
than features) we have

Full-Rank Dataset

A dataset x1, x2, . . . , xN is full-rank iff x1, x2, . . . , xN spans Rd.

The dimension or rank of the dataset is the rank of its N × d dataset
matrix A. Hence the dimension of the dataset equals the rank of AtA. Since
scaling a matrix has no effect on the rank, we conclude the dimension or rank
of a dataset equals the rank of its variance Q = AtA/N , (see (2.5.1)).

To derive the rank theorem, first we recall (2.7.6). Assume A has N rows
and d columns. By (2.7.6), every vector x in the source space Rd can be
written as a sum x = u+v with u in the nullspace, and v in the row space. In
other words, each vector x may be written as a sum x = u+ v with Au = 0
and v in the row space.

From this, we have

Ax = A(u+ v) = Au+Av = Av.

This shows the column space consists of vectors of the form Av with v in the
row space.

Let v1, v2, . . . , vr be a basis for the row space. From the previous para-
graph, it follows Av1, Av2, . . . , Avr spans the column space of A. We claim
Av1, Av2, . . . , Avr are linearly independent. To check this, we write

0 = t1Av1 + t2Av2 + · · ·+ trAvr = A(t1v1 + t2v2 + · · ·+ trvr).

2.9. RANK 119

If v is the vector t1v1+t2v2+ · · ·+trvr, this shows v is in the nullspace. But v
is a linear combination of basis vectors of the row space, so v is also in the row
space. Since the row space is the orthogonal complement of the nullspace, we
must have v orthogonal to itself. Thus v = 0, or t1v1 + t2v2 + · · ·+ trvr = 0.

But v1, v2, . . . , vr is a basis. By linear independence of v1, v2, . . . , vr, we
conclude t1 = 0, . . . , tr = 0. This establishes the claim, hence Av1, Av2, . . . ,
Avr is a basis for the column space. This shows r is the dimension of the
column space, which is by definition the column rank. Since by construction,
r is also the row rank, this establishes the rank theorem.

Exercises

Exercise 2.9.1 Let u and v be nonzero vectors. Then the rank of A = u⊗ v
is one.

Exercise 2.9.2 Let µ be a unit vector in Rd. Then the rank of I − µ⊗ µ is
d− 1.

Exercise 2.9.3 Use (2.9.4) to derive (2.9.5).

Exercise 2.9.4 If u1, u2, . . . , ud and v1, v2, . . . , vd are orthonormal bases,
there is exactly one orthogonal U satisfying vk = Uuk, 1 ≤ k ≤ d.

Exercise 2.9.5 Let v1, v2, . . . , vN be an orthonormal basis in RN , and let
Q be an N ×N matrix. Use (2.9.3) and Exercise 2.2.7 to show

trace(Q) = v1 ·Qv1 + v2 ·Qv2 + · · ·+ vN ·QvN . (2.9.6)

Exercise 2.9.6 Let v1, v2, . . . , vN be an orthonormal basis in RN , and let
A be an d×N matrix. Use Exercise 2.9.5 and Q = AtA and (2.2.17) to show

∥A∥2 = |Av1|2 + |Av2|2 + · · ·+ |AvN |2. (2.9.7)

Exercise 2.9.7 Let v1, v2, . . . , vN be an orthonormal basis in RN , let u1,
u2, . . . , ud be an orthonormal basis in Rd, and let A be an d × N matrix.
Use Exercise 2.9.6 and (2.9.5) to show

∥A∥2 =

d∑
i=1

N∑
j=1

(ui ·Avj)
2. (2.9.8)

Exercise 2.9.8 Let u1, u2, . . . , ur be linearly independent, and v1, v2, . . . ,
vr be linearly independent. Then the rank of

A = u1 ⊗ v1 + u2 ⊗ v2 + · · ·+ ur ⊗ vr

is r. (One way to do this is by writing out Ax = 0.)

Chapter 3

Principal Components

In this chapter, we look at the two fundamental methods of breaking or
decomposing a matrix into elementary components, the eigenvalue decompo-
sition and the singular value decomposition, then we apply this to principal
component analysis.

Principal component analysis rests on an important phenomenon, that the
eigenvalues of a large matrix cluster near the top and bottom: For a wide class
of d × d variance matrices Q, when d is large, the eigenvalues of Q cluster
near the top eigenvalue, or near the bottom eigenvalue.

Because the bottom eigenvalue is usually zero, the eigenvalues near the
bottom don’t add up to anything substantial. On the other hand, because
of this clustering, the eigenvalues of Q near the top provide the largest con-
tribution to the explained variance trace(Q). We illustrate this for a specific
class of matrices arising from mass-spring systems (§3.2).

We begin by looking at the geometry of a matrix as a linear transformation.

3.1 Geometry of Matrices

Matrix multiplication by an N × d matrix A sends a point x in the source
space Rd to a point b = Ax in the target space RN (Figure 2.11).

Equivalently, since points in Rd are essentially the same as vectors in Rd

(see §1.3), an N × d matrix A sends a vector v in Rd to a vector Av in RN .
Looked at this way, a matrix A induces a linear transformation: Matrix

multiplication by A satisfies

A(v1 + v2) = Av1 +Av2, A(tv) = tAv.

One way to understand what the transformation does is to see how it
distorts distances between vectors. If v1 and v2 are in Rd, then the distance
between them is d = |v1 − v2|. How does this compare with the distance

121

122 CHAPTER 3. PRINCIPAL COMPONENTS

|Av1 −Av2| between Av1 and Av2? If we let

u =
v1 − v2
|v1 − v2|

,

then u is a unit vector, and, by linearity of A,

|Au| = |Av1 −Av2|
|v1 − v2|

.

This ratio is a scaling factor of the linear transformation that depends on the
given vectors v1, v2.

From this, it is enough to measure |Au| for unit vectors u. Since |Au| = 0
for u in the nullspace of A, we measure |Au| for u in the row space of A.

To this end, let σ1 and σ2 be the maximum and minimum of |Au| over all
unit vectors u in the row space of A, so

σ2 ≤ |Au| ≤ σ1.

Then σ1 is the furthest distance of the image Au from the origin, and σ2

is the nearest distance of the image Au to the origin. In this sense, σ1 and
σ2 constrain |Au| over unit vectors u in the row space of A.

Let A+ be the pseudo-inverse of A. Related bounds on distortion are

1

σ1
≤
∣∣(A+)tu

∣∣ ≤ 1

σ2
,

(Exercise 3.4.4) and

1 ≤ |Au| ×
∣∣(A+)tu

∣∣ ≤ 1

2

(
σ1

σ2
+

σ2

σ1

)
(Exercises 3.4.5 and 4.5.8).

To keep things simple, assume both the source space and the target space
are R2 and A is an invertible 2× 2 matrix.

The image of the unit circle (in red in Figure 3.1) is the set of vectors of
the form Au with |u| = 1. The annulus is the set (the region between the
dashed circles in Figure 3.1) of vectors b satisfying

{b : σ2 < |b| < σ1}.

It turns out the image is an ellipse, and this ellipse lies in the annulus.
Thus the numbers σ1 and σ2 constrain how far the image of the unit circle

is from the origin, and how near the image is to the origin.

3.1. GEOMETRY OF MATRICES 123

To relate σ1 and σ2 to what we’ve seen before, let Q = AtA. Then,

σ2
1 = max |Au|2 = max(Au) · (Au) = maxu ·AtAu = maxu ·Qu.

Thus σ2
1 is the maximum projected variance corresponding to Q. Similarly,

σ2
2 is the minimum projected variance corresponding to Q.
Now let Q = AAt, and let b be in the image. Then b = Au for some unit

vector u, and

b ·Q−1b = (Au) ·Q−1Au = u ·At(AAt)−1Au = u · Iu = |u|2 = 1.

This shows the image of the unit circle is the unit inverse variance ellipse
(§1.4) corresponding to the variance Q, with major and minor axes length
2σ1 and 2σ2.

A

Fig. 3.1 Image of unit circle.

Let us look at some special cases. The first example is

V =

(
cos θ − sin θ
sin θ cos θ

)
. (3.1.1)

If e1 = (1, 0), e2 = (0, 1) is the standard basis in R2. then the columns of V
are

V e1 = (cos θ, sin θ), and V e2 = (− sin θ, cos θ).

Since V tV = I, the columns of V are orthonormal. Thus V transforms the
orthonormal basis e1, e2 into the orthonormal basis V e1, V e2 (see §2.9). By
(A.4.4), V is a rotation by the angle θ.

The second example is

S =

(
σ1 0
0 σ2

)
.

Then S scales the horizontal direction by the factor σ1, and S scales the
vertical direction by σ2.

124 CHAPTER 3. PRINCIPAL COMPONENTS

The third example are the reflections

R =

(
−1 0
0 1

)
, R =

(
1 0
0 −1

)
.

These reflect vectors across the horizontal axis, and across the vertical axis.
Recall an orthogonal matrix is a matrix U satisfying U tU = I = UU t

(2.9.2). Every orthogonal matrix U is a rotation V or a rotation times a
reflection V R.

The SVD decomposition (§3.4) states that every matrix A can be written
as a product

A =

(
a b
c d

)
= USV.

Here S is a diagonal matrix as above, and U , V are orthogonal and rotation
matrices as above.

In more detail, apart from a possible reflection, there are scalings σ1 and
σ2 and angles α and β, so that A transforms vectors by first rotating by α,
then scaling by (σ1, σ2), then by rotating by β (Figure 3.2).

V S U

Fig. 3.2 SVD decomposition A = USV .

In other words, each 2 × 2 matrix A, consisting of four numbers a, b, c,
d, may be described by four other numbers. These other numbers present a
much clearer picture of the geometry of A: two angles α, β, and two scalings
σ1, σ2.

Exercises

Exercise 3.1.1 Assume A is an invertible matrix satisfying σ2 ≤ |Au| ≤ σ1

for every unit vector u. Then for every unit vector u,

1

σ1
≤
∣∣A−1u

∣∣ ≤ 1

σ2
.

3.2. EIGENVALUE DECOMPOSITION 125

3.2 Eigenvalue Decomposition

matrix

invertible

variance

λ ̸= 0

any column
rank

row

rank

singular:
σ, u, v

square

symmetric

non-

negative

positive

eigen:
λ, v

λ ≥ 0

λ > 0

Fig. 3.3 Relations between matrix classes.

126 CHAPTER 3. PRINCIPAL COMPONENTS

In §1.4 and §2.5, we saw every variance matrix Q is nonnegative, in the
sense u · Qu ≥ 0 for every unit vector u. In this section, we see that every
nonnegative matrix Q is the variance matrix of a specific dataset. The vectors
in this dataset are the principal components of Q.

Let A be a matrix. An eigenvector for A is a nonzero vector v such that
Av is aligned with v. This means

Av = λv (3.2.1)

for some scalar λ, the corresponding eigenvalue.
Because the solution v = 0 of (3.2.1) is not useful, we insist eigenvectors be

nonzero. If v is an eigenvector, then the dimension of v equals the dimension
of Av, which can only happen when A is a square matrix.

If v is an eigenvector corresponding to eigenvalue λ, then any scalar mul-
tiple u = tv is also an eigenvector corresponding to eigenvalue λ, since

Av = λv =⇒ Au = A(tv) = t(Av) = t(λv) = λ(tv) = λu.

Because of this, we usually take eigenvectors to be unit vectors, by normal-
izing them.

Even then, this does not determine v uniquely, since both ±v are unit
eigenvectors. This ± ambiguity is real, because different software packages
make different sign choices. Because of this, when plotting or computing with
datasets, units assumptions must be checked carefully.

Let

Q =

(
2 1
1 2

)
Then Q has eigenvalues 3 and 1, with corresponding eigenvectors (1, 1) and
(1,−1). These are not unit vectors, but the corresponding unit eigenvectors
are (1/

√
2, 1/

√
2) and (1/

√
2,−1/

√
2).

The code

from numpy import *

from scipy.linalg import eig

A = array([[2,1],[1,2]])

lamda, U = eig(A)

lamda

returns the eigenvalues [3,1] as an array, and returns the eigenvectors v1,
v2 of Q, as the columns of the matrix U . The matrix U is discussed further
below.

The method eig(A) works on any square matrix A, but may return com-
plex eigenvalues. When eig(A) returns real eigenvalues, they are not neces-
sarily ordered in any predetermined fashion.

3.2. EIGENVALUE DECOMPOSITION 127

If the matrix Q is known to be symmetric, then the eigenvalues are guar-
anteed real. In this case, eigh(Q) returns the eigenvalues in increasing order.
If eigh is used on a non-symmetric matrix, it will return erroneous data.

from numpy import *

from scipy.linalg import eigh

Q = array([[2,1],[1,2]])

lamda, U = eigh(Q)

lamda

returns the array [1,3].

Let A be a square d × d matrix. The ideal situation is when there is a
basis v1, v2, . . . , vd in Rd of eigenvectors of A. However, this is not always
the case. For example, if

A =

(
1 1
0 1

)
(3.2.2)

and Av = λv, then v = (x, y) satisfies x + y = λx, y = λy. This system has
only the nonzero solution (x, y) = (1, 0) (or its multiples) and λ = 1. Thus
A has only one eigenvector e1 = (1, 0), and the corresponding eigenvalue is
λ = 1.

Let A be any square matrix.

Eigenvalues of A Versus Eigenvalues of A Transpose

The eigenvalues of A and the eigenvalues of At are the same.

This result is a consequence of the rank theorem in §2.9. To see why,
suppose λ is an eigenvalue of A with corresponding eigenvector v. Then Av =
λv, which implies

(A− λI)v = Av − λv = 0.

As a consequence, if we let B = A − λI, then v is an eigenvector of A
corresponding to λ iff1 v is in the nullspace of B. It follows λ is an eigenvalue
for A iff B has a nonzero nullspace. Now Bt = At − λI. If we show Bt has a
nonzero nullspace, by the same logic, we will conclude λ is an eigenvalue of
At. Now B has a nonzero nullspace iff B is not full-rank. Since B is square,
by the rank theorem, this happens iff Bt is not full-rank, which happens iff
Bt has a nonzero nullspace. Thus λ is an eigenvalue of A iff λ is an eigenvalue
of At.

1 Iff is short for if and only if.

128 CHAPTER 3. PRINCIPAL COMPONENTS

Let v be a unit vector. From §2.5, when Q is the variance matrix of a
dataset, v ·Qv is the variance of the dataset projected onto the line through
v. When v is an eigenvector, Qv = λv, the variance equals

v ·Qv = v · λv = λv · v = λ.

More generally, this holds for any symmetric matrix Q. We conclude

Projected Variance along Eigenvector Direction

If v is a unit eigenvector of a symmetric matrixQ, then v·Qv equals the
corresponding eigenvalue. In particular, the eigenvalues of a variance
matrix are nonnegative.

In general, when Q is symmetric but not a variance matrix, some eigen-
values of Q may be negative.

Suppose λ and µ are eigenvalues of a symmetric matrix Q with correspond-
ing eigenvectors u, v. Since Q is symmetric, u ·Qv = v ·Qu. Using Qu = λu,
Qv = µv, we compute u ·Qv in two ways:

µu · v = u · (µv) = u ·Qv = v ·Qu = v · (λu) = λu · v.

This implies
(µ− λ)u · v = 0.

If λ ̸= µ, we must have u · v = 0. We conclude:

Distinct Eigenvalues Have Orthogonal Eigenvectors

For a symmetric matrix Q, eigenvectors corresponding to distinct
eigenvalues are orthogonal.

More generally, one can show (Exercise 3.2.15)

Distinct Eigenvalues Have Linearly Independent Eigenvec-
tors

Let A be any matrix and suppose λ1, λ2, . . . , λd are distinct (non-
equal) eigenvalues of A Then the corresponding eigenvectors are lin-
early independent.

3.2. EIGENVALUE DECOMPOSITION 129

The main result in this section is

Eigenvalue Decomposition (EVD)

Let Q be a symmetric d×d matrix. There is an orthonormal basis v1,
v2, . . . , vd in Rd of eigenvectors of Q, with corresponding eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λd.

.

To see the implications of this main result, for simplicity, assume Q is a
2 × 2 symmetric matrix. By EVD, there is an orthonormal basis u, v in R2

and scalars λ, µ satisfying Qu = λu, and Qv = µv. These are the eigenvalues
and eigenvectors. Define three matrices

U = (u, v), E =

(
λ 0
0 µ

)
, V =

(
u
v

)
.

Then the columns of U are u, v, the rows of V are u, v, and V = U t.
By matrix-vector multiplication,

QU = (Qu,Qv) = (λu, µv), UE = (λu, µv).

We conclude QU = UE. Multiplying by V ,

Q = QI = Q(UV) = (QU)V = UEV.

This result remains valid in general. To explain this, let λ1 ≥ λ2 ≥ · · · ≥ λd

be the eigenvalues of a symmetric d× d matrix Q, and let

E =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
.
0 0 . . . λd−1 0
0 0 . . . 0 λd

 .

Then we have the following.

Diagonalization (EVD)

If v1, v2, . . . , vd is an orthonormal basis of eigenvectors of Q, with
corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd, let V be the orthogonal
matrix with rows v1, v2, . . . , vd, and let U = V t. If E is the diagonal

130 CHAPTER 3. PRINCIPAL COMPONENTS

matrix consisting of the eigenvalues, then

Q = UEV (3.2.3)

When this happens, we say Q is diagonalizable. Thus A in (3.2.2) is not
diagonalizable. In Python, E and U are computed by

from numpy import *

from scipy.linalg import eigh

Q is any symmetric matrix

lamda, U = eigh(Q)

and V = U.T.
Be careful, though. numpy returns lamda as an array of eigenvalues, not

a diagonal matrix. Nevertheless, these are arranged in increasing order, and
the columns of U are the eigenvectors.

To verify this, we verify that the first row v = U.T[0] of V is an eigen-
vector corresponding to the first eigenvalue lamda[0],

from numpy import *

from scipy.linalg import eigh

lambda is a keyword in Python

so we use lamda instead

Q = array([[2,1],[1,2]])

lamda, U = eigh(Q)

v = U[:,0]

allclose(dot(Q,v), lamda[0]*v)

returns True.
The conclusion is: With the correct choice of orthonormal basis, the matrix

Q becomes a diagonal matrix E.
The orthonormal basis eigenvectors v1, v2, . . . , vd are the principal compo-

nents of the matrix Q. The eigenvalues and eigenvectors of Q, taken together,
are the eigendata of Q.

To obtain the diagonal matrix E,

E = diag(lamda)

3.2. EIGENVALUE DECOMPOSITION 131

Since lambda is a keyword in Python, we deliberately misspell it and write
lamda in the code. When used as a symbol and pretty-printed, sympy knows
to display lamda as λ.

In sympy, the corresponding commands are

from sympy import *

from sympy import init_printing

init_printing()

eigenvalues

Q.eigenvals()

eigenvectors

Q.eigenvects()

U, E = Q.diagonalize()

This returns the diagonal E with the eigenvalues in increasing order. The
command init_printing pretty-prints the output.

If

A =


1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

 ,

and Q = AtA, then the eigenvalues of Q are

λ1 = 620 + 10
√
3769, λ2 = 620− 10

√
3769, λ3 = 0, (3.2.4)

and the eigenvectors are the rows of

V =

v1
v2
v3

 =
1

94

−100 + 2
√
3769 −3 +

√
3769 94

−100− 2
√
3769 −3−

√
3769 94

94 −188 94

 (3.2.5)

The third row is a multiple of (1,−2, 1), which, as we know, is a basis for the
nullspace of A (§2.4).

Let λ1, λ2, . . . , λr be the nonzero eigenvalues of Q. Then the diagonal
matrix E has r nonzero entries on the diagonal, so rank(E) = r. Since U
and V = U t are invertible, rank(E) = rank(UEV). Since Q = UEV ,

132 CHAPTER 3. PRINCIPAL COMPONENTS

rank(Q) = rank(E) = r.

Rank Equals Number of Nonzero Eigenvalues

The rank of a diagonal matrix equals the number of nonzero en-
tries. The rank of a square symmetric matrix Q equals the number of
nonzero eigenvalues of Q.

For example, in (3.2.4), there are two positive eigenvalues, and the rank
of Q, which equals the rank of A, is two.

Because real-life datasets are composed of floats, a more useful measure of
the rank or dimension of a dataset matrix is the approximate dimension. The
approximate dimension or approximate rank of A is the number of eigenvalues
of the variance Q = AtA/N (see (2.5.1)) that are not almost zero, measured
by numpy.

from numpy import *

from scipy.linalg import eigh

dataset is Nxd

N, d = dataset.shape

Q = dot(dataset.T,dataset)/N

lamda = eigh(Q)[0]

for i,eig in enumerate(lamda):

if not allclose(eig,0):

approx_nullity = i

break

approx_rank = d - approx_nullity

approx_rank, approx_nullity

This code returns 712 for the MNIST dataset, agreeing with the code in
§2.8.

Let’s go back to diagonalization. Using sympy,

from sympy import *

Q = Matrix([[2,1],[1,2]])

3.2. EIGENVALUE DECOMPOSITION 133

U, E = Q.diagonalize()

display(U,E)

returns

U =

(
1 1
−1 1

)
, E =

(
1 0
0 3

)
.

Also,

from sympy import *

a,b,c = symbols("a b c")

Q = Matrix([[a,b],[b,c]])

U, E = Q.diagonalize()

display(Q,U,E)

returns

Q =

(
a b
b c

)
, U =

1

2b

(
a− c−

√
D a− c+

√
D

2b 2b

)
and

E =
1

2

(
a+ c−

√
D 0

0 a+ c+
√
D

)
, D = (a− c)2 + 4b2.

(display is used to pretty-print the output.)

When all the eigenvalues are nonzero, we can write

E−1 =


1/λ1 0 0 . . . 0
0 1/λ2 0 . . . 0
.
0 0 . . . 0 1/λd

 .

Then a straightforward calculation using (3.2.3) shows

Nonzero Eigenvalues Equals Invertible

Let Q = UEV be the EVD of a symmetric matrix Q. Then Q is
invertible iff all its eigenvalues are nonzero. When this happens, we
have

Q−1 = UE−1V

More generally, using (2.6.8), one can check

134 CHAPTER 3. PRINCIPAL COMPONENTS

Pseudo-Inverse and EVD

If λ1 ≥ λ2 ≥ · · · ≥ λr are the nonzero eigenvalues of Q, then 1/λ1 ≤
1/λ2 ≤ · · · ≤ 1/λr are the nonzero eigenvalues of Q+. Moreover, if U
is an orthogonal matrix, and V = U t, then

Q = UEV =⇒ Q+ = UE+V. (3.2.6)

Similarly, eigendata may be used to solve linear systems.

Nonzero Eigenvalues Equals Solvable

Let v1, v2, . . . , vd be the orthonormal basis of eigenvectors of Q cor-
responding to eigenvalues λ1, λ2, . . . , λd. Then the linear system

Qx = b

has a solution x for every vector b iff all eigenvalues are nonzero, in
which case

x =
1

λ1
(b · v1)v1 +

1

λ2
(b · v2)v2 + · · ·+ 1

λd
(b · vd)vd. (3.2.7)

The proof is straightforward using (2.9.4): multiply x by Q to verify. An-
other consequence of the eigenvalue decomposition is

Trace is the Sum of Eigenvalues

Let Q be a symmetric matrix with eigenvalues λ1, λ2, . . . , λd. Then

trace(Q) = λ1 + λ2 + · · ·+ λd. (3.2.8)

To derive this, use (3.2.3): Since U is orthogonal, V U = U tU = I. By
(2.2.7), trace(AB) = trace(BA), so

trace(Q) = trace(QUV) = trace(V QU) = trace(V UEV U) = trace(E).

Since E = diag(λ1, λ2, . . . , λd), trace(E) = λ1 + λ2 + · · ·+ λd, and the result
follows.

Let Q be symmetric with eigenvalues λ1, λ2, . . . , λd. Since

Qv = λv =⇒ Q2v = QQv = Q(λv) = λQv = λ2v,

Q2 is symmetric with eigenvalues λ2
1, λ

2
2, . . . , λ

2
d. Applying the last result to

Q2, we have

trace(Q2) = trace(QQt) = trace(Q2) = λ2
1 + λ2

2 + · · ·+ λ2
d.

3.2. EIGENVALUE DECOMPOSITION 135

It turns out every nonnegative matrix Q is the variance of a simple dataset
(Figure 3.4).

−
√
λ1v1

√
λ1v1

−
√
λ2v2

√
λ2v2

Fig. 3.4 Inverse variance ellipse and centered dataset.

Sum of Tensor Products

Let Q be a symmetric d × d matrix with eigenvalues λ1, λ2, . . . , λd

and orthonormal eigenvectors v1, v2, . . . , vd. Then

Q = λ1v1 ⊗ v1 + λ2v2 ⊗ v2 + · · ·+ λdvd ⊗ vd. (3.2.9)

In particular, when Q is nonnegative, the dataset consisting of the 2d
points

±
√
dλ1v1,±

√
dλ2v2, . . . ,±

√
dλdvd

is centered and has variance Q.

The vectors in this dataset are the principal components of Q.
Since v1, v2, . . . , vd is an orthonormal basis, by (2.9.4), every vector v can

be written
v = (v · v1) v1 + (v · v2) v2 + · · ·+ (v · vd) vd.

Multiply by Q. Since Qvk = λkvk,

Qv = (v · v1)Qv1 + (v · v2)Qv2 + · · ·+ (v · vd)Qvd

= λ1(v · v1) v1 + λ2(v · v2) v2 + · · ·+ λd(v · vd) vd
= (λ1v1 ⊗ v1 + λ2v2 ⊗ v2 + · · ·+ λdvd ⊗ vd) v

This proves the first part. For the second part, let bk =
√
λkvk. Then the

mean of the 2d vectors ±b1, ±b2, . . . , ±bd is clearly zero, and by (3.2.9), the
variance matrix

2

2d
(b1 ⊗ b1 + b2 ⊗ b2 + · · ·+ bd ⊗ bd)

136 CHAPTER 3. PRINCIPAL COMPONENTS

equals Q/d.

Now we approach the eigenvalues of Q from a different angle. In §2.5, we
studied zero variance directions. Since the eigenvalues of a variance matrix
are nonnegative, for a variance matrix, they may also be called minimum
variance directions. Now we study maximum variance directions.

Let
λ1 = max

|v|=1
v ·Qv,

where the maximum is over all unit vectors v. We say a unit vector b is best-fit
for Q or best-aligned with Q if the maximum is achieved at v = b: λ1 = b ·Qb.
When Q is a variance matrix, this means the unit vector b is chosen so that
the variance b ·Qb of the dataset projected onto b is maximized.

An eigenvalue λ1 of Q is the top eigenvalue if λ1 ≥ λ for any other eigen-
value. An eigenvalue λ1 of Q is the bottom eigenvalue if λ1 ≤ λ for any other
eigenvalue. We establish the following results.

Maximum Projected Variance is an Eigenvalue

Let Q be a symmetric matrix. Then

λ1 = max
|v|=1

v ·Qv, (3.2.10)

is the top eigenvalue of Q.

Best-aligned vector is an eigenvector

Let Q be a symmetric matrix. Then a best-aligned vector b is an
eigenvector of Q corresponding to the top eigenvalue λ1.

To prove these results, we begin with a simple calculation, whose derivation
we skip. This result may be derived directly using algebra, or by using calculus
and setting f ′(0) to equal zero.

A Calculation

Suppose λ, a, b, c, d are real numbers and let

f(t) =
λ+ at+ bt2

1 + ct+ dt2
.

3.2. EIGENVALUE DECOMPOSITION 137

If f(t) is maximized at t = 0, then a = λc.

Let λ be any eigenvalue of Q, with eigenvector v: Qv = λv. Dividing v by
its length, we may assume |v| = 1. Then

λ1 ≥ v ·Qv = v · (λv) = λv · v = λ.

This shows λ1 ≥ λ for any eigenvalue λ.
Now we show λ1 itself is an eigenvalue. Let v1 be a unit vector maximizing

v ·Qv, so v1 is best-fit for Q. Then

λ1 = v1 ·Qv1 ≥ v ·Qv (3.2.11)

for all unit vectors v. Let u be any vector. Then for any real t,

v =
v1 + tu

|v1 + tu|

is a unit vector. Insert this v into (3.2.11) to obtain

λ1 ≥ (v1 + tu) ·Q(v1 + tu)

|v1 + tu|2
.

Since Q is symmetric, u ·Qv1 = v1 ·Qu. Expanding with |v1|2 = 1, we obtain

λ1 ≥ λ1 + 2tu ·Qv1 + t2u ·Qu

1 + 2tu · v1 + t2|u|2
=

λ1 + at+ bt2

1 + ct+ dt2
.

Applying the calculation with λ = λ1, a = 2u ·Qv1, b = u · Qu, c = 2u · v1,
and d = |u|2, we conclude

u ·Qv1 = λ1u · v1

for all vectors u. But this implies

u · (Qv1 − λ1v1) = 0

for all u. Thus Qv1 − λ1v1 is orthogonal to all vectors, hence orthogonal to
itself. Since this can only happen if Qv1−λ1v1 = 0, we conclude Qv1 = λ1v1.
Hence λ1 is itself an eigenvalue. This completes the proof of the two results.

Just as the maximum variance (3.2.10) is the top eigenvalue λ1, the mini-
mum variance

λd = min
|v|=1

v ·Qv, (3.2.12)

138 CHAPTER 3. PRINCIPAL COMPONENTS

is the bottom eigenvalue, and the corresponding eigenvector vd is the worst-
aligned vector.

By the eigenvalue decomposition, the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd of
a symmetric matrix Q may be arranged in decreasing order, and may be
positive, zero, or negative scalars. When Q is a variance, the eigenvalues are
nonnegative, and the bottom eigenvalue is at least zero. When the bottom
eigenvalue is zero, the corresponding eigenvectors are zero variance directions.

Now we can complete the proof the eigenvalue decomposition. Having
found the top eigenvalue λ1 with its corresponding unit eigenvector v1, we
let S = span(v1) and T = S⊥ be the orthogonal complement of v1 (Figure
3.5). Then dim(T) = d − 1, and we can repeat the process and maximize
v ·Qv over all unit v in T , i.e. over all unit v orthogonal to v1. This leads to
another eigenvalue λ2 with corresponding eigenvector v2 orthogonal to v1.

Since λ1 is the maximum of v · Qv over all vectors in Rd, and λ2 is the
maximum of v · Qv over the restricted space T of vectors orthogonal to v1,
we must have λ1 ≥ λ2.

v2

v3

T = S⊥

v1v1

S

Fig. 3.5 S = span(v1) and T = S⊥.

Having found the top two eigenvalues λ1 ≥ λ2 and their orthonormal
eigenvectors v1, v2, we let S = span(v1, v2) and T = S⊥ be the orthogonal
complement of S. Then dim(T) = d − 2, and we can repeat the process to
obtain λ3 and v3 in T . Continuing in this manner, we obtain eigenvalues

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λd.

3.2. EIGENVALUE DECOMPOSITION 139

with corresponding orthonormal eigenvectors

v1, v2, v3, . . . , vd.

This proves the eigenvalue decomposition.

Let Q be a positive variance matrix and let b · Q−1b = 1 be the inverse
variance ellipsoid. If v is a unit eigenvector corresponding to an eigenvalue λ,
then λ ≥ 0, and the vector b =

√
λv has length

√
λ. Moreover b satisfies

b ·Q−1b = (
√
λv) ·Q−1(

√
λv) = λv ·Q−1v = λv · (λ−1v) = v · v = 1.

Hence the line segment joining the vectors ±
√
λv is an axis of the inverse

variance ellipsoid, with length 2
√
λ (Figure 3.4).

When λ = λ1 is the top eigenvalue, the axis is the principal axis of the
inverse variance ellipsoid. When λ = λ2 is the next highest eigenvalue, the
axis is orthogonal to the principal axis, and is the second principal axis.
Continuing in this manner, we obtain all the principal axes of the inverse
variance ellipsoid.

Principal Axes of Inverse Variance Ellipsoid

Let v be a unit eigenvector of a variance matrix Q with eigenvalue λ.
Then the line segment joining −

√
λv and +

√
λv is a principal axis of

the inverse variance ellipsoid, with length 2
√
λ.

Together with Figure 1.15, this result provides a geometric interpretation
of eigenvalues: They control the variances of a dataset’s points, in the prin-
cipal directions.

Sometimes, several eigenvalues are equal, leading to several eigenvectors,
say m of them, corresponding to a given eigenvalue λ. In this case, we say
the eigenvalue λ has multiplicity m, and we call the span

Sλ = {v : Qv = λv}

the eigenspace corresponding to λ. For example, suppose the top three eigen-
values are equal: λ1 = λ2 = λ3, with b1, b2, b3 the corresponding eigenvectors.
Calling this common value λ, the eigenspace is Sλ = span(b1, b2, b3). Since
b1, b2, b3 are orthonormal, dim(Vλ) = 3. In Python, the eigenspaces Vλ are
obtained by the matrix U above: The columns of U are an orthonormal basis
for the entire space, so selecting the columns corresponding to a specific λ
yields an orthonormal basis for Sλ.

140 CHAPTER 3. PRINCIPAL COMPONENTS

Let (E,U) be the list of eigenvalues and matrix U whose columns are
the eigenvectors. Then the eigenvectors are the rows of U t. Here is code for
selecting just the eigenvectors corresponding to eigenvalue s.

from numpy import *

from scipy.linalg import eigh

lamda, U = eigh(Q)

V = U.T

V[isclose(lamda,s)]

The function isclose(a,b) returns True when a and b are numerically close.
Using this boolean, we extract only those rows of V whose corresponding
eigenvalue is close to s.

The subspace Sλ is defined for any λ. However, dim(Sλ) = 0 unless λ is
an eigenvalue, in which case dim(Sλ) = m, where m is the multiplicity of λ.

The proof of the eigenvalue decomposition provides a systematic procedure
for finding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. Now we show there are no other
eigenvalues.

The Eigenvalue Decomposition is Complete

If λ is an eigenvalue for Q, Qv = λv, then λ equals one of the eigen-
values in the eigenvalue decomposition of Q.

To see this, suppose Qv = λv with λ ̸= λj for j = 1, . . . , d. Since λ ̸= λj

for j = 1, . . . , d, the vector v must be orthogonal to every vj , j = 1, . . . , d.
Since span(v1, . . . , vd) = Rd, it follows v is orthogonal to every vector, hence
v is orthogonal to itself, hence v = 0. We conclude λ cannot be an eigenvalue.

All this can be readily computed in Python. The eigenvalues of the variance
Q of the Iris dataset are

4.2 > 0.24 > 0.08 > 0.02,

and the orthonormal eigenvectors are the columns of the matrix

U =


0.36 −0.66 −0.58 0.32
−0.08 −0.73 0.6 −0.32
0.86 0.18 0.07 −0.48
0.36 0.07 0.55 0.75


Since the eigenvalues are distinct, the multiplicity of each eigenvalue is 1.
The variance Q was computed in §2.2 and its trace is From (??), the total
variance of the Iris dataset is

3.2. EIGENVALUE DECOMPOSITION 141

4.54 = trace(Q) = λ1 + λ2 + λ3 + λ4.

For the Iris dataset, the top eigenvalue is λ1 = 4.2, it has multiplicity 1, and
its corresponding list of eigenvectors contains only one eigenvector,

v1 = (0.36,−0.08, 0.86, 0.36).

The top eigenvalue accounts for 92.5% of the total variance.
The second eigenvalue is λ2 = 0.24 with eigenvector

v2 = (−0.66,−0.73, 0.18, 0.07).

The top two eigenvalues account for 97.8% of the total variance.
The third eigenvalue is λ3 = 0.08 with eigenvector

v3 = (−0.58, 0.60, 0.07, 0.55).

The top three eigenvalues account for 99.5% of the total variance.
The fourth eigenvalue is λ4 = 0.02 with eigenvector

v4 = (0.32,−0.32,−0.48, 0.75).

The top four eigenvalues account for 100% of the total variance. Here each
eigenvalue has multiplicity 1, since there are four distinct eigenvalues.

An important class of symmetric matrices are of the form

(
2 −2

−2 2

) 2 −1 −1
−1 2 −1
−1 −1 2




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1

−1 0 −1 2




2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2




2 −1 0 0 0 −1

−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2




2 −1 0 0 0 0 −1
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1

−1 0 0 0 0 −1 2


.

142 CHAPTER 3. PRINCIPAL COMPONENTS

We denote these matrices Q(2), Q(3), Q(4), Q(5), Q(6), Q(7). The following
code generates these symmetric d× d matrices Q(d),

def row(i,d):

v = [0]*d

v[i] = 2

if i > 0: v[i-1] = -1

if i < d-1: v[i+1] = -1

if i == 0: v[d-1] += -1

if i == d-1: v[0] += -1

return v

using sympy

from sympy import Matrix

def Q(d): return Matrix([row(i,d) for i in range(d)])

using numpy

from numpy import *

def Q(d): return array([row(i,d) for i in range(d)])

The eigenvalues of these symmetric matrices follow interesting patterns
that are best explored using Python.

Below we will see, the eigenvalues of Q(d) are between 4 and 0, and each
eigenvalue other than 4 and 0 has multiplicity 2.

m1 m2

x1 x2

Fig. 3.6 Three springs at rest and perturbed.

To explain where these matrices come from, look at the mass-spring sys-
tems in Figures 3.6 and 3.7. Here we have springs attached to masses and
walls on either side. At rest, the springs are the same length. When per-
turbed, some springs are compressed and some stretched. In Figure 3.6, let
x1 and x2 denote the displacement of each mass from its rest position.

When extended by x, each spring fights back by exerting a force kx pro-
portional to the displacement x. Here k is the spring constant. For example,

3.2. EIGENVALUE DECOMPOSITION 143

look at the mass m1. The spring to its left is extended by x1, so exerts a force
of −kx1. Here the minus indicates pulling to the left. On the other hand, the
spring to its right is extended by x2 − x1, so it exerts a force +k(x2 − x1).
Here the plus indicates pulling to the right. Adding the forces from either
side, the total force on m1 is −k(2x1 − x2). For m2, the spring to its left
exerts a force −k(x2 − x1), and the spring to its right exerts a force −kx2,
so the total force on m2 is −k(2x2 − x1). We obtain the force vector

−k

(
2x1 − x2

−x1 + 2x2

)
= −k

(
2 −1
−1 2

)(
x1

x2

)
.

However, as you can see, the matrix here is not exactly Q(2).

m1 m2 m3 m4 m5

x1 x2 x3 x4 x5

Fig. 3.7 Six springs at rest and perturbed.

For five masses, let x1, x2, x3, x4, x5 denote the displacement of each mass
from its rest position. In Figure 3.7, x1, x2, x5 are positive, and x3, x4 are
negative.

As before, the total force on m1 is −k(2x1−x2), and the total force on m5

is −k(2x5−x4). For m2, the spring to its left exerts a force −k(x2−x1), and
the spring to its right exerts a force +k(x3 − x2). Hence, the total force on
m2 is −k(−x1 + 2x2 − x3). Similarly for m3, m4. We obtain the force vector

−k


2x1 − x2

−x1 + 2x2 − x3

−x2 + 2x3 − x4

−x3 + 2x4 − x5

−x4 + 2x5

 = −k


2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2



x1

x2

x3

x4

x5

 .

But, again, the matrix here is not Q(5). Notice, if we place one mass and two
springs in Figure 3.6, we obtain the 1× 1 matrix 2.

To obtain Q(2) and Q(5), we place the springs along a circle, as in Figures
3.8 and 3.9. Now we have as many springs as masses. Repeating the same
logic, this time we obtain Q(2) and Q(5). Notice if we place one mass and

144 CHAPTER 3. PRINCIPAL COMPONENTS

one spring in Figure 3.8, d = 1, we obtain the 1× 1 matrix Q(1) = 0: There
is no force if we move a single mass around the circle, because the spring is
not being stretched.

m1 m2

m1

m2

Fig. 3.8 Two springs along a circle leading to Q(2).

Thus the matrices Q(d) arise from mass-spring systems arranged on a
circle. From Newton’s law (force equals mass times acceleration), one shows
the frequencies of the vibrating springs equal

√
λk/m, where k is the spring

constant, m is the mass of each of the masses, and λ is an eigenvalue of Q(d).
This is the physical meaning of the eigenvalues of Q(d).

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

Fig. 3.9 Five springs along a circle leading to Q(5).

3.2. EIGENVALUE DECOMPOSITION 145

Let v have features (x1, x2, . . . , xd), and let Q = Q(d). By elementary
algebra, check that

v ·Qv = (x1 − x2)
2 + (x2 − x3)

2 + · · ·+ (xd−1 − xd)
2 + (xd − x1)

2. (3.2.13)

As a consequence of (3.2.13), show also the following.

• For any vector v, 0 ≤ v ·Qv ≤ 4|v|2. Conclude every eigenvalue λ satisfies
0 ≤ λ ≤ 4.

• λ = 0 is an eigenvalue, with multiplicity 1.
• When d is even, λ = 4 is an eigenvalue with multiplicity 1.
• When d is odd, λ = 4 is not an eigenvalue.

To compute the eigenvalues, we use complex numbers, specifically the d-th
root of unity ω (§A.5). Let

p(t) = 2− t− td−1,

and let

v1 =



1
ω
ω2

ω3

...
ωd−1


.

Then Qv1 is

Qv1 =


2− ω − ωd−1

−1 + 2ω − ω2

−ω + 2ω2 − ω3

...
−ωd−2 + 2ωd−1 − 1

 = p(ω)



1
ω
ω2

ω3

...
ωd−1


= p(ω)v1.

Thus v1 is an eigenvector corresponding to eigenvalue p(ω).
For each k = 0, 1, 2, . . . , d− 1, define

vk =
(
1, ωk, ω2k, ω3k, . . . , ω(d−1)k

)
. (3.2.14)

Then
v0 = 1 = (1, 1, . . . , 1),

and, by the same calculation, we have

146 CHAPTER 3. PRINCIPAL COMPONENTS

Qvk = p(ωk)vk, k = 0, 1, 2, . . . , d− 1.

By (A.5.9),

p(ωk) = 2− ωk − ω(d−1)k = 2− ωk − ω−k = 2− 2 cos(2πk/d).

Eigenvalues of Q(d)

The (unsorted) eigenvalues of Q(d) are

λk = p(ωk) = 2− 2 cos

(
2πk

d

)
, (3.2.15)

with corresponding eigenvectors vk given by (3.2.14), k = 0, 1, 2, . . . ,
d− 1.

Corresponding to each eigenvalue λk, there is the complex eigenvector vk.
Separating vk into its real and imaginary parts yields two real eigenvectors

ℜ(vk) =
(
1, cos

(
2πk

d

)
, cos

(
4πk

d

)
, cos

(
6πk

d

)
, . . . , cos

(
2(d− 1)πk

d

))
,

ℑ(vk) =
(
0, sin

(
2πk

d

)
, sin

(
4πk

d

)
, sin

(
6πk

d

)
, . . . , sin

(
2(d− 1)πk

d

))
.

When k = 0 or when k = d/2, d even, we have ℑ(vk) = 0. This explains the
double multiplicity in Figure 3.10, except when k = 0 or k = d/2, d even.

Applying this formula, we obtain eigenvalues

Q(2) = (4, 0)

Q(3) = (3, 3, 0)

Q(4) = (4, 2, 2, 0)

Q(5) =

(
5

2
+

√
5

2
,
5

2
+

√
5

2
,
5

2
−

√
5

2
,
5

2
−

√
5

2
, 0

)
Q(6) = (4, 3, 3, 1, 1, 0)

Q(8) = (4, 2 +
√
2, 2 +

√
2, 2, 2, 2−

√
2, 2−

√
2, 0)

Q(10) =

(
4,

5

2
+

√
5

2
,
5

2
+

√
5

2
,
3

2
+

√
5

2
,
3

2
+

√
5

2
,

5

2
−

√
5

2
,
5

2
−

√
5

2
,
3

2
−

√
5

2
,
3

2
−

√
5

2
, 0

)
Q(12) =

(
4, 2 +

√
3, 2 +

√
3, 3, 3, 2, 2, 1, 1, 2−

√
3, 2−

√
3, 0
)
.

3.2. EIGENVALUE DECOMPOSITION 147

The matrices Q(d) are circulant matrices. Each row in Q(d) is obtained
from the row above it in Q(d) by shifting the entries to the right. The trick of
using the roots of unity to compute the eigenvalues and eigenvectors works
for any circulant matrix.

Fig. 3.10 Plot of eigenvalues of Q(50).

Our last topic is the distribution of the eigenvalues for large d. How are
the eigenvalues scattered? Figure 3.10 plots the eigenvalues for Q(50) using
the code below.

from scipy.linalg import eigh

from matplotlib.pyplot import stairs,show,scatter,legend

d = 50

E = eigh(Q(d))[0]

stairs(E,range(d+1),label="numpy")

k = arange(d)

lamda = 2 - 2*cos(2*pi*k/d)

sorted = sort(lamda)

scatter(k,lamda,s=5,label="unordered")

scatter(k,sorted,c="red",s=5,label="increasing order")

grid()

legend()

show()

148 CHAPTER 3. PRINCIPAL COMPONENTS

Figure 3.10 shows the eigenvalues tend to cluster near the top λ1 ≈ 4 and
the bottom λd = 0, they are sparser near the middle. Using the double-angle
formula,

λk = 4 sin2
(
πk

d

)
, k = 0, 1, 2, . . . , d− 1.

Solving for k/d in terms of λ, and multiplying by two to account for the
double multiplicity, we obtain the proportion of eigenvalues below threshold
λ,

#{k : λk ≤ λ}
d

≈ 2

π
arcsin

(
1

2

√
λ

)
, 0 ≤ λ ≤ 4. (3.2.16)

Here ≈ means asymptotic equality, see §A.7.
Equivalently, the derivative (4.1.28) of the arcsine law (3.2.16) exhibits the

eigenvalue clustering near the ends (Figure 3.11).

from numpy import *

from matplotlib.pyplot import *

lamda = arange(0.1,3.9,.01)

density = 1/(pi*sqrt(lamda*(4-lamda)))

plot(lamda,density)

r"..." means raw string

tex = r"$\displaystyle\frac1{\pi\sqrt{\lambda(4-\lambda)}}$"
text(.5,.45,tex,usetex=True,fontsize="x-large")

grid()

show()

Fig. 3.11 Density of eigenvalues of Q(d) for d large.

3.2. EIGENVALUE DECOMPOSITION 149

The matrices Q(d) are prototypes of matrices that are fundamental in
many areas of physics and engineering, including time series analysis and
information theory, see [12]. This clustering of eigenvalues near the top and
bottom is valid for a wide class of matrices, not just Q(d), as the matrix size
d grows without bound, d → ∞.

Exercises

Exercise 3.2.1 Let A be a 2× 2 matrix. Show λ is an eigenvalue of A when
det(A− λI) = 0. (See homogeneous systems in §A.4.)

Exercise 3.2.2 Let A be a 2× 2 matrix. Show λ is an eigenvalue of A when

λ2 − λ trace(A) + det(A) = 0.

Exercise 3.2.3 Let Q be a 2 × 2 symmetric matrix. Show the eigenvalues
λ± of Q are given by (1.4.12).

Exercise 3.2.4 Let A =

(
1 −1
2 4

)
. Find the eigenvalues and eigenvectors of

A. Verify that the trace and determinant of A are the sum and product of
the eigenvalues.

Exercise 3.2.5 Let A =

(
a b
−b a

)
. Show the eigenvalues are

λ± = a± ib

(these are complex numbers §A.5).

Exercise 3.2.6 Let Q be a 2 × 2 symmetric matrix. Show det(Q) and
trace(Q) are the product and sum of the eigenvalues. Conclude Q is a positive
variance matrix when det(Q) > 0 and trace(Q) > 0.

Exercise 3.2.7 The symmetric 2× 2 matrix Q has eigenvalues 1 and 2 and
corresponding eigenvectors u = (3, 4) and v = u⊥ (u⊥ is defined in §A.4).
What is Q?

Exercise 3.2.8 [32] Let

A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

Find all four eigenvalues and eigenvectors of A by solving Av = λv.

150 CHAPTER 3. PRINCIPAL COMPONENTS

Exercise 3.2.9 [32] Let

A =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 .

Find all four eigenvalues and eigenvectors of A by solving Av = λv.

Exercise 3.2.10 Verify (3.2.4) and (3.2.5) using sympy.

Exercise 3.2.11 With R(d) as in Exercise 2.2.10, find the eigenvalues and
eigenvectors of R(d).

Exercise 3.2.12 Use Python to verify the entries in Table 3.12.

d 4 · trace(Q(d)+)

4 4+1

16 (4+1)(16+1)

256 (4+1)(16+1)(256+1)

Table 3.12 Trace of pseudo-inverse (§2.3) of Q(d).

Exercise 3.2.13 Verify (3.2.13). Conclude Q(d) is nonnegative, hence a vari-
ance matrix.

Exercise 3.2.14 Let P be a projection matrix (§2.7). Show the eigenvalues
of P are 0 and 1. Which vectors are eigenvectors for 1, and which for 0?

Exercise 3.2.15 Let a, b, c be three distinct eigenvalues of a matrix A,
with corresponding eigenvectors u, v, w. Show that u, v, w are linearly in-
dependent. Use Exercise A.5.9: there is a quadratic p(t) = αt2 + βt + γ
satisfying p(a) = 0, p(b) = 0, p(c) = 1. Multiply ru + sv + tw = 0 by
p(A) = αA2 + βA+ γI to conclude t = 0, and repeat for r and s.

Exercise 3.2.16 Let Q be a symmetric matrix with positive eigenvalues. Use
the Cauchy-Schwarz inequality (2.2.3) to show

(u ·Qu)(u ·Q−1u) ≥ 1

for every unit vector u. First assume Q is diagonal then use EVD.

Exercise 3.2.17 If Q is a symmetric matrix with positive top and bottom
eigenvalues L and m, show

m ≤ u ·Qu ≤ L, and
1

L
≤ u ·Q−1u ≤ 1

m

for every unit vector u.

3.3. GRAPHS 151

Exercise 3.2.18 If Q is a symmetric matrix with positive top and bottom
eigenvalues L and m, show

m

L
≤ (u ·Qu)(u ·Q−1u) ≤ L

m

for every unit vector u.

3.3 Graphs

Graph theory is a kind of linear geometry, and depends on the material
already covered. As such, the study of graphs is an application of the material
in the previous sections. Since graph theory is the start of neural networks,
we study it here.

A graph consists of nodes and edges. The nodes are also called vertices.
For example, the graphs in Figure 3.13 each have four nodes and three edges.
The left graph is directed, in that a direction is specified for each edge. The
graph on the right is undirected, no direction is specified.

Fig. 3.13 Directed and undirected graphs.

In a directed graph, if there is an edge pointing from node i to node j, we
say (i, j) is an edge. For undirected graphs, we say i and j are adjacent.

0

5

2

−3 7.4

Fig. 3.14 A weighed directed graph.

An edge (i, j) is weighed if a scalar wij is attached to it. If every edge in a
graph is weighed, then the graph is a weighed graph. Any two nodes may be
considered adjacent by assigning the weight zero to the edge between them.

152 CHAPTER 3. PRINCIPAL COMPONENTS

In §4.4, back propagation on weighed directed graphs is used to calculate
derivatives.

Let wij be the weight on the edge (i, j) in a weighed directed graph. The
weight matrix of a weighed directed graph is the matrix W = (wij).

If the graph is unweighed, then we set A = (aij), where

aij =

{
1, if i and j adjacent,

0, if not.
.

In this case, A consists of ones and zeros, and is called the adjacency matrix.
If the graph is undirected, then the adjacency matrix is symmetric,

aij = aji.

Fig. 3.15 A double edge and a loop.

Sometimes graphs may have multiple edges between nodes, or loops, which
are edges starting and ending at the same node. A graph is simple if it has
no loops and no multiple edges. In this section, we deal only with simple
undirected unweighed graphs.

To summarize, a simple undirected graph G = (V,E) is a collection V
of nodes, and a collection of edges E, each edge corresponding to a pair of
nodes.

The number of nodes is the order n of the graph, and the number of edges
is the size m of the graph. In a (simple undirected) graph of order n, the
number of pairs of nodes is n-choose-2, so the number of edges satisfies

0 ≤ m ≤
(
n

2

)
=

1

2
n(n− 1).

How many graphs of order n are there? Since graphs are built out of
edges, the answer depends on how many subsets of edges you can grab from
a maximum of n(n − 1)/2 edges. The number of subsets of a set with m
elements is 2m, so the number Gn of graphs with n nodes is

3.3. GRAPHS 153

Gn = 2(
n
2) = 2n(n−1)/2.

For example, the number of graphs with n = 5 is 25(5−1)/2 = 210 = 1, 024,
and the number of graphs with n = 10 is

n = 10 =⇒ Gn = 245 = 35, 184, 372, 088, 832.

When m = 0, there are no edges, and we say the graph is empty. When
m = n(n − 1)/2, there are the maximum number of edges, and we say the
graph is complete. The complete graph with n nodes is written Kn (Figure
3.16).

Fig. 3.16 The complete graph K6, the cycle graph C6, and the wheel graph W6.

The cycle graph Cn with n nodes is as in Figure 3.16. The graph Cn has n
edges. The wheel graph is the cycle graph with one vertex added at the center
and connected to the spokes. The cycle graph C3 is a triangle.

A graph G′ is a subgraph of a graph G if every node of G′ is a node of G,
and every edge of G′ is an edge of G. For example, a triangle in G is a graph
triangle that is a subgraph of G. Below we see the graph K6 in Figure 3.16
contains twenty triangles.

Fig. 3.17 The triangle K3 = C3.

154 CHAPTER 3. PRINCIPAL COMPONENTS

Let v be a node in a (simple, undirected) graph G. The degree of v is the
number dv of edges containing v. If the nodes are labeled 1, 2, . . . , n, with
the degrees in decreasing order, then

d1 ≥ d2 ≥ d3 ≥ · · · ≥ dn

is the degree sequence of the graph. We write

(d1, d2, d3, . . . , dn)

for the degree sequence.
If the graph is directed, the in-degree is the number of incoming edges, and

the out-degree is the number of outgoing edges. If a node has no incoming
edges, it is an input node. If a node has no outgoing edges, it is an output
node. Unless specified explicitly, all graphs in this section are undirected and
unweighed.

If we add the degrees over all nodes, we obtain the number of edges counted
twice, because each edge contains two nodes. Thus we have

Handshaking Lemma

If the order is n, the size is m, and the degrees are d1, d2, . . . , dn,
then

d1 + d2 + · · ·+ dn =

n∑
k=1

dk = 2m.

A node is isolated if its degree is zero. A node is dominating if it has the
highest degree. Notice the highest degree is ≤ n − 1, because there are no
loops. We show

Nodes with Equal Degree

In any graph, there are at least two nodes with the same degree.

To see this, we consider two cases. First case, assume there are no isolated
nodes. Then the degree sequence is

n− 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn ≥ 1.

So we have n integers spread between 1 and n− 1. This can’t happen unless
at least two of these integers are equal. This completes the first case. In the
second case, we have at least one isolated node, so dn = 0. If dn−1 = 0
also, then we have found two nodes with the same degree. If not, then the
maximum degree is n− 2 (because node n is isolated), and

n− 2 ≥ d1 ≥ d2 ≥ . . . dn−1 ≥ 1.

3.3. GRAPHS 155

So now we have n−1 integers spread between 1 and n−2. This can’t happen
unless at least two of these integers are equal. This completes the second
case.

A graph is regular if all the node degrees are equal. If the node degrees are
all equal to k, we say the graph is k-regular. From the handshaking lemma,
for a k-regular graph, we have kn = 2m, so

m =
1

2
kn.

For example, because 2m is even, there are no 3-regular graphs with 11 nodes.
Both Kn and Cn are regular, with Kn being (n − 1)-regular, and Cn being
2-regular.

A walk on a graph is a sequence of nodes v1, v2, v3, . . . where each
consecutive pair vi, vi+1 of nodes are adjacent. For example, if v1, v2, v3,
v4, v5, v6 are the nodes (in any order) of the complete graph K6, then
v1 → v2 → v3 → v4 → v2 is a walk. A path is a walk with no backtracking:
A path visits each node at most once.

Two nodes a and b are connected if there is a walk starting at a and ending
at b. If a and b are connected, then there is a path starting at a and ending
at b, since we can cut out the cycles of the walk. A graph is connected if every
two nodes are connected. A graph is disconnected if it is not connected. For
example, Figure 3.16 may be viewed as two connected graphs K6 and C6, or
a single disconnected graph K6 ∪ C6.

A closed walk is a walk that ends where it starts. A cycle is a closed path.
If a graph has no cycles, it is a forest. A connected forest is a tree. In a tree,
any two nodes are connected by exactly one path.

The adjacency matrix of a graph is given by

aij =

{
1, if i and j are adjacent,

0, if not.

When a graph is undirected, its adjacency matrix is symmetric.
Let 1 be the vector 1 = (1, 1, 1, . . . , 1). The adjacency matrix of the

complete graph Kn is the n×n matrix A with all ones except on the diagonal.
If I is the n× n identity matrix, then this adjacency matrix is

A = 1⊗ 1− I

For example, for the triangle K3,

156 CHAPTER 3. PRINCIPAL COMPONENTS

A =
(
1 1 1

)
⊗

1
1
1

−

1 0 0
0 1 0
0 0 1

 =

0 1 1
1 0 1
1 1 0

 .

If we label the nodes of the cycle graph Cn consecutively, then node i is
shares an edge with i − 1 and i + 1, except when i = 1 and i = n. Node 1
shares an edge with 2 and n, and node n shares an edge with n − 1 and 1.
So for C6 the adjacency matrix is

A =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 .

Notice there are ones on the sub-diagonal, and ones on the super-diagonal,
and ones in the upper-right and lower-left corners.

The Seven Bridges of Königsberg was an important technology prob-
lem in the eighteenth century. The following description and map are from
Wikipedia [36].

Fig. 3.18 An eighteenth-century

map of Königsberg showing the
seven bridges.

The city of Königsberg in Prussia (now
Kaliningrad, Russia) was set on both sides
of the Pregel River, and included two large
islands — Kneiphof and Lomse — which
were connected to each other, and to the
two mainland portions of the city, by seven
bridges.

The problem was to devise a path
through the city that would cross each of
those bridges once and only once. The prob-
lem’s negative resolution by Leonhard Eu-
ler2 [pronounced “oy-ler”], in 1736, laid the
foundations of graph theory.

Based on this, we say a path is Eulerian [pronounced “oy-ler-yan”] if it
visits every edge in the graph exactly once. An Eulerian cycle is an Eulerian
path that is a cycle. Here is Euler’s result.

2 This is the Euler who named e §A.3.

3.3. GRAPHS 157

Euler’s Theorem

A connected graph has an Eulerian cycle if and only if every vertex
has an even degree.

If a graph has an Eulerian cycle, it is an Eulerian graph. Thus the Eulerian
graphs are those where all nodes have even degree.

Fig. 3.19 An Eulerian graph.

Since the degree sequence of the graph in Figure 3.19 is (4, 4, 4, 4, 4, 2), the
graph is Eulerian.

For any adjacency matrix A, the sum of each row is equal to the degree of
the node corresponding to that row. This is the same as saying

A1 =


d1
d2
. . .
dn

 .

In particular, for a k-regular graph, we have

A1 = k1,

so for a k-regular graph, k is an eigenvalue of A.
What is the connection between degrees and eigenvalues in general? To

explain this, let λ be an eigenvalue of A with eigenvector v = (v1, v2, . . . , vn),
so Av = λv. Since a multiple tv of v is also an eigenvector, we may assume
the biggest component of v equals 1. Suppose the nodes are labeled so that
v = (1, v2, v3, . . . , vn), with

v1 = 1 ≥ |vj |, j = 2, 3, . . . , n.

158 CHAPTER 3. PRINCIPAL COMPONENTS

Taking the first component of Av = λv, we have

(Av)1 = a11v1 + a12v2 + a13v3 + · · ·+ a1nvn.

Since the sum a11+a12+ · · ·+a1n equals the degree d1 of node 1, this implies

d1 = a11+a12+· · ·+a1n ≥ a11v1+a12v2+a13v3+· · ·+a1nvn = (Av)1 = λv1 = λ.

Since d1 is one of the degrees, d1 is no greater than the maximum degree.
This explains

Maximum Degree of Graph

If λ is any eigenvalue of the adjacency matrix A, then λ is less or equal
to the maximum degree.

In particular, for a k-regular graph, the maximum degree equals k, and we
already saw k is an eigenvalue, so

Top Eigenvalue

For a k-regular graph, k is the top eigenvalue of the adjacency matrix
A.

Let A = 1 ⊗ 1 − I be the adjacency matrix of complete graph Kn. Then
for any vector v orthogonal to 1,

Av = (1⊗ 1− I)v = (1 · v)1− v = 0− v = −v,

so λ = −1 is an eigenvalue with multiplicity n− 1. Since

A1 = (1 · 1)1− 1 = n1− 1 = (n− 1)1,

n− 1is an eigenvalue. Hence the eigenvalues of A are n− 1 with multiplicity
1 and −1 with multiplicity n− 1.

The complement of graph G is the graph Ḡ obtained by switching 1’s and
0’s, so the adjacency matrix Ā of Ḡ is

Ā = A(Ḡ) = 1⊗ 1− I −A(G).

Let G be a k-regular graph, and suppose k = λ1 ≥ λ2 ≥ · · · ≥ λn are the
eigenvalues of A = A(G). Since A is symmetric, we have an orthogonal basis
of eigenvectors v1, v2, . . . , vn, with v1 = 1. Then Ḡ is an (n− 1− k)-regular
graph, so the top eigenvalue of Ā = A(Ḡ) is n−1−k, with eigenvector v1 = 1.

3.3. GRAPHS 159

If vk is any eigenvector of A other than 1, then vk is orthogonal to 1, hence

Āv = (1⊗ 1− I −A)vk = −v − λkvk = (−1− λk)vk.

Hence the eigenvalues of Ā are n − 1 − k and −1 − λk, k = 2, . . . , n, with
the same eigenbasis.

Now we look at powers of the adjacency matrix A. By definition of matrix-
matrix multiplication,

(A2)ij = i-th row× j-th column =

n∑
k=1

aikakj .

Now aikakj is either 0 or 1, and equals 1 exactly if there is a 2-step path from
i to j. Hence

(A2)ij = number of 2-step walks connecting i and j.

Notice a 2-step walk between i and j is the same as a 2-step path between i
and j.

When i = j, (A2)ii is the number of 2-step paths connecting i and i, which
means number of edges. Since this counts edges twice, we have

1

2
trace(A2) = m = number of edges.

Similarly, (A3)ij is the number of 3-step walks connecting i and j. Since
a 3-step walk from i to i is the same as a triangle, (A3)ii is the number
of triangles in the graph passing through i. Since the trace is the sum of
the diagonal elements, trace(A3) counts the number of triangles. But this
overcounts by a factor of 3! = 6, since three labels may be rearranged in six
ways. Hence

1

6
trace(A3) = number of triangles.

Loops, Edges, Triangles

Let A be the adjacency matrix. Then

• trace(A) = number of loops = 0,
• trace(A2) = 2× number of edges,
• trace(A3) = 6× number of triangles.

Let us compute these for the complete graph Kn. Since

(u⊗ v)2 = (u⊗ v)(u⊗ v) = (u · v)(u⊗ v),

160 CHAPTER 3. PRINCIPAL COMPONENTS

and 1 · 1 = n, we have (1⊗ 1)2 = n1⊗ 1. So

A2 = (1⊗ 1− I)2 = (1⊗ 1)2 − 21⊗ 1+ I = (n− 2)1⊗ 1+ I.

Since trace(u⊗ v) = u · v, we have trace(1⊗ 1) = n. Hence

trace(A2) = trace((n− 2)1⊗ 1+ I) = n(n− 2) + n = n(n− 1).

This is correct because for a complete graph, n(n − 1)/2 is the number of
edges.

Continuing,

A3 = A2A = ((n− 2)1⊗ 1+ I)(1⊗ 1− I)

= n(n− 2)1⊗ 1− (n− 2)1⊗ 1+ 1⊗ 1− I

= (n2 − 3n+ 3)1⊗ 1− I.

From this, we get

trace(A3) = n(n2 − 3n+ 3)− n = n(n2 − 3n+ 2) = n(n− 1)(n− 2).

This is correct because for a complete graph, we have a triangle whenever
we have a triple of nodes, and there are n-choose-3 triples, which equals
n(n− 1)(n− 2)/6.

Remember, a graph is connected if there is a walk connecting any two
nodes. Since there is a 4-step walk between i and j exactly when there are r,
s, and t satisfying

airarsastatj = 1,

we see there is a 4-step walk connecting i and j if (A4)ij > 0. Hence

Connected Graph

Let A be the adjacency matrix. Then the graph is connected if for
every i ̸= j, there is a k with (Ak)ij > 0.

If a graph is not connected, it may be decomposed as a disjoint union of
two or more connected subgraphs. These subgraps are the components of the
graph.

Two graphs are isomorphic if a re-labeling of the nodes in one makes it
identical to the other. To explain this, we need permutations.

A permutation on n letters is a re-arrangement of 1, 2, 3,. . . , n. Here are
two permutations of (1, 2, 3, 4),

3.3. GRAPHS 161(
1 2 3 4
4 3 2 1

)
,

(
1 2 3 4
4 3 1 2

)
.

There are n! permutations of (1, 2, . . . , n). If a permutation sends i to j, we
write i → j. Since a permutation is just a re-labeling, if i → k and j → k,
then we must have i = j.

Each permutation leads to a permutation matrix. A permutation matrix
is a matrix of zeros and ones, with only one 1 in any column or row (see also
Exercise 2.1.1). For example, the above permutations correspond to the 4×4
matrices

P =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 P =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 .

In general, the permutation matrix P has Pij = 1 if i → j, and Pij = 0
if not. If P is any permutation matrix, then PikPjk equals 1 if both i → k
and j → k. In other words, PikPjk = 1 if i = j and i → k, and PikPjk = 0
otherwise. Since i → k for exactly one k,

(PP t)ij =

n∑
k=1

PikP
t
kj =

n∑
k=1

PikPjk =

{
1, i = j,

0, i ̸= j.

Hence P is orthogonal,

PP t = I, P−1 = P t.

Using permutation matrices, we can say two graphs are isomorphic if their
adjacency matrices A, A′ satisfy

A′ = PAP−1 = PAP t

for some permutation matrix P .
If two graphs are isomorphic, then it is easy to check their degree sequences

are equal. However, the converse is not true. Figure 3.20 displays two non-
isomorphic graphs with degree sequences (3, 2, 2, 1, 1, 1). These graphs are
non-isomorphic because in one graph, there are two degree-one nodes adjacent
to a degree-three node, while in the other graph, there is only one degree-one
node adjacent to a degree-three node.

Fig. 3.20 Non-isomorphic graphs with degree sequence (3, 2, 2, 1, 1, 1).

162 CHAPTER 3. PRINCIPAL COMPONENTS

A graph is bipartite if the nodes can be divided into two groups, with
adjacency only between nodes across groups. If we call the two groups even
and odd, then odd nodes are never adjacent to odd nodes, and even nodes
are never adjacent to even nodes.

The complete bipartite graph is the bipartite graph with maximum num-
ber of edges: Every odd node is adjacent to every even node. The complete
bipartite graph with n odd nodes with m even nodes is written Kn,m. Then
the order of Kn,m is n+m.

Let a = (1, 1, . . . , 1, 0, 0, . . . , 0) be the vector with n ones and m zeros, and
let b = 1 − a. Then b has n zeros and m ones, and the adjacency matrix of
Kn,m is

A = A(Kn,m) = a⊗ b+ b⊗ a.

For example, the adjacency matrix of K5,3 is

1
1
1
0
0
0
0
0


⊗



0
0
0
1
1
1
1
1


+



0
0
0
1
1
1
1
1


⊗



1
1
1
0
0
0
0
0


=



0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0


.

Recall we have
(a⊗ b)v = (b · v)a.

From this, we see the column space of A = a⊗b+b⊗a is span(a, b). Thus the
rank of A is 2, and the nullspace of A consists of the orthogonal complement
span(a, b)⊥ of span(a, b). Using this, we compute the eigenvalues of A.

Fig. 3.21 Complete bipartite graph K5,3.

3.3. GRAPHS 163

Since the nullspace is span(a, b)⊥, any vector orthogonal to a and to b is an
eigenvector for λ = 0. Hence the eigenvalue λ = 0 has multiplicity n+m− 2.
Since trace(A) = 0, the sum of the eigenvalues is zero, and the remaining two
eigenvalues are ±λ ̸= 0.

Let v be an eigenvector for λ ̸= 0. Because eigenvectors corresponding
to distinct eigenvalues of a symmetric matrix are orthogonal (see §3.2), v is
orthogonal to the nullspace of A, so v must be a linear combination of a and
b, v = ra+ sb. Since a · b = 0,

Aa = nb, Ab = ma.

Hence
λv = Av = A(ra+ sb) = rnb+ sma.

Applying A again,

λ2v = A2v = A(rnb+ sma) = rnma+ smnb = nm(ra+ sb) = nmv.

Hence λ =
√
nm. We conclude the eigenvalues of Kn,m are

√
nm, 0, 0, . . . , 0,−

√
nm, (with 0 repeated n+m− 2 times).

For example, for the graph in Figure 3.21, the nonzero eigenvalues are λ =
±
√
3× 5 = ±

√
15.

Let G be a graph with n nodes and m edges. The incidence matrix of G
is a matrix whose rows are indexed by the edges, and whose columns are
indexed by the nodes. Therefore, the incidence matrix has shape m× n.

By placing arrows along the edges, we can make G into a directed graph.
In a directed graph, each edge has a tail node and a head node. Then the
incidence matrix is given by

Bij =


1, if node j is the head of edge i,

−1, if node j is the tail of edge i,

0, if node j is not on edge i.

The laplacian of a graph G is the symmetric n× n matrix

L = BtB.

Both the laplacian matrix and the adjacency matrix are n× n. What is the
connection between them?

164 CHAPTER 3. PRINCIPAL COMPONENTS

Laplacian

The laplacian satisfies
L = D −A,

where D = diag(d1, d2, . . . , dn) is the diagonal degree matrix.

Note the Laplacian does not depend on how the edges were directed, it
only depends on A.

For example, for the cycle graph C6, the degree matrix is 2I, and the
laplacian is the matrix we saw in §3.2,

L = Q(6) =


2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

 .

In a k-regular graph, the Laplacian is L = kI −A, so the eigenvalues of A
and L are related by λ → k − λ.

Let A be the adjacency matrix of the cycle graph Cn. Since Cn is 2-regular,
the top eigenvalue of A is 2. Since

A = 2I −Q(n),

From this, by (3.2.15), the eigenvalues of A are

2 cos(2πk/n), k = 0, 1, 2, . . . , n− 1,

and the eigenvectors of A are the eigenvectors of Q(n).

Exercises

Exercise 3.3.1 [27] Consider the graph in Figure 3.22 below. What is the
order of the graph? What is the degree of vertex H? What is the degree of
vertex D? How many components does the graph have?

Exercise 3.3.2 [27] Which of the following degree sequences are possible for
a simple graph?

1. (4,4,4,3,3,3,3,2)

3.3. GRAPHS 165

2. (5,3,2,2,2,1)
3. (8,7,6,5,5,3,1,1)
4. (6,6,6,5,4,4,4,3,3,3)

Fig. 3.22 A graph.

Exercise 3.3.3 [27] Construct a tree with five vertices such that the degree of
one vertex is 3. How many such (non-isomorphic) graphs can you construct?

Exercise 3.3.4 [27] Consider the cities F , G, H, I, J , K. The costs of the
possible roads between cities are c(F,G) = 8, c(G,H) = 5, c(F,H) = 9,
c(F,K) = 10, c(I,K) = 6, c(I, J) = 7. What is the minimum cost to build a
road system that connects all the cities?

Exercise 3.3.5 [27] A graph has vertices M , N , O, P , Q, R, S, and edges
MN , MO, MP , MR, MS, NO, OR, PR, PS, QR. What is the degree of
S? What is the degree of M? How many components does the graph have?

Exercise 3.3.6 [27] Find the degree sequences of the cycle graph C6, the
complete graph K8, the complete bipartite graph K3,7, and the wheel graph
W4.

Exercise 3.3.7 [27] A directed graph has vertices v0, v1, v2, v3, v4, v5, v6
with adjacency matrix 

0 1 1 0 1 0 0
0 0 0 1 0 0 0
0 1 0 1 0 0 1
1 0 0 0 0 1 1
0 1 1 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 0 0


.

166 CHAPTER 3. PRINCIPAL COMPONENTS

What is the order of the graph? What is the number of edges? What are the
in-degree and out-degree of v3? of v5?

Exercise 3.3.8 Which of Cn, Kn, Wn is Eulerian? For which n?

Exercise 3.3.9 Find an Eulerian cycle in the graph in Figure 3.19.

3.4 Singular Value Decomposition

In this section, we discuss the singular value decomposition (U, S, V) of a
matrix A.

Let A be a matrix. We say a real number σ is a singular value of A if there
are nonzero vectors v and u satisfying

Av = σu and Atu = σv. (3.4.1)

When this happens, v is a right singular vector and u is a left singular vector
associated to σ.

When (3.4.1) holds, so does

Av = (−σ)(−u), At(−u) = (−σ)v.

Because of this, to eliminate ambiguity, it is standard to assume σ ≥ 0;
henceforth we shall insist singular values are positive or zero.

Contrast singular values with eigenvalues: While eigenvalues may be pos-
itive, negative, or zero, singular values are positive or zero, never negative.

The definition immediately implies

Singular Values of A Versus A Transpose

The singular values of A and the singular values of At are the same.

Contrast this with the analogous result for eigenvalues in §3.2.
We work out our first example. Let

A =

(
1 1
0 1

)
.

Then Av = λv implies λ = 1 and v = (1, 0). Thus A has only one eigenvalue
equal to 1, and only one eigenvector. Set

Q = AtA =

(
1 1
1 2

)
.

Since Q is symmetric, Q has two eigenvalues λ1, λ2 and corresponding eigen-
vectors v1, v2. Moreover, as we saw in §3.2, v1, v2 may be chosen orthonormal.

3.4. SINGULAR VALUE DECOMPOSITION 167

The eigenvalues of Q are given by

0 = det(Q− λI) = λ2 − 3λ+ 1.

By the quadratic formula,

λ1 =
3

2
+

√
5

2
= 2.62, λ2 =

3

2
−

√
5

2
= 0.38.

Now we turn to singular values. If v and u and σ satisfy (3.4.1), then

Qv = AtAv = At(σu) = σ2v. (3.4.2)

Hence σ2 = λ, and we obtain

σ1 =

√
3

2
+

√
5

2
= 1.62, σ2 =

√
3

2
−

√
5

2
= 0.62.

To make (3.4.1) work, we set u1 = Av1/σ1. Then Av1 = σ1u1, and

Atu1 = AtAv1/σ1 = Qv1/σ1 = λ1v1/σ1 = σ1v1.

Thus v1, u1 are right and left singular vectors corresponding to the singular
value σ1 of A. Similarly, if we set u2 = Av2/σ2, then v2, u2 are right and left
singular vectors corresponding to the singular value σ2 of A.

We show v1, v2 are orthonormal, and u1, u2 are orthonormal. We already
know v1, v2 are orthonormal, because they are orthonormal eigenvectors of
the symmetric matrix Q. Also

0 = λ1v1·v2 = Qv1·v2 = (AtAv1)·v2 = (Av1)·(Av2) = σ1u1·σ2u2 = σ1σ2u1·u2.

Since σ1 ̸= 0, σ2 ̸= 0, it follows u1, u2 are orthogonal. Also

λ1 = λ1v1 · v1 = Qv1 · v1 = (AtAv1) · v1 = (Av1) · (Av1) = σ2
1u1 · u1.

Since λ1 = σ2
1 , u1 · u1 = 1. Similarly, u2 · u2 = 1. This shows u1, u2 are

orthonormal, and completes the first example.

Let A be an N × d matrix, and suppose σ1 ≥ σ2 ≥ · · · ≥ σr are positive
singular values with corresponding left singular vectors u1, u2, . . . , ur and
right singular vectors v1, v2, . . . , vr. Then, since uk = Avk/σk, the vectors
u1, u2, . . . , ur are in the column space of A.

If u1, u2, . . . , ur are linearly independent, it follows r is no larger than
rank(A), hence r is no larger than min(N, d). We seek the largest value of r.
Below we show the largest r is min(N, d), the lesser of d and N .

168 CHAPTER 3. PRINCIPAL COMPONENTS

The close connection between singular values σ of A and eigenvalues λ of
Q = AtA carries over in the general case.

A Versus Q = AtA

Let A be any matrix. Then

• the rank of A equals the rank of Q,
• σ is a singular value of A iff λ = σ2 is an eigenvalue of Q.

Since the rank equals the dimension of the row space, the first part follows
from §2.4. If Av = σu and Atu = σv, then

Qv = AtAv = At(σu) = σAtu = σ2v,

so λ = σ2 is an eigenvalue of Q.
Conversely, If Qv = λv, then λ ≥ 0, so there are two cases. If λ > 0, set

σ =
√
λ and u = Av/σ. Then

Av = σu, Atu = AtAv/σ = Qv/σ = λv/σ = σv

This shows σ is a singular value of A with singular vectors u and v.
If λ = 0, then we take σ = 0, and the correct interpretation of the second

part is the nullspace of Q equals the nullspace of A, which we already know.
From §3.2, the number of positive eigenvalues (possibly repeated) of Q

equals the rank of Q. By the above, we conclude the rank of A equals the
number of positive singular values (possibly repeated) of A.

The above results may be phrased as

Singular Value Decomposition (SVD)

Let A be any matrix, and let r be the rank of A. Then there are r
singular values σk, an orthonormal basis uk of the target space, and
an orthonormal basis vk of the source space, such that

Avk = σkuk, Atuk = σkvk, k ≤ r, (3.4.3)

and
Avk = 0, Atuk = 0 for k > r. (3.4.4)

3.4. SINGULAR VALUE DECOMPOSITION 169

Taken together, (3.4.3) and (3.4.4) say the number of nonzero singular
values is exactly r. Assume A is N × d, and let p = min(N, d) be the lesser
of N and d.

Since (3.4.4) holds as long as there are vectors uk and vk, there are p− r
zero singular values. Hence there are p = min(N, d) singular values altogether.

The proof of the result is very simple once we remember the rank of Q
equals the number of positive eigenvalues of Q. By the eigenvalue decom-
position, there is an orthonormal basis vk of the source space and positive
eigenvalues λk such that Qvk = λkvk, k ≤ r, and Qvk = 0, k > r.

Setting σk =
√
λk and uk = Avk/σk, k ≤ r, as in our first example, we

have (3.4.3), and, again as in our first example, uk, k ≤ r, are orthonormal.
By construction, vk, k > r, is an orthonormal basis for the nullspace of A,

and uk, k ≤ r, is an orthonormal basis for the column space of A.
Choose uk, k > r, any orthonormal basis for the nullspace of At. Since

the column space of A is the row space of At, the column space of A is the
orthogonal complement of the nullspace of At (2.7.6). Hence uk, k ≤ r, and
uk, k > r, are orthogonal. From this, uk, k ≤ r, together with uk, k > r,
form an orthonormal basis for the target space.

For our second example, let a and b be nonzero vectors, possibly of different
sizes, and let A be the matrix

A = a⊗ b, At = b⊗ a.

Let v and u be right and left singular vectors corresponding to a positive
singular value σ. Then, by (2.2.11),

Av = (v · b)a = σu and Atu = (u · a)b = σv.

Since σ > 0, it follows v is a multiple of b and u is a multiple of a. If we
write v = tb and u = sa and plug in, we get

v = |a| b, u = |b| a, σ = |a| |b|.

Thus there is only one positive singular value of A, equal to |a| |b|. All other
singular values are zero. This is not surprising since the rank of A is one.

Now think of the vector b as a single-row matrix B. Then, in a similar
manner, one sees the only positive singular value of B is σ = |b|.

Our third example is

A =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 . (3.4.5)

Then

170 CHAPTER 3. PRINCIPAL COMPONENTS

At =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Q = AtA =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


Since Q is diagonal symmetric, its rank is 3 and its eigenvalues are λ1 = 1,
λ2 = 1, λ3 = 1, λ4 = 0, and its eigenvectors are

v1 =


1
0
0
0

 , v2 =


0
1
0
0

 , v3


0
0
1
0

 , v4 =


0
0
0
1

 .

Clearly v1, v2, v3, v4 are orthonormal. By (3.4.2), σ1 = 1, σ2 = 1, σ3 = 1,
σ4 = 0.

Since we must have Av = σu, we can check that

u1 = Av1 = v2, u2 = Av2 = v3, u3 = Av3 = v4, u4 = v1

satisfies (3.4.1). This completes our third example.

Let A be N ×d, let U be the matrix with columns u1, u2, . . . , uN , and let
V be the matrix with rows v1, v2, . . . , vd. Then V t has columns v1, v2, . . . ,
vd. Because the u’s and v’s are orthonormal, U and V are orthogonal N ×N
and d× d matrices.

To see the implications of (3.4.3), for simplicity, assume A is 2× 2. Then
we have two singular values σ1, σ2, two right singular vectors v1, v2, and two
left singular vectors u1, u2.

If we let S =

(
σ1 0
0 σ2

)
, then matrix-vector multiplication shows

AV t = (Av1, Av2) = (σ1u1, σ2u2), US = (σ1u1, σ2u2).

Hence AV t = US. Right-multiplying by V and using V tV = I implies the
following result, which remains valid in general.

Diagonalization (SVD)

Let A be any matrix, with singular values σ1 ≥ σ2 ≥ · · · ≥ 0. Let
v1, v2, . . . be an orthonormal basis of right singular vectors of A in
the source space, and let u1, u2, . . . be an orthonormal basis of left
singular vectors of A in the target space. Let U be the orthogonal
matrix with columns u1, u2, . . . , and let V be the orthogonal matrix
with rows v1, v2, Let S be the diagonal matrix with the same

3.4. SINGULAR VALUE DECOMPOSITION 171

shape as A and consisting of the singular values. Then

A = USV. (3.4.6)

In more detail, suppose A is 4× 6. Then we have an orthonormal basis v1,
v2, v3, v4, v5, v6 of R6, and an orthonormal basis u1, u2, u3, u4 satisfying
(3.4.3) with r = 4. If we set

S =


σ1 0 0 0 0 0
0 σ2 0 0 0 0
0 0 σ3 0 0 0
0 0 0 σ4 0 0

 ,

then U is 4× 4 and V is 6× 6, and we can verify directly that A = USV .
If A is 6× 4, and

S =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

0 0 0 0
0 0 0 0

 ,

then U is 6× 6 and V is 4× 4, and we can verify directly that A = USV . In
either case, S has the same shape as A.

When A = Q is a variance matrix, Q ≥ 0, then the eigenvalues are non-
negative, and, from (3.2.3), we have UEU t = Q. If we choose V = U t, we see
EVD is a special case of SVD.

In general, however, if Q has negative eigenvalues, V is not equal to U t;
instead V is obtained from U t by multiplying some of the columns of U by
minus signs.

In numpy, svd returns the orthogonal matrices U and V and a vector sigma
of singular values. The singular values are arranged in decreasing order. To
recover the diagonal matrix S, we use diag.

from numpy import *

from scipy.linalg import svd

U, sigma, V = svd(A)

sigma is a vector

build diag matrix S

p = min(A.shape)

S = zeros(A.shape)

172 CHAPTER 3. PRINCIPAL COMPONENTS

S[:p,:p] = diag(sigma)

print(U.shape,S.shape,V.shape)

print(U,S,V)

allclose(A, dot(U, dot(S, V)))

This code returns True.

Given the relation between the singular values of A and the eigenvalues of
Q = AtA, we also can conclude

Right Singular Vectors Are the Same as Eigenvectors

Let A be any matrix and let Q = AtA.

v is an eigenvector of Q ⇐⇒ v is a right singular vector of A.
(3.4.7)

For example, if dataset is the Iris dataset (ignoring the labels), the code

from numpy import *

from scipy.linalg import svd,eigh

center dataset

m = mean(dataset,axis=0)

A = dataset - m

rows of V are right

singular vectors of A

V = svd(A)[2]

any of these will work

because the eigenvectors are the same

Q = dot(A.T,A)

Q = cov(dataset.T,bias=False)

Q = cov(dataset.T,bias=True)

columns of U are

eigenvectors of Q

U = eigh(Q)[1]

compare columns of U

and rows of V

U, V

returns

3.4. SINGULAR VALUE DECOMPOSITION 173

U =


0.36 −0.66 −0.58 0.32
−0.08 −0.73 0.6 −0.32
0.86 0.18 0.07 −0.48
0.36 0.07 0.55 0.75

 , V =


0.36 −0.08 0.86 0.36
−0.66 −0.73 0.18 0.07
0.58 −0.6 −0.07 −0.55
0.32 −0.32 −0.48 0.75


This shows the columns of U are identical to the rows of V , except for the
third column of U , which is the negative of the third row of V .

Now we turn to the pseudo-inverse.

Pseudo-Inverse: Invert the Nonzero Singular Values

The pseudo-inverse A+ is obtained by replacing, in the SVD diago-
nalization of A, the nonzero singular values of A by their reciprocals,
and taking the transpose.

More explicitly, we can write

Pseudo-Inverse: Flip the Singular Vectors

Let A have rank r, and let σk be the nonzero singular values, and vk,
uk the singular vectors as above. Then

A+uk =
1

σk
vk, (A+)tvk =

1

σk
uk, k = 1, 2, . . . , r,

and
A+uk = 0, (A+)tvk = 0 for k > r.

We illustrate these results in the case of a diagonal matrix

S =


a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 0 0

 =


a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 0 0

 =


0 0
0 0
0 0

0 0 0 0 0

Q


Since S is 4× 5 and SS+S = S, S+ must be 5× 4. Writing S+ as blocks
and applying the four properties of the pseudo-inverse S+, leads to

S+ =


0
0
0

0 0 0 0
0 0 0 0

Q−1

 =


1/a 0 0 0
0 1/b 0 0
0 0 1/c 0
0 0 0 0
0 0 0 0

 .

174 CHAPTER 3. PRINCIPAL COMPONENTS

Exercises

Exercise 3.4.1 Let b be a vector and let B be the matrix with the single
row b. Show σ = |b| is the only positive singular value.

Exercise 3.4.2 Let Q be a symmetric matrix. When are the eigenvalues of
Q equal to the singular values of Q? When are they not?

Exercise 3.4.3 In sympy, there is Q.eigenvects(), which returns the eigen-
data of a symmetric matrix Q. In numpy, svd(A) returns the singular data
of a matrix A. Write a sympy function svd(A) that replicates this. (First
assume all singular values of A are positive, then adjust the code for when A
has zero singular values. Your final product should work for the zero matrix
A = 0.)

Exercise 3.4.4 Let σ1 and σ2 be the greatest and least nonzero singular
values of a matrix A, and let A+ be the pseudo-inverse of A. Then

σ2 ≤ |Au| ≤ σ1,
1

σ1
≤
∣∣(A+)tu

∣∣ ≤ 1

σ2
,

for all unit vectors u in the row space of A (Exercise 2.7.11).

Exercise 3.4.5 Let σ1 and σ2 be the greatest and least nonzero singular
values of

A =


1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

 .

Using sympy, show
1

2

(
σ1

σ2
+

σ2

σ1

)
=

62
√
3

15
.

(See (3.2.4) and (3.2.5).)

3.5 Principal Component Analysis

Let Q be the variance matrix of a dataset in Rd. Then Q is a d×d symmetric
matrix, and the EVD guarantees an orthonormal basis v1, v2, . . . , vd in Rd

consisting of eigenvectors of Q,

Qvk = λkvk, k = 1, 2, . . . , d.

3.5. PRINCIPAL COMPONENT ANALYSIS 175

These eigenvectors are the principal components of the dataset. Principal
Component Analysis (PCA) consists of projecting the dataset onto lower-
dimensional spans of some of the eigenvectors.

Let Q be a symmetric matrix with eigenvalue λ and corresponding eigen-
vector v, Qv = λv. If t is a scalar, then the matrix tQ has eigenvalue tλ and
corresponding eigenvector v, since

(tQ)v = tQv = tλv = (tλ)v.

Hence multiplying Q by a scalar does not change the eigenvectors.
Let A be the dataset matrix of a given dataset with N samples, and d

features. If the samples are the rows of A, then A is N × d. If we assume the
dataset is centered, then, by (2.2.20), the variance is Q = AtA/N . From the
previous paragraph, the eigenvectors of the variance Q equal the eigenvectors
of AtA. From (3.4.7), these are the same as the right singular vectors of A.

Thus the principal components of a dataset are the right singular vectors
of the centered dataset matrix. This shows there are two approaches to the
principal components of a dataset: Either through EVD and eigenvectors
of the variance matrix, or through SVD and right singular vectors of the
centered dataset matrix. We shall do both.

Assuming the eigenvalues are ordered top to bottom,

λ1 ≥ λ2 ≥ · · · ≥ λd,

in PCA one takes the most significant components, those components who
eigenvalues are near the top eigenvalue. For example, one can take the top
two eigenvalues λ1 ≥ λ2 and their eigenvectors v1, v2, and project the dataset
onto span(v1, v2). The projected dataset can then be visualized as points in
the plane. Similarly, one can take the top three eigenvalues λ1 ≥ λ2 ≥ λ3

and their eigenvectors v1, v2, v3 and project the dataset onto span(v1, v2, v3).
This can then be visualized as points in three dimensions.

Recall the MNIST dataset consists of N = 60000 points in d = 784 di-
mensions. After we download the dataset,

from pandas import *

from numpy import *

mnist = read_csv("mnist.csv").to_numpy()

dataset = mnist[:,1:]

labels = mnist[:,0]

Q = cov(dataset.T)

totvar = Q.trace()

we compute Q, the total variance, and the eigenvalues, as percentages of the
total variance. We also name the targets as labels for later use.

176 CHAPTER 3. PRINCIPAL COMPONENTS

The left column in Figure 3.23 lists the top twenty eigenvalues as a per-
centage of their sum. For example, the top eigenvalue λ1 is around 10% of the
total variance. The right column lists the cumulative sums of the eigenvalues,
so the third entry in the right column is the sum of the top three eigenvalues,
λ1 + λ2 + λ3 = 22.97%.

Fig. 3.23 MNIST eigenvalues as a percentage of the total variance.

This results in Figures 3.23 and 3.24. Here we sort the array eig in
decreasing order, then we cumsum the array to obtain the cumulative sums.

Because the rank of the MNIST dataset is 712 (§2.9), the bottom 72 =
784 − 712 eigenvalues are exactly zero. A full listing shows that many more
eigenvalues are near zero, and the second column in Figure 3.23 shows the
top ten eigenvalues alone sum to almost 50% of the total variance.

from scipy.linalg import eigh

use eigh for symmetric matrices

lamda, U = eigh(Q)

sort in ascending order then reverse

sorted = sort(lamda)[::-1]

percent = sorted*100/totvar

3.5. PRINCIPAL COMPONENT ANALYSIS 177

cumulative sums

sums = cumsum(percent)

data = array([percent,sums])

print(data.T[:20].round(decimals=3))

d = len(lamda)

from matplotlib.pyplot import stairs

grid()

stairs(percent,range(d+1))

show()

Fig. 3.24 MNIST eigenvalue percentage plot.

A MNIST image is a point in R784. Now we turn to projecting the image
from 784 dimensions down to n dimensions, where n is 784, 600, 350, 150,
50, 10, 1. Let Q be any d × d variance matrix, and let v be in Rd. Let v1,
v2, . . . , vd be the orthonormal basis of eigenvectors corresponding to the
eigenvalues of Q, arranged in decreasing order, and let E be the diagonal
matrix of eigenvalues. By EVD diagonalization (§3.2), if v1, v2, . . . , vd are
the columns of U and the rows of V , then Q = UEV .

Here is code that returns the projection matrix P (§2.7) onto the span of
the eigenvectors v1, v2, . . . , vn corresponding to the top n eigenvalues of Q.

178 CHAPTER 3. PRINCIPAL COMPONENTS

from numpy import *

from scipy.linalg import eigh

projection matrix onto top n

eigenvectors of variance

of dataset

def pca(dataset,n):

Q = cov(dataset.T)

columns of U are

eigenvectors of Q

lamda, U = eigh(Q)

decreasing eigenvalue sort

order = lamda.argsort()[::-1]

sorted top n columns of U

are cols of Uproj

U is dxd Uproj is dxn

Uproj = U[:,order[:n]]

P = dot(Uproj,Uproj.T)

return P

In the code, lamda is sorted in decreasing order, and the sorting order is
saved as order. To obtain the top n eigenvectors of U , we sort the first n
columns U[:,order[:n]] in the same order, resulting in the d × n matrix
Uproj. The code then returns the projection matrix P = UprojU

t
proj (2.7.4).

Instead of working with the variance Q, as discussed at the start of the
section, we can work directly with the dataset, using SVD, to obtain the
eigenvectors.

from numpy import *

from scipy.linalg import svd

projection matrix onto top n

eigenvectors of variance

of dataset

def pca_with_svd(dataset,n):

center dataset

mu = mean(dataset,axis=0)

vectors = dataset - mu

rows of V are

right singular vectors

V = svd(vectors)[2]

no need to sort, already decreasing order

Uproj = V[:n].T # top n rows as columns

P = dot(Uproj,Uproj.T)

return P

Let v = dataset[1] be the second image in the MNIST dataset, and let
Q be the variance of the dataset. Then the code below returns the image

3.5. PRINCIPAL COMPONENT ANALYSIS 179

compressed down to n = 784, 600, 350, 150, 50, 10, 1 dimensions, returning
Figure 3.25.

def display_image(v,row,col,i):

A = reshape(v,(28,28))

fig.add_subplot(row, col,i)

xticks([])

yticks([])

imshow(A,cmap="gray_r")

from matplotlib.pyplot import *

fig = figure(figsize=(10,5))

row, col = 2, 4

v = dataset[1] # second image

display_image(v,row,col,1)

for i,n in enumerate([784,600,350,150,50,10,1],start=2):

either will work

P = pca(dataset,n)

#P = pca_with_svd(dataset[:100],n)

projv = dot(P,v)

display_image(projv,row,col,i)

If you run out of memory trying this code, cut down the dataset from
60,000 points to 10,000 points or fewer. The code works with pca or with
pca_with_svd.

We show how to project a vector v in the dataset using sklearn. The
following code sets up the PCA engine using sklearn.

from sklearn.decomposition import PCA

N = len(dataset)

n = 10

engine = PCA(n_components = n)

The following code computes the reduced dataset (§2.7)

reduced = engine.fit_transform(dataset)

reduced.shape

and returns (N,n) = (60000, 10). The following code computes the projected
dataset

180 CHAPTER 3. PRINCIPAL COMPONENTS

projected = engine.inverse_transform(reduced)

projected.shape

and returns (N, d) = (60000, 784).
Let Uproj be the d× n matrix with columns the top n eigenvectors. Then

the projection matrix onto the column space of Uproj is P = UprojU
t
proj. In

the above code, reduced equals U t
projv for each image v, and projected is

UprojU
t
projv for each image v.

Fig. 3.25 Original and projections: n = 784, 600, 350, 150, 50, 10, 1.

Then the code

from matplotlib.pyplot import *

fig = figure(figsize=(10,5))

row, col = 2, 4

v = dataset[1] # second image

display_image(v,row,col,1)

for i,n in enumerate([784,600,350,150,50,10,1],start=2):

engine = PCA(n_components = n)

reduced = engine.fit_transform(dataset)

projected = engine.inverse_transform(reduced)

projv = projected[1] # second image

display_image(projv,row,col,i)

returns Figure 3.25.

3.5. PRINCIPAL COMPONENT ANALYSIS 181

Now we project all vectors of the MNIST dataset onto two and three
dimensions, those corresponding to the top two or three eigenvalues. To start,
we compute reduced as above with n = 3, the top three components.

Fig. 3.26 The full MNIST dataset (2d projection).

In the two-dimensional plotting code below, reduced is an array of shape
(60000,3), but we use only the top two components 0 and 1. When the
rows are plotted as a scatterplot, we obtain Figure 3.26. Note the rows are
plotted grouped by color, to match the legend, and each plot point’s color is
determined by the value of its label.

from matplotlib.pyplot import *

from scipy.spatial import ConvexHull

Colors = ('blue', 'red', 'green', 'orange',
↪→ 'gray','cyan','turquoise', 'black', 'orchid', 'brown')

for i,color in enumerate(Colors):

points = reduced[labels==i,:]

scatter(points[:,0], points[:,1],label=i, edgecolor='black')
#hull = ConvexHull(points)

#for simplex in hull.simplices:

#plot(points[simplex, 0], points[simplex, 1], '-',c=color)

grid()

legend(loc='upper right')
show()

Code for displaying the convex hulls is included.

182 CHAPTER 3. PRINCIPAL COMPONENTS

Fig. 3.27 The Iris dataset (2d projection).

Code for the 2d plot (Figure 3.27) of the Iris dataset is

from matplotlib.pyplot import *

Colors = ['blue', 'red', 'green']
Classes = ["Iris-setosa", "Iris-virginica", "Iris-versicolor"]

for a,b in zip(Classes,Colors):

scatter(reduced[labels==a,0], reduced[labels==a,1], label=a, c=b,

↪→ edgecolor='black')

grid()

legend(loc='upper right')
show()

Now we turn to three dimensional plotting. Here is the code

%matplotlib ipympl

from matplotlib.pyplot import *

ax = axes(projection="3d")

3.6. CLUSTER ANALYSIS 183

Colors = ('blue', 'red', 'green', 'orange', 'gray','cyan' ,

↪→ 'turquoise', 'black', 'orchid', 'brown')

for i,color in enumerate(Colors):

ax.scatter(reduced[labels==i,0], reduced[labels==i,1],

↪→ reduced[labels==i,2], label=i, c=color, edgecolor='black')

ax.set_aspect("equal")

ax.set_axis_off()

legend(loc='upper right')
show()

The three dimensional plot of the complete MNIST dataset is Figure 1.5
in §1.2. The command %matplotlib ipympl allows the figure to rotated and
scaled.

Exercise 3.5.1 Use PCA to reduce the MNIST dataset to four dimensions.
Out of the first 1,000 images, reduced to R4, what is the digit corresponding
to the projected image closest to the origin?

3.6 Cluster Analysis

Cluster analysis seeks to partition a dataset into groups or clusters based on
selected criteria, such as proximity in distance.

Let x1, x2, . . . , xN be a dataset in Rd. The simplest algorithm is k-means
clustering. The algorithm is iterative: We start with k means m1, m2, . . . ,
mk, not necessarily part of the dataset, and we divide the dataset into k
clusters, where the i-th cluster consists of the points x in the dataset for
which the i-th mean mi is nearest to x.

The algorithm is in two parts, the assignment step and the update step.
Initially the means m1, m2, . . . , mk are chosen at random, or by an edu-
cated guess, then clusters C1, C2, . . . , Ck are assigned, then each mean is
recomputed as the mean of each cluster.

The sklearn package contains clustering routines, but here we write the
code from scratch to illustrate the ideas. Here is an animated gif illustrating
the convergence of the algorithm.

We assume each mean is a point in Rd, coded as an array of shape (d,),
and each cluster is a collection of points in Rd, coded as a list of arrays of
shape (d,).

Then the collection of cluster means is coded as an array of shape (k,d),
and the collection of clusters is coded as a list of lists of length k.

Given a point x, we select the first mean closest to x:

https://en.wikipedia.org/wiki/File:K-means_convergence.gif

184 CHAPTER 3. PRINCIPAL COMPONENTS

from numpy import *

from scipy.linalg import norm

def nearest_index(x,means):

distances = norm(means-x,axis=1)

return argmin(distances)

Starting with empty clusters, we iterate the assign/update steps until the
means no longer change. If any clusters remain empty, we discard them. Here
is the assignment step.

def assign_clusters(dataset,means):

clusters = [[] for _ in range(k)]

for x in dataset:

i = nearest_index(x,means)

clusters[i].append(x)

return [c for c in clusters if len(c)]

Here is the update step.

def update_means(clusters):

return array([sum(c,axis=0)/len(c) for c in clusters])

Here is the iteration.

from numpy.random import default_rng

samples = default_rng().random

def kmeans(dataset,k):

close_enough = False

(N,d) = dataset.shape

means = samples((k,d))

while not close_enough:

clusters = assign_clusters(dataset,means)

print([len(c) for c in clusters])

new_means = update_means(clusters)

only check closeness if number of means unchanged

if len(new_means) == len(means):

close_enough = allclose(means,new_means)

means = new_means

return means, clusters

d, k, N = 2, 7, 100

dataset = samples((N,d))

means, clusters = kmeans(dataset, k)

This code also prints the cluster sizes after each iteration. Here is code
that plots a cluster.

3.6. CLUSTER ANALYSIS 185

def plot_cluster(mean,cluster,color,marker):

scatter(*array(cluster).T, s=30, c=color, marker=marker)

scatter(*mean, s=20, c=color, marker='*')

Here is code for the entire iteration. hexcolor is in §1.3.

from matplotlib.pyplot import *

from numpy.random import default_rng

samples = default_rng().random

d = 2

k,N = 7,100

dataset = samples((N,d))

means = samples((k,d))

colors = [hexcolor() for _ in range(k)]

scatter(*dataset.T,s=10)

grid()

show()

means, clusters = kmeans(dataset,k)

for i,cluster in enumerate(clusters):

tex = '$' + str(i) + '$'
mean = means[i]

color = colors[i]

plot_cluster(mean,cluster,color,tex)

grid()

show()

Chapter 4

Calculus

The material in this chapter lays the groundwork for Chapter 7. It assumes
the reader has some prior exposure, and the first section quickly reviews basic
material essential for our purposes.

The overarching role played by convex functions is emphasized repeatedly.
To avoid technical difficulties, our convex functions are usually strongly con-
vex, in the sense that their second derivatives are bounded above and below.

The chain rule is treated extensively, combinatorially (back propagation)
and geometrically (time-derivatives). Both interpretations are crucial for neu-
ral network training in Chapter 7.

Because it is used infrequently in the text, integration is treated separately
in an appendix (§A.6).

Even though parts of §4.5 are heavy-going, the material is necessary for
Chapter 7. Nevertheless, for a first pass, the reader should feel free to skim
this material and come back to it after the need is made clear.

4.1 Single-Variable Calculus

In this section, we focus on single-variable calculus, and in §4.3, we review
multi-variable calculus. Recall the slope of a line y = mx+ b equals m.

Let y = f(x) be a function as in Figure 4.1, and let a be a fixed point. The
derivative of f(x) at the point a is the slope of the line tangent to the graph
of f(x) at a. Then the derivative at a point a is a number f ′(a) possibly
depending on a.

Definition of Derivative

The derivative of f(x) at the point a is the slope of the line tangent
to the graph of f(x) at a.

187

188 CHAPTER 4. CALCULUS

Since a constant function f(x) = c is a line with slope zero, the derivative
of a constant is zero. Since f(x) = mx+b is a line with slope m, its derivative
is m.

Since the tangent line at a passes through the point (a, f(a)), and its slope
is f ′(a), the equation of the tangent line at a is

y = f(a) + f ′(a)(x− a).

Based on the definition, natural properties of the derivative are

A. The derivative of f(x) + g(x) is f ′(x) + g′(x), and (−f(x))′ is −f ′(x).
B. If f ′(x) ≥ 0 on an interval [a, b], then f(b) ≥ f(a).
C. If f ′(x) ≤ 0 on an interval [a, b], then f(b) ≤ f(a).

x

y

y = f(x)

a

Fig. 4.1 f ′(a) is the slope of the tangent line at a.

Using these properties, we determine the formula for f ′(a). Suppose the
derivative is bounded between two extremes m and L at every point x in an
interval [a, b], say

m ≤ f ′(x) ≤ L, a ≤ x ≤ b.

Then by A, the derivative of h(x) = f(x)−mx at x equals h′(x) = f ′(x)−m.
By assumption, h′(x) ≥ 0 on [a, b], so, by B, h(b) ≥ h(a). Since h(a) =
f(a)−ma and h(b) = f(b)−mb, this leads to

f(b)− f(a)

b− a
≥ m.

Repeating this same argument with f(x)− Lx, and using C, leads to

f(b)− f(a)

b− a
≤ L.

4.1. SINGLE-VARIABLE CALCULUS 189

We have shown

First Derivative Bounds

If m ≤ f ′(x) ≤ L for a ≤ x ≤ b, then

m ≤ f(b)− f(a)

b− a
≤ L. (4.1.1)

As an immediate consequence, when m = L = 0, applying this to any
subinterval [a′, b′] in [a, b],

Zero Derivative Implies Constant

For any f(x),

f ′(x) = 0 =⇒ f(x) is constant. (4.1.2)

When b is close to a, we expect both extremes m and L to be close to
f ′(a). From (4.1.1), we arrive at the formula for the derivative,

Derivative Formula

f ′(a) = lim
x→a

f(x)− f(a)

x− a
. (4.1.3)

From (4.1.3), the derivative of a line f(x) = mx + b equals f ′(a) = m,
agreeing with what we already know. We usually deal with limits as in (4.1.3)
in an intuitive manner. When needed, please refer to §A.7 for basic properties
of limits.

Below we also write

y′ = f ′(x) =
dy

dx
or

f ′(a) =
dy

dx

∣∣∣∣
x=a

When the particular point a is understood from the context, we write y′.

From (4.1.3), the basic properties of the derivative are

• Sum rule. h = f + g implies h′ = f ′ + g′,
• Product rule. h = fg implies h′ = f ′g + fg′,
• Quotient rule. h = f/g implies h′ = (f ′g − fg′)/g2.

190 CHAPTER 4. CALCULUS

• Chain rule. u = f(x) and y = g(u) implies

dy

dx
=

dy

du
· du
dx

.

To visualize the chain rule, suppose

u = f(x) = sinx,

y = g(u) = u2.

These are two functions f , g in composition, as in Figure 4.2.

f gx u y

Fig. 4.2 Composition of two functions.

Suppose x = π/4. Then u = sin(π/4) = 1/
√
2, and y = u2 = 1/2. Since

dy

du
= 2u =

2√
2
,

du

dx
= cosx =

1√
2
,

by the chain rule,
dy

dx
=

dy

du
· du
dx

=
2√
2
· 1√

2
= 1.

Since the chain rule is important for machine learning, it is discussed in detail
in §4.4.

By the product rule,

(x2)′ = x′x+ xx′ = 1x+ x1 = 2x.

Similarly one obtains the power rule

(xn)′ = nxn−1. (4.1.4)

Using the chain rule, the power rule can be derived for any rational number n,
positive or negative. For example, since (

√
x)2 = x, we can write x = f(g(x))

with f(x) = x2 and g(x) =
√
x. By the chain rule,

1 = (x)′ = f ′(g(x))g′(x) = 2g(x)g′(x) = 2
√
x(
√
x)′.

Solving for (
√
x)′ yields

(
√
x)′ =

1

2
√
x
,

which is (4.1.4) with n = 1/2. In this generality, the variable x is restricted
to positive values only.

4.1. SINGLE-VARIABLE CALCULUS 191

For example, the code

from sympy import *

x, a = symbols('x, a')
f = x**a

f.diff(x), diff(f,x), f.diff(x).simplify(), simplify(diff(f,x))

returns
axa

x
,

axa

x
, axa−1, axa−1.

The power rule can be combined with the chain rule. For example, if

u = 1− p+ cp, f(p) = un, g(u) =
un+1

(c− 1)(n+ 1)
,

then

F (p) =
(1− p+ cp)n+1

(c− 1)(n+ 1)
,

and
F ′(p) = g′(u)u′ = un,

hence

F (p) =
(1− p+ cp)n+1

(c− 1)(n+ 1)
=⇒ F ′(p) = f(p). (4.1.5)

The second derivative f ′′(x) of f(x) is the derivative of the derivative,

f ′′(x) = (f ′(x))
′
.

For example,

(xn)′′ = (nxn−1)′ = n(n− 1)xn−2 =
n!

(n− 2)!
xn−2 = P (n, 2)xn−2

(for n! and P (n, k) see §A.1).
More generally, the k-th derivative f (k)(x) is the derivatives taken k times,

so

192 CHAPTER 4. CALCULUS

(xn)
(k)

= n(n− 1)(n− 2) . . . (n−k+1)xn−k =
n!

(n− k)!
xn−k = P (n, k)xn−k.

When k = 0, f (0)(x) = f(x), and, when k = 1, f (1)(x) = f ′(x). The code

from sympy import *

init_printing()

x, n = symbols('x, n')

diff(x**n,x,3)

returns the third derivative n(n− 1)(n− 2)xn−3.

Here is an example using derivatives from sympy. Given a power n, let
pn(x) = (x2 − 1)n. Then pn(x) is a polynomial of degree 2n.

The Legendre polynomial Pn(x) is the n-th derivative of pn(x) divided by
n!2n. Then Pn(x) is a polynomial of degree n.

For example, when n = 1, p1(x) = x2 − 1, so

P1(x) =
1

1!21
(x2 − 1)′ =

1

2
2x = x.

When n = 2,

P2(x) =
1

2!22
(
(x2 − 1)2

)′′
=

1

2
(3x2 − 1).

The Python code for Pn(x) uses symbolic functions and symbolic deriva-
tives.

from sympy import diff, symbols

from scipy.special import factorial

def sym_legendre(n):

symbolic variable

x = symbols('x')
symbolic function

p = (x**2 - 1)**n

nfact = factorial(n,exact=True)

symbolic nth derivative

return p.diff(x,n)/(nfact * 2**n)

For example,

from sympy import init_printing, simplify

init_printing()

4.1. SINGLE-VARIABLE CALCULUS 193

[simplify(sym_legendre(n)) for n in range(6)]

returns the first six Legendre Polynomials, starting from n = 0:[
1, x,

3x2

2
− 1

2
,
x
(
5x2 − 3

)
2

,
35x4

8
− 15x2

4
+

3

8
,
x
(
63x4 − 70x2 + 15

)
8

]

To compute values such as P4(5), we have modify sym_legendre to a
numpy function as follows,

from sympy import lambdify

def num_legendre(n):

x = symbols('x')
f = sym_legendre(n)

return lambdify(x,f, 'numpy')

The function num_legendre(n) can be evaluated, plotted, integrated, etc.

0
x

y

Fig. 4.3 Increasing or decreasing?

For the parabola in Figure 4.3, y = x2 so, by the power rule, y′ = 2x.
Since y′ > 0 when x > 0 and y′ < 0 when x < 0, this agrees with the
increase/decrease of the graph. In particular, the minimum of the parabola
occurs when y′ = 0.

For the curve y = x4 − 2x2 in Figure 4.4,

y′ = 4x3 − 4x = 4x(x2 − 1) = 4x(x− 1)(x+ 1),

194 CHAPTER 4. CALCULUS

so y′ is a product of the three factors 4x, x−1, x+1. Since the zeros of these
factors are 0, 1, and −1, and y′ > 0 when all factors are positive, or two of
them are negative, this agrees with the increase/decrease in the figure.

Here y′ = 0 occurs at the two minima x = ±1 and at the local maximum
0. Notice 0 is not a global maximum as there is no greatest value for y.

−1

0

1
x

y

−c c

(c = 1/
√
3)

Fig. 4.4 Increasing or decreasing?

A point x∗ is a local maximizer of f(x) if f(x∗) ≥ f(x) for x near x∗. A
point x∗ is a global maximizer if f(x∗) ≥ f(x) for all x.

A point x∗ is a local minimizer of f(x) if f(x∗) ≤ f(x) for x near x∗. A
point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x.

A critical point is a point x∗ where the derivative equals zero, f ′(x∗) =
0. Figures 4.3 and 4.4 exhibit examples of local or global maximizers or
minimizers, and show they are critical points.

Let f(x) be any function, and let x∗ be a local maximizer of f(x). Then
for x > x∗ near x∗, we have

f(x)− f(x∗)

x− x∗ ≤ 0,

so, by (4.1.1), f ′(x∗) ≤ 0. Similarly, for x < x∗ near x∗,

f(x)− f(x∗)

x− x∗ ≥ 0,

so, by (4.1.1), f ′(x∗) ≤ 0. Hence at a local maximizer x∗, we must have
f ′(x∗) = 0.

By the same method, a local minimizer x∗ satisfies f ′(x∗) = 0. This shows

4.1. SINGLE-VARIABLE CALCULUS 195

A Maximizer or Minimizer is a Critical Point

If x∗ is a maximizer or minimizer of f(x) on an interval [a, b], and
a < x∗ < b, then f ′(x∗) = 0. Thus the maximum of f(x) over the
interval equals the maximum over critical points and endpoints,

max
a≤x≤b

f(x) = max(f(a), f(x∗), f(b)), (4.1.6)

and the minimum of f(x) over the interval equals the minimum over
critical points and endpoints,

min
a≤x≤b

f(x) = min(f(a), f(x∗), f(b)), (4.1.7)

In other words, to find the maximum or minimum of f(x), find the critical
points x∗, plug them and the endpoints a, b into f(x), and select whichever
yields the maximum value or minimum value.

Suppose f(x) is given by a finite or infinite sum

f(x) = c0 + c1x+ c2x
2 + c3x

3 + . . . (4.1.8)

Then f(0) = c0. Taking derivatives, by the sum, product, and power rules,

f ′(x) = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + . . .

f ′′(x) = 2c2 + 3 · 2c3x+ 4 · 3c4x2 + . . .

f ′′′(x) = 3 · 2c3 + 4 · 3 · 2c4x+ . . .

f (4)(x) = 4 · 3 · 2c4 + . . .

(4.1.9)

Inserting x = 0, we obtain f ′(0) = c1, f
′′(0) = 2c2, f

′′′(0) = 3 · 2c3, f (4)(0) =
4 · 3 · 2c4. This can be encapsulated by f (n)(0) = n!cn, n = 0, 1, 2, 3, 4, . . . ,
which is best written

f (n)(0)

n!
= cn, n ≥ 0.

Going back to (4.1.8), we derived

Taylor Series

If f(x) has derivatives of all orders,

196 CHAPTER 4. CALCULUS

f(x) =

∞∑
n=0

f (n)(0)

n!
xn

= f(0) + f ′(0)x+ f ′′(0)
x2

2
+ f ′′′(0)

x3

6
+ f (4)(0)

x4

24
+ . . .

(4.1.10)

We now compute the derivatives of the exponential function (§A.3). By
the compound-interest formula (A.3.9),

ex = lim
n→∞

(
1 +

x

n

)n
.

By the power rule and chain rule,((
1 +

x

n

)n)′
= n

(
1 +

x

n

)n−1

· 1
n
=
(
1 +

x

n

)n−1

.

From this follows

(ex)
′
= lim

n→∞

(
1 +

x

n

)n−1

= lim
n→∞

(
1 +

x

n

)n
· 1

1 + x/n
= ex · 1 = ex.

Since the first derivative is ex, so is the second derivative. This derives

Derivative of the Exponential Function

The exponential function satisfies

(ex)′ = ex.

Since
(ex)(n) = ex, n ≥ 0,

the Taylor series of ex reduces to the exponential series (A.3.13).

The logarithm function is the inverse of the exponential function,

y = log x ⇐⇒ x = ey.

This is the same as saying

log(ey) = y, elog x = x.

4.1. SINGLE-VARIABLE CALCULUS 197

From here, we see the logarithm is defined only for x > 0 and is strictly
increasing (Figure 4.5).

Since e0 = 1,
log 1 = 0.

Since e∞ = ∞ (Figure A.3),

log∞ = ∞.

Since e−∞ = 1/e∞ = 1/∞ = 0,

log 0 = −∞.

We also see log x is negative when 0 < x < 1, and positive when x > 1.

Fig. 4.5 The logarithm function log x.

Moreover, by the law of exponents,

log(ab) = log a+ log b.

For a > 0 and b real, define

ab = eb log a.

Then, by definition,
log(ab) = b log a,

and (
ab
)c

=
(
eb log a

)c
= ebc log a = abc.

198 CHAPTER 4. CALCULUS

By definition of the logarithm, y = log x is shorthand for x = ey. Use the
chain rule to find y′:

x = ey =⇒ 1 = x′ = (ey)′ = eyy′ = xy′,

so

y = log x =⇒ y′ =
1

x
.

Derivative of the Logarithm

y = log x =⇒ y′ =
1

x
. (4.1.11)

Since the derivative of log(1 + x) is 1/(1 + x), the chain rule implies

dn

dxn
log(1 + x) = (−1)n−1 (n− 1)!

(1 + x)n
, n ≥ 1.

From this, the Taylor series of log(1 + x) is

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ (4.1.12)

Now we look at the increase/decrease in y′, rather than in y. Applying the
above logic to y′ instead to y, we see y′ is increasing when y′′ ≥ 0, and y′ is
decreasing when y′′ ≤ 0.

In the first case, we say f(x) is convex, while in the second case, we say
f(x) is concave.

Since multiplying by a minus interchanges y′′ ≥ 0 and y′′ ≤ 0, concavity
of f(x) is equivalent to convexity of −f(x).

The simplest example of a convex function is a quadratic function,

f(x) =
1

2
ax2 + bx+ c, a > 0.

If we look at Figure 4.3, the slope at x equals y′ = 2x. Thus as x increases,
y′ increases. Even though the parabola height y decreases when x < 0 and
increases when x > 0, its slope y′ is always increasing: When x < 0, as x
increases, y′ = 2x is less and less negative, while, when x > 0, as x increases,
y′ is more and more positive.

Since y′ increases when its derivative is positive, the parabola’s behavior
is encapsulated in

y′′ = (y′)′ = (2x)′ = 2 > 0.

4.1. SINGLE-VARIABLE CALCULUS 199

In general,

Second Derivatives and Convexity

y = f(x) is convex if y′′ ≥ 0, and concave if y′′ ≤ 0.

A point where y′′ = 0 is an inflection point. In Figure 4.4, the graph is
convex away from 0, and concave near 0. Since

y′′ = (x4 − 2x2)′′ = (4x3 − 4x)′ = 12x2 − 4 = 4(3x2 − 1),

the inflection points are x = ±1/
√
3. Hence f(x) is convex when |x| > 1/

√
3,

and f(x) is concave when |x| < 1/
√
3. Since 1/

√
3 < 1, f(x) is convex near

x = ±1.

A function y = f(x) is strictly convex if y′′ > 0, and strictly concave if
y′′ < 0. Then y = f(x) is strictly convex when y′ is strictly increasing, and
y = f(x) is strictly concave when y′ is strictly decreasing.

Second Derivatives and Strict Convexity

y = f(x) is strictly convex if y′′ > 0, and strictly concave if y′′ < 0.

Since (x2)′′ = 2 > 0 and (ex)′′ = ex > 0, x2 and ex are strictly convex
everywhere, and x4 − 2x2 is strictly convex for |x| > 1/

√
3.

Let y = − log x.By the power rule,

y′′ = (− log x)′′ =

(
− 1

x

)′

= −
(
x−1

)′
=

1

x2
.

Since y′′ > 0, which shows − log x is strictly convex. This shows log x is
strictly concave on x > 0.

Suppose y = f(x) is convex, so y′ is increasing. Then a ≤ t ≤ x ≤ b implies
f ′(a) ≤ f ′(t) ≤ f ′(x) ≤ f ′(b). Taking m = f ′(a) and L = f ′(x) in (4.1.1),

f ′(a) ≤ f(x)− f(a)

x− a
≤ f ′(x), a ≤ x ≤ b.

Since the tangent line at a is y = f ′(a)(x − a) + f(a), rearranging this last
inequality, we obtain

200 CHAPTER 4. CALCULUS

Convex Function Graph Lies Above the Tangent Line

If f(x) is convex on [a.b], then

f(a) + f ′(a)(x− a) ≤ f(x), a ≤ x ≤ b.

For example, the function in Figure 4.6 is convex near x = a, and the
graph lies above its tangent line at a.

x

y

a

Fig. 4.6 Tangent parabolas pm(x) (green), pL(x) (red), L > m > 0.

Let pm(x) be the parabola

pm(x) = f(a) + f ′(a)(x− a) +
m

2
(x− a)2. (4.1.13)

Then p′′m(x) = m. Moreover the graph of pm(x) is tangent to the graph of
f(x) at x = a, in the sense f(a) = pm(a) and f ′(a) = p′m(a). Because of this,
we call pm(x) the lower tangent parabola.

Similarly, let pL(x) be the parabola

pL(x) = f(a) + f ′(a)(x− a) +
L

2
(x− a)2. (4.1.14)

Then p′′L(x) = L. Moreover the graph of pL(x) is tangent to the graph of f(x)
at x = a, in the sense f(a) = pL(a) and f ′(a) = p′L(a). Because of this, we
call pL(x) the upper tangent parabola.

4.1. SINGLE-VARIABLE CALCULUS 201

We say f(x) is strongly convex on an interval [a, b] if there are positive
constants m and L satisfying

m ≤ f ′′(x) ≤ L, a ≤ x ≤ b.

When the inequalities hold for all x, we say f(x) is strongly convex.
There are several levels of convexity. They are, in order of generality,

• quadratic functions, f ′′(x) is constant,
• strongly convex functions, L ≥ f ′′(x) ≥ m,
• strictly convex functions, f ′′(x) > 0,
• general convex functions, f ′′(x) ≥ 0.

The exponential function ex is strongly convex on any bounded interval
[a, b], since (ex)′′ = ex and ea ≤ ex ≤ eb when a ≤ x ≤ b. This implies ex is
strictly convex for all x. However, ex is not strongly convex for all x, since
e−∞ = 0.

When f(x) is convex, we saw above the graph of f(x) lies above its tangent
line. When f(x) is strongly convex, we can specify the size of the difference
between the graph and the tangent line. In fact, the graph is constrained to
lie above or below the lower or upper tangent parabolas for all x.

Lower and Upper Tangent Parabolas

Let f(x) be strongly convex, with m ≤ f ′′(x) ≤ L. Then the graph
lies between the lower and upper tangent parabolas pm(x) and pL(x),

m

2
(x− a)2 ≤ f(x)− f(a)− f ′(a)(x− a) ≤ L

2
(x− a)2. (4.1.15)

To see this, suppose f ′′(x) ≥ m. then g(x) = f(x)− pm(x) satisfies

g′′(x) = f ′′(x)− p′′m(x) = f ′′(x)−m ≥ 0,

so g(x) is convex, so g(x) lies above its tangent line at x = a. Since g(a) = 0
and g′(a) = 0, the tangent line is 0, and we conclude g(x) ≥ 0, which is the
left half of (4.1.15). Similarly, if f ′′(x) ≤ L, then pL(x) − f(x) is convex,
leading to the right half of (4.1.15).

Choosing a = 0 in (4.1.15) implies the graph lies between two parabolas.
Because of this, a strongly convex function must have at least one minimizer
x∗. Because a minimizer is a critical point, and strong convexity implies strict
convexity which in turn implies y′ is strictly increasing, there is at most one
minimizer x∗. This shows

202 CHAPTER 4. CALCULUS

Strongly Convex Implies Unique Global Minimizer

A strongly convex function has exactly one global minimizer x∗.

In particular, choosing a = x∗ in (4.1.15) implies

m

2
(x− x∗)2 ≤ f(x)− f(x∗) ≤ L

2
(x− x∗)2. (4.1.16)

When m ≤ f ′′(x) ≤ L, by (4.1.1),

t =
f ′(b)− f ′(a)

b− a
=⇒ m ≤ t ≤ L. (4.1.17)

Replacing b by x implies

Lipschitz Bounds

Let f(x) be strongly convex. If p = f ′(x) and q = f ′(a), then

m|x− a| ≤ |p− q| ≤ L|x− a|. (4.1.18)

Replacing b by x in (4.1.17), then multiplying by (x− a)2, we obtain

Strongly Convex Gradient Bounds

Let f(x) be strongly convex. If q = f ′(x) and p = f ′(a), then

m(x− a)2 ≤ (q − p)(x− a) ≤ L(x− a)2. (4.1.19)

Moreover (4.1.17) implies

t2 − (m+ L)t+mL = (t−m)(t− L) ≤ 0.

Replacing b by x, then multiplying by (x− a)2, yields

Coercivity of the Gradient

Let f(x) be strongly convex. If q = f ′(x) and p = f ′(a), then

mL

m+ L
(x− a)2 +

1

m+ L
(q − p)

2 ≤ (q − p)(x− a). (4.1.20)

These are used in gradient descent §7.8.

4.1. SINGLE-VARIABLE CALCULUS 203

For gradient descent, we need the relation between a convex function and
its convex dual. The convex dual g(p) of a function f(x) is

g(p) = max
x

(px− f(x)). (4.1.21)

Here the maximum is over all x.
When f(x) is strongly convex, f(x)−px is also strongly convex, so f(x)−px

has a unique minimizer. It follows that for each p there is a unique maximizer
x∗ in (4.1.21),

g(p) = px− f(x) ⇐⇒ x = x∗(p).

The simplest example is a quadratic

f(x) =
1

2
ax2 + bx+ c, a > 0.

In this case, solving (px− f(x))′ = 0 leads to

0 =

(
px−

(
1

2
ax2 + bx+ c

))′

= p− ax− b,

or x∗ = (p− b)/a. Plugging x∗ back into (4.1.21) yields

g(p) =
1

2a
(p− b)2 − c.

Let f(x) be a strongly convex function. Going back to the general setting
(4.1.21), since a maximizer x∗ is a critical point,

0 = (px− f(x))′ = p− f ′(x) ⇐⇒ x = x∗,

hence
p = f ′(x∗).

By the product rule and chain rule, since x∗ = x∗(p) depends on p,

g′(p) = (px∗−f(x∗))′ = x∗+p(x∗)′−f ′(x∗)(x∗)′ = x∗+(p−f ′(x∗))(x∗)′ = x∗.

We conclude
p = f ′(x) ⇐⇒ x = g′(p). (4.1.22)

Thus f ′(x) is the inverse function of g′(p).

204 CHAPTER 4. CALCULUS

Since f ′(x) is the inverse function of g′(p), we have

f ′(g′(p)) = p.

Differentiating with respect to p again yields

f ′′(g′(p))g′′(p) = 1.

Since g(p) = px− f(x) is equivalent to f(x) = px− g(p), we conclude

Dual of the Dual

Let f(x) be strongly convex. If g(p) is the convex dual of f(x), then
f(x) is the convex dual of g(p), g(p) is strongly convex, and

g′′(p) =
1

f ′′(x)
⇐⇒ p = f ′(x) ⇐⇒ x = g′(p).

It follows that the dual g(p) is strongly convex with

1

L
≤ g′′(p) ≤ 1

m
.

Using this, we also have (Exercise 4.1.20)

Dual Second Derivative Bounds

Let f(x) be strongly convex. If p = f ′(x) and q = f ′(a), then

1

2L
(p− q)2 ≤ f(x)− f(a)− f ′(a)(x− a) ≤ 1

2m
(p− q)2. (4.1.23)

For the chi-squared distribution §5.5, we need Newton’s generalization of
the binomial theorem (A.2.7) to general exponents.

Newton’s Binomial Theorem

Let n be any real number. For a > 0 and −a < x < a,

(a+ x)n = an + nan−1x+

(
n

2

)
an−2x2 +

(
n

3

)
an−3x3 +

This makes sense because the binomial coefficient
(
n
k

)
is defined for any

real number n (A.2.11), (A.2.12).
Using summation notation,

4.1. SINGLE-VARIABLE CALCULUS 205

(a+ x)n =

∞∑
k=0

(
n

k

)
an−kxk. (4.1.24)

The only difference between the binomial theorem and (4.1.24) is the upper
limit of the summation, which is set to infinity. When n is a whole number,
by (A.1.1), we have (

n

k

)
= 0, for k > n,

so (4.1.24) is a sum of n + 1 terms, yielding the binomial theorem exactly.
When n is not a whole number, the sum (4.1.24) is an infinite sum.

Actually, in §5.5, we need the special case a = 1, which we write in slightly
different notation,

(1 + x)p =

∞∑
n=0

(
p

n

)
xn. (4.1.25)

Newton’s binomial theorem (4.1.24) is a special case of the Taylor series
(4.1.10). To see this, set

f(x) = (a+ x)n.

Then, by the power rule,

f (k)(x) = n(n− 1)(n− 2) . . . (n− k + 1)(a+ x)n−k,

so
f (k)(0)

k!
=

n(n− 1)(n− 2) . . . (n− k + 1)

k!
an−k =

(
n

k

)
an−k.

Writing out the Taylor series,

(a+ x)n =

∞∑
k=0

f (k)(0)

k!
=

∞∑
k=0

(
n

k

)
an−kxk,

which is Newton’s binomial theorem.

The trigonometric functions sine and cosine were defined in (A.4.3). To
plot them, use

from matplotlib.pyplot import *

from numpy import *

a, b = 0, 3*pi

theta = arange(a,b,.01)

ax = axes()

206 CHAPTER 4. CALCULUS

ax.grid(True)

ax.axhline(0, color='black', lw=1)

plot(theta,sin(theta))

show()

This returns Figure 4.7.

Fig. 4.7 The sine function.

It is often convenient to set the horizontal axis tick marks at the multiples
of π/2. For this, we use

from numpy import *

from matplotlib.pyplot import *

r'...' is a raw string. In a raw string

the backslash \ is not an escape character

def label(k):

if k == 0: return '0'
elif k == 1: return r'$\pi/2$'
elif k == -1: return r'$-\pi/2$'
elif k == 2: return r'π'
elif k == -2: return r'$-\pi$'
elif k%2 == 0: return '$' + str(k//2) + r'\pi$'
else: return '$' + str(k) + r'\pi/2$'

def set_pi_ticks(a,b):

base = pi/2

m = floor(b/base)

n = ceil(a/base)

4.1. SINGLE-VARIABLE CALCULUS 207

k = arange(n,m+1,dtype=int)

multiples of base

return xticks(k*base, map(label,k))

Then inserting set_pi_ticks(a,b) in the plot code returns Figure 4.8.

Fig. 4.8 The sine function with π/2 tick marks.

θ

xO

1

P

I

y

Q
1− x

Fig. 4.9 Angle θ in the plane, P = (x, y).

We review the derivative of sine and cosine. This is needed for the arcsine
law (3.2.16). Recall the angle θ in radians is the length of the subtended
arc (in red) in Figure 4.9. Following the figure, with P = (x, y), we have
x = cos θ, y = sin θ.

208 CHAPTER 4. CALCULUS

The key idea here is Archimedes’ axiom [14], which states:

If two convex curves share common initial and terminal points, and one lies inside
the convex region defined by the other, than that one is shorter.

By the figure, there are three convex curves joining P and I: The line
segment PI, the red arc, and the polygonal curve PQI. By Archimedes’
axiom, the length of PI is less than the length of the red arc, which in turn
is less than the length of PQI. Since the length of PI is greater than y, this
implies

y < θ < 1− x+ y,

or
sin θ < θ < 1− cos θ + sin θ.

Dividing by θ (here we assume 0 < θ < π/2),

1− 1− cos θ

θ
<

sin θ

θ
< 1. (4.1.26)

We use this to show (the definition of limit is in §A.7)

lim
θ→0

sin θ

θ
= 1. (4.1.27)

Since sin θ is odd, it is enough to verify (4.1.27) for θ > 0.
To this end, since sin2 θ = 1− cos2 θ, from (4.1.26),

0 ≤ 1− cos θ

θ
=

1− cos2 θ

θ(1 + cos θ)
=

sin θ

θ
· sin θ

1 + cos θ
≤ sin θ ≤ θ,

which implies

lim
θ→0

1− cos θ

θ
= 0.

Taking the limit θ → 0 in (4.1.26), we obtain (4.1.27) for θ > 0.
From (A.5.6),

sin(θ + t) = sin θ cos t+ cos θ sin t,

so

lim
t→0

sin(θ + t)− sin θ

t
= lim

t→0
sin θ · cos t− 1

t
+ cos θ · sin t

t
= cos θ.

Thus the derivative of sine is cosine,

(sin θ)′ = cos θ.

Similarly,
(cos θ)′ = − sin θ.

4.1. SINGLE-VARIABLE CALCULUS 209

Using the chain rule, we compute the derivative of the inverse arcsinx of
sin θ. Since

θ = arcsinx ⇐⇒ x = sin θ,

we have
1 = x′ = (sin θ)′ = θ′ · cos θ = θ′ ·

√
1− x2,

or

(arcsinx)′ = θ′ =
1√

1− x2
.

We use this to compute the derivative of the arcsine law (3.2.16). With
x =

√
λ/2, by the chain rule,(
2

π
arcsin

(
1

2

√
λ

))′

=
2

π

1√
1− x2

· x′

=
2

π

1√
1− λ/4

· 1

4
√
λ
=

1

π
√
λ(4− λ)

.

(4.1.28)

This shows the derivative of the arcsine law is the density in Figure 3.11.

Exercises

Exercise 4.1.1 What is the y-intercept of the line tangent to f(x) = x2 at
the point (1, 1)?

Exercise 4.1.2 With expx = ex, what are the first derivatives of exp(expx)
and exp(exp(expx))?

Exercise 4.1.3 With a > 0, let f(x) = 1
2ax

2 − ex. Where is f(x) convex,
and where is it concave?

Exercise 4.1.4 With Pn(x) the Legendre polynomial, use num_legendre to
find the general formula for Pn(0), Pn(1), Pn(−1), for n = 1, 2, 3,

Exercise 4.1.5 For fixed α > 0 and β > 0, find the maximizer p̂ of

pα(1− p)β−α, 0 ≤ p ≤ 1.

Exercise 4.1.6 Compute the maximum and minimum of the second deriva-
tive of cos θ over the interval [a, b] = [−π/4, π/4]. Use that to compute the
upper and lower tangent parabolas at θ = 0. Plots these parabolas against
cos θ. Repeat everything with [a, b] = [−π/2, π/2].

Exercise 4.1.7 Suppose f(x) ≥ 0 and f ′′(x) ≤ 1/2 for all x. Show

|f ′(a)| ≤
√

f(a).

210 CHAPTER 4. CALCULUS

(Write (4.1.15) with x = a+ t to obtain a nonnegative parabola 0 ≤ f(a) +
f ′(a)t+ Lt2/2. Compute its nonnegative bottom by completing the square.)

Exercise 4.1.8 Use the Taylor series for log(1 + x) to show

log 2 = 1− 1

2
+

1

3
− 1

4
+

Exercise 4.1.9 Compute the Taylor series for sin θ and cos θ.

Exercise 4.1.10 Let W =

(
0 1
−1 0

)
. Compute eW (Exercise 2.2.16).

Exercise 4.1.11 Using Newton’s binomial theorem, show

1√
1− 2u

= 1 + u+
1 · 3
2!

u2 +
1 · 3 · 5

3!
u3 +

1 · 3 · 5 · 7
4!

u4 + . . .

Exercise 4.1.12 If the convex dual of f(x) is g(p), and t is a constant, what
is the convex dual of f(x) + t?

Exercise 4.1.13 If the convex dual of f(x) is g(p), and t is a constant, what
is the convex dual of f(x+ t)?

Exercise 4.1.14 If the convex dual of f(x) is g(p), and t ̸= 0 is a constant,
what is the convex dual of f(tx)?

Exercise 4.1.15 If the convex dual of f(x) is g(p), and t ̸= 0 is a constant,
what is the convex dual of tf(x)?

Exercise 4.1.16 Show f(x) convex implies ef(x) convex.

Exercise 4.1.17 Let 0 < m < L be positive scalars, and let r = m/L. Show

m

L
+

L

m
= r +

1

r
> 2

by searching for critical points over r > 0 (4.1.6).

Exercise 4.1.18 Let 0 < m < L be positive scalars. Show

q(t) =

(
tm+ (1− t)L

)
×
(

t

m
+

1− t

L

)
satisfies

1 ≤ q(t) ≤ (m+ L)2

4mL
, 0 ≤ t ≤ 1,

by searching for critical points over 0 < t < 1 (4.1.6).

4.2. ENTROPY AND INFORMATION 211

Exercise 4.1.19 If Q is a symmetric 2× 2 matrix with positive eigenvalues
L and m, show

1 ≤ (u ·Qu)(u ·Q−1u) ≤ (m+ L)2

4mL
(4.1.29)

for every unit vector u. Use EVD and Exercise 4.1.18.

Exercise 4.1.20 Derive (4.1.23) by applying (4.1.15) with f , x, a replaced
by g, q, p, then inserting q = f ′(a) and p = f ′(x).

4.2 Entropy and Information

Let p be a probability, i.e. a number between 0 and 1. The entropy of p is

H(p) = −p log p− (1− p) log(1− p), 0 ≤ p ≤ 1. (4.2.1)

This is also called absolute entropy to contrast with relative entropy which
we see below.

Fig. 4.10 The absolute entropy function H(p).

To graph H(p), we compute its first and second derivatives. Here the
independent variable is p. By the product rule,

H ′(p) = (−p log p− (1− p) log(1− p))′ = − log p+ log(1− p) = log

(
1− p

p

)
.

Thus H ′(p) = 0 when p = 1/2, H ′(p) > 0 on p < 1/2, and H ′(p) < 0 on
p > 1/2. Since this implies H(p) is increasing on p < 1/2, and decreasing on
p > 1/2, p = 1/2 is a global maximizer of the graph.

212 CHAPTER 4. CALCULUS

As p increases, 1−p decreases, so (1−p)/p decreases. Since log is increasing,
as p increases, H ′(p) decreases. Thus H(p) is concave.

Taking the second derivative, by the chain rule and the quotient rule,

H ′′(p) =

(
log

(
1− p

p

))′

= − 1

p(1− p)
,

which is negative, leading to the strict concavity of H(p).
A crucial aspect of Figure 4.10 is its limiting values at the edges p = 0 and

p = 1,
H(0) = lim

p→0
H(p) and H(1) = lim

p→1
H(p).

Inserting p = 0 into p log p yields 0 × (−∞), so it is not at all clear what
H(0) should be. On the other hand, Figure 4.10 suggests H(0) = 0.

For the first limit, since H(p) is increasing near p = 0, it is clear there
is a definite value H(0). The entropy is the sum of two terms, −p log p, and
−(1− p) log(1− p). When p → 0, the second term approaches − log 1 = 0, so
H(0) is the limit of the first term,

H(0) = − lim
p→0

p log p.

When p → 0, also 2p → 0. Replacing p by 2p,

H(0) = − lim
p→0

p log p = − lim
p→0

2p log(2p)

= lim
p→0

−2p log 2 + 2H(0) = 2H(0).

Thus H(0) = 0. Since H(p) is symmetric, H(1 − p) = H(p), we also have
H(1) = 0.

To explain the meaning of the entropy function H(p), suppose a coin has
heads-bias or heads-probability p. If p is near 1, then we have confidence the
outcome of tossing the coin is heads, and, if p is near 0, we have confidence the
outcome of tossing the coin is tails. If p = 1/2, then we have least information.
Thus we can view the entropy as measuring a lack of information.

To formalize this, we define the information or absolute information

I(p) = p log p+ (1− p) log(1− p), 0 ≤ p ≤ 1. (4.2.2)

Then we have

Entropy and Information

Entropy equals negative information.

4.2. ENTROPY AND INFORMATION 213

Fig. 4.11 The absolute information I(p).

The clearest explanation ofH(p) is in terms of repeated coin-tossing, where
it is shown H(p) is the log of the number of outcomes with heads-proportion
p. This is explained in §5.2.

The logistic function is

p = σ(x) =
ex

1 + ex
=

1

1 + e−x
, −∞ < x < ∞. (4.2.3)

By the quotient and chain rules, its derivative is

p′ = − −e−x

(1 + e−x)2
= σ(x)(1− σ(x)) = p(1− p). (4.2.4)

The logistic function, also called the expit function and the sigmoid function,
is studied further in §5.2, where it used in coin-tossing and Bayes theorem.

The inverse of the logistic function is the logit function. The logit function
is found by solving p = σ(x) for x, obtaining

p = σ(x) ⇐⇒ x = log

(
p

1− p

)
. (4.2.5)

The logit function is also called the log-odds function. Its derivative is

x′ =
1− p

p
·
(

p

1− p

)′

=
1− p

p
· 1

(1− p)2
=

1

p(1− p)
.

214 CHAPTER 4. CALCULUS

Let
Z(x) = log (1 + ex) . (4.2.6)

Then Z ′(x) = σ(x) and Z ′′(x) = σ′(x) = σ(1 − σ) > 0. This shows Z(x) is
strictly convex. We call Z(x) the cumulant-generating function, to be consis-
tent with random variable terminology (§5.3).

We compute the convex dual (§4.1) of Z(x). By (4.1.6), the maximum

max
x

(px− Z(x))

is attained when (px − Z(x))′ = 0, which happens when p = Z ′(x) = σ(x).
Therefore the maximizer is the log-odds function x = σ−1(p). Inserting this
into px− Z(x), we obtain

max
x

(px− Z(x)) = p log

(
p

1− p

)
− Z

(
log

(
p

1− p

))
, (4.2.7)

which simplifies to I(p) (4.2.2).

Dual of Cumulant-Generating Function is Information

The convex dual of the cumulant-generating function is the informa-
tion.

The derivative of I(p) is

I ′(p) = log

(
p

1− p

)
. (4.2.8)

Then I ′(p) is the inverse of Z ′(x) = σ(x), as it should be (4.1.22).
From (4.2.8),

I ′′(p) =
1

p(1− p)
.

The multinomial extension of I(p) is in §5.6.

Let p and q be two probabilities,

0 ≤ p ≤ 1, and 0 ≤ q ≤ 1.

When do we consider p and q close to each other? If p and q were just
numbers, p and q are considered close if the distance |p − q| is small or the
distance squared |p − q|2 is small. But here p and q are probabilities, so it
makes sense to consider them close if their information content is close.

To this end, we define the relative information I(p, q) by

4.2. ENTROPY AND INFORMATION 215

I(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p

1− q

)
. (4.2.9)

Then
I(q, q) = 0,

which agrees with our design goal of I(p, q) measuring the divergence between
the information in p and the information in q. Because I(p, q) is not symmetric
in p, q, we think of q as a base or reference probability, against which we
compare p.

Fig. 4.12 The relative information I(p, q) with q = .7.

Equivalently, instead of measuring relative information, we can measure
the relative entropy,

H(p, q) = −I(p, q).

Since − log(x) is strictly convex,

I(p, q) = −p log

(
q

p

)
− (1− p) log

(
1− q

1− p

)
> − log

(
p · q

p
+ (1− p) · 1− q

1− p

)
= − log 1 = 0.

This shows I(p, q) is positive and H(p, q) is negative, when p ̸= q.
Since

I(p, q) = I(p)− p log(q)− (1− p) log(1− q),

the second derivatives of I(p) and I(p, q) agree, and I(0) = 0 = I(1), I(p, q)
is well-defined for p = 0, and p = 1,

I(1, q) = − log q, I(0, q) = − log(1− q).

216 CHAPTER 4. CALCULUS

Taking derivatives (with independent variable p),

d2

dp2
I(p, q) = I ′′(p) =

1

p(1− p)
,

hence I is strictly convex in p. Thus q is a global minimizer of the graph of
I(p, q) (Figure 4.12). Also

d2

dq2
I(p, q) =

p

q2
+

1− p

(1− q)2
,

so I(p, q) is strictly convex in q as well. In Exercise 4.3.2, it is shown I(p, q)
is convex in all directions in the (p, q)-plane (Figure 4.13).

The clearest explanation of H(p, q) is in terms of coin-tossing, where it is
shown H(p, q) is the log of the probability of a coin with heads-bias q having
outcomes with heads-proportion p. This also is explained in §5.2.

Figure 4.13 is the surface plot of I(p, q) as a function of two variables
(p, q). This clearly exhibits the trough p = q where I(p, q) = 0, and the edges
q = 0, 1 where I(p, q) = ∞.

Fig. 4.13 Surface plot of I(p, q) over the square 0 ≤ p ≤ 1, 0 ≤ q ≤ 1.

4.2. ENTROPY AND INFORMATION 217

In scipy, I(p, q) is incorrectly called entropy. For more on this terminol-
ogy confusion, see the remarks at the end of §5.6. The code is as follows.

%matplotlib ipympl

from numpy import *

from matplotlib.pyplot import *

from scipy.stats import entropy

def I(p,q): return entropy([p,1-p],[q,1-q])

ax = axes(projection='3d')
ax.set_axis_off()

p = arange(0,1,.01)

q = arange(0,1,.01)

p,q = meshgrid(p,q)

surface

ax.plot_surface(p,q,I(p,q), cmap='cool')

square

ax.plot([0,1,1,0,0],[0,0,1,1,0],linewidth=.5,c="k")

show()

Exercises

Exercise 4.2.1 Check (4.2.7) simplifies to the information (4.2.2).

Exercise 4.2.2 Compute
min

0≤p≤1
I ′′(p).

Exercise 4.2.3 Let 0 < q < 1 be a constant. What is the convex dual of

Z(x, q) = log (qex + 1− q)?

Exercise 4.2.4 Use Python to plot the entropy H(p) and
√

p(1− p). Use
scipy.optimize.newton to find where they are equal.

Exercise 4.2.5 The relative information I(p, q) has minimum zero when p =
q. Use the lower tangent parabola (4.1.13) of I(x, q) at q and Exercise 4.2.2
to show

I(p, q) ≥ 2(p− q)2.

For q = 0.7, plot both I(p, q) and 2(p− q)2 as functions of 0 < p < 1.

218 CHAPTER 4. CALCULUS

4.3 Multi-Variable Calculus

Let
f(x) = f(x1, x2, . . . , xd)

be a scalar function of a point x = (x1, x2, . . . , xd) in Rd, and suppose v is
a unit vector in Rd. Then, along the line x(t) = x + tv, g(t) = f(x + tv)
is a function of the single variable t. Hence its derivative g′(0) at t = 0 is
well-defined. This rate of change is the directional derivative of f(x) at x in
the direction v.

More explicitly, the directional derivative of f(x) at x in the direction v is

d

dt

∣∣∣∣
t=0

f(x+ tv). (4.3.1)

When we select specific directions, the directional derivatives have specific
names. Let e1, e2, . . . , ed be the standard basis in Rd. The partial derivative
in the k-th direction, k = 1, . . . , d, is

∂f

∂xk
(x) =

d

dt

∣∣∣∣
t=0

f(x+ tek).

The partial derivative in the k-th direction is just the one-dimensional deriva-
tive considering xk as the independent variable, with all other features xj ’s
held constant.

The multi-variable chain rule, below, expresses the directional derivative
(4.3.1) in terms of the partial derivatives of f(x).

Below we exhibit the multi-variable chain rule in two ways. The first in-
terpretation is geometric, and involves motion in time and directional deriva-
tives. This interpretation is relevant to gradient descent, §7.3.

The second interpretation is combinatorial, and involves repeated compo-
sitions of functions. This interpretation is relevant to computing gradients in
networks, specifically back propagation §4.4, §7.2.

These two interpretations work together when training neural networks,
§7.4.

For the first interpretation of the chain rule, suppose the features x1, x2,
. . . , xd of a point x are functions of a single variable t (usually time), so we
have

x1 = x1(t), x2 = x2(t), . . . , xd = xd(t).

4.3. MULTI-VARIABLE CALCULUS 219

Inserting these into f(x1, x2, . . . , xd), we obtain a function

f(t) = f(x1(t), x2(t), . . . , xd(t))

of a single variable t. Then we have

Multi-Variable Chain Rule

With f(t) = f(x1(t), x2(t), . . . , xd(t)),

df

dt
=

∂f

∂x1
· dx1

dt
+

∂f

∂x2
· dx2

dt
+ · · ·+ ∂f

∂xd
· dxd

dt
.

The gradient of f(x) is the vector

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)
. (4.3.2)

The Rd-valued function x(t) = (x1(t), x2(t), . . . , xd(t)) represents a curve
or path in Rd, and the vector

x′(t) = (x′
1(t), x

′
2(t), . . . , x

′
d(t))

represents its velocity at time t.
With this notation, the chain rule may be written

df

dt
= ∇f(x(t)) · x′(t).

Let v = (v1, v2, . . . , vd). The simplest application of the multi-variable
chain rule is to select x(t) = x+ tv. Then the chain rule becomes

Directional Derivative Formula

The directional derivative of f(x) in the direction v is the dot product
of the gradient ∇f(x+ tv) and v,

d

dt
f(x+ tv) = ∇f(x+ tv) · v. (4.3.3)

In particular,
d

dt

∣∣∣∣
t=0

f(x+ tv) = ∇f(x) · v. (4.3.4)

Let f(x) be a quadratic function,

f(x) =
1

2
x ·Qx− b · x,

220 CHAPTER 4. CALCULUS

where Q is a d× d symmetric matrix and b is a vector. Then

f(x) =
1

2

d∑
i,j=1

qijxixj −
d∑

j=1

bjxj ,

so

∂f

∂xi
=

1

2

d∑
j=1

qijxj +
1

2

d∑
j=1

qjixj − bi = (Qx− b)i.

Here we used Q = Qt. This shows

Gradient of a Quadratic

f(x) =
1

2
x ·Qx− b · x =⇒ ∇f(x) = Qx− b. (4.3.5)

In §7.7, we will need to compute the gradient of a function f(W) of ma-
trices W . Towards this, recall the collection of matrices with a fixed shape
may be added and scaled. It follows if W and V are matrices with the same
shape, then W + sV also has the same shape, for any scalar s.

If G and V are two matrices with the same shape, we think of trace(V tG)
as a dot product between G and V . This is consistent with the definition of
norm squared (2.2.17). By analogy with (4.3.4), we say

Directional Derivative Matrix Formula

A matrix G is the gradient of f(W) at W if

d

ds

∣∣∣∣
s=0

f(W + sV) = trace(V tG). for all V. (4.3.6)

Then the gradient G has the same shape as W .

We use this result in Chapter 7.

Here is an example of the second interpretation of the chain rule. Suppose

r = f(x) = sinx, s = g(x) =
1

1 + e−x
,

t = h(x) = x2, u = r + s+ t, y = k(u) = cosu.

4.3. MULTI-VARIABLE CALCULUS 221

These are multiple functions in composition, as in Figure 4.14.

g

f

h

+ k
x

x

x

s

r

t

u y

Fig. 4.14 Composition of multiple functions.

The input variable is x and the output variable is y. The intermediate
variables are r, s, t, u. Suppose x = π/4. Then

x, r, s, t, u, y = 0.79, 0.71, 0.69, 0.62, 2.01,−0.43.

To compute derivatives, start with

dy

du
= k′(u) = − sinu = −0.90.

Next, to compute dy/dr, the chain rule says

dy

dr
=

dy

du

du

dr
= −0.90 ∗ 1 = −0.90,

and similarly,
dy

ds
=

dy

dt
= −0.90.

By the chain rule,

dy

dx
=

dy

dr
· dr
dx

+
dy

ds
· ds
dx

+
dy

dt
· dt
dx

.

By (4.2.4), s′ = s(1− s) = 0.22, so

dr

dx
= cosx = 0.71,

ds

dx
= s(1− s) = 0.22,

dt

dx
= 2x = 1.57.

222 CHAPTER 4. CALCULUS

We obtain

dy

dx
= −0.90 ∗ 0.71− 0.90 ∗ 0.22− 0.90 ∗ 1.57 = −2.25.

The chain rule is discussed in further detail in §4.4.

By (2.2.2),
∇f(x) · v = |∇f(x)| |v| cos θ,

where θ is the angle between v and ∇f(x). Since −1 ≤ cos θ ≤ 1, we conclude

Gradient is Direction of Greatest Increase

Let v be a unit vector and let a be a point. As the direction v varies,
the directional derivative varies between two extremes

−|∇f(a)| ≤ ∇f(a) · v ≤ |∇f(a)|.

The directional derivative achieves its greatest value when v points
in the direction of ∇f(a), and achieves its least value in the opposite
direction, when v points in the direction of −∇f(a).

A critical point is a point x∗ satisfying

∇f(x∗) = 0.

A local minimizer is a point x∗ with f(x) ≥ f(x∗) for x near x∗. If the
inequality holds for all x, x∗ is a global minimizer. A local maximizer is a
point x∗ with f(x) ≤ f(x∗) for x near x∗. If the inequality holds for all x, x∗

is a global maximizer. As in the single-variable case,

A Maximizer or Minimizer is a Critical Point

A minimizer is a critical point, and a maximizer is a critical point.

We now address the existence of a global minimizer of a function f(x).
Intuitively, if f(x) goes up to +∞ when x is far away, then its graph must
have a minimizer at some point x∗. This notion is made precise as follows.

Let f(x) be a function. A level is a scalar c determining a sublevel set
f(x) ≤ c. A bound is a scalar C determining a bounded set |x| ≤ C.

A function f(x) is proper if the sublevel set f(x) ≤ c is bounded for every
level c: For every level c, there is a bound C so that

4.3. MULTI-VARIABLE CALCULUS 223

f(x) ≤ c =⇒ |x| ≤ C. (4.3.7)

In other words, f(x) is proper if every sublevel set is bounded. The functions
in Figure 4.3 and 4.4 are proper.

This is same as saying f(x) rises to +∞ as |x| → ∞. The exact formula
for the bound C, which depends on the level c and the function f(x), is not
important for our purposes. What matters is the existence of some bound C
for each level c.

More vividly, suppose x is scalar, and think of the graph of y = f(x) as the
cross-section of a river. Then f(x) is proper if the river never floods its banks,
no matter how much it rains. So y = sinx is not proper, but y = x2 + sinx
is proper.

What does it mean for f(x) to not be proper? Unpacking the definition,
f(x) is not proper if there is some level c with no corresponding bound C.
This means there is some level c and a sequence x1, x2, . . . with f(xn) ≤ c
and |xn| → ∞.

Existence of Global Minimizer

A proper function has at least one global minimizer.

To see this, pick any point a. Then, by properness, the sublevel set f(x) ≤
f(a) is bounded. Since a function has a minimizer on a bounded set,1 there is
a minimizer x∗. Since for all x outside this sublevel set, we have f(x) > f(a),
x∗ is a global minimizer. This completes the proof.

From §4.1, we already know a strongly convex function has a global mini-
mizer. In fact, strongly convex functions are proper (Exercise 4.3.7).

Using properness, we can establish the existence of residual minimizers, as
promised in §2.6.

Properness of Residual on Row Space

Let A be a matrix, and b a vector with dimensions so that the residual

f(x) = |Ax− b|2 (4.3.8)

is defined. Then f(x) is proper on the row space of A.

To see this, suppose f(x) is not proper. In this case, by (4.3.7), there
would be a level c and a sequence x1, x2, . . . in the row space of A satisfying
|xn| → ∞ and f(xn) ≤ c for n ≥ 1.

1 We are implicitly assuming continuity of f(x) (see §A.8).

224 CHAPTER 4. CALCULUS

Let x′
n = xn/|xn|. Then x′

n are unit vectors in the row space of A, hence
x′
n is a bounded sequence. From §A.8, this implies x′

n subconverges to some
x∗, necessarily a unit vector in the row space of A.

By the triangle inequality (2.2.4),

|Ax′
n| =

1

|xn|
|Axn| ≤

1

|xn|
(|Axn − b|+ |b|) ≤ 1

|xn|
(
√
c+ |b|).

Moreover Ax′
n subconverges to Ax∗. Since |xn| → ∞, taking the limit n → ∞,

|Ax∗| = lim
n→∞

|Ax′
n| ≤

1

∞
(
√
c+ |b|) = 0.

Thus x∗ is both in the row space of A and in the nullspace of A. Since the
row space and the nullspace are orthogonal, this implies x∗ = 0. But we can’t
have 1 = |x∗| = |0| = 0. This contradiction shows there is no such sequence
xn, and we conclude f(x) is proper.

When the row space is the source space,

Properness of Residual

When the N × d matrix A has rank d,

f(x) = |Ax− b|2 (4.3.9)

is proper on Rd.

As a consequence,

Existence of Residual Minimizer

Let A be a matrix and b a vector so that the residual

|Ax− b|2 (4.3.10)

is well-defined. Then there is a residual minimizer x∗ in the row space
of A,

|Ax∗ − b|2 ≤ |Ax− b|2 (4.3.11)

for all x.

Let f(x) be a function of x = (x1, x2, . . . , xd). The second partial deriva-
tives are

∂2f

∂xi∂xj
, 1 ≤ i, j ≤ d,

4.3. MULTI-VARIABLE CALCULUS 225

and the second derivative of f(x) is the d× d symmetric matrix

D2f(x) =



∂2f

∂x1∂x1

∂2f

∂x1∂x2
. . .

∂2f

∂x2∂x1

∂2f

∂x2∂x2
. . .

.

∂2f

∂xd∂x1

∂2f

∂xd∂x2
. . .


Differentiating (4.3.3) and using the chain rule again,

Second Directional Derivative

Let Q(t) = D2f(x+ tv). Then

d2

dt2
f(x+ tv) = v ·Q(t)v. (4.3.12)

Let Q be a symmetric matrix. Recall (§2.2) Q ≥ 0 means v · Qv ≥ 0 for
all v, and Q > 0 means v · Qv > 0 for all v ̸= 0. Equivalently, Q ≥ 0 when
the eigenvalues of Q are nonnegative, and Q > 0 when the eigenvalues of Q
are positive,

As in §4.1, a function f(x) is convex if D2f(x) ≥ 0, and is strictly convex
if D2f(x) > 0. If −f(x) is convex or strictly convex, we say f(x) is concave
or strictly concave.

When f(x) is quadratic (4.3.5), D2f(x) = Q. As a consequence, f(x) is
convex when Q ≥ 0, and f(x) is strictly convex when Q > 0. Multi-variable
convex functions are studied in §4.5.

Exercises

Exercise 4.3.1 Let I(p, q) be the relative information (4.2.9), and let Ipp,
Ipq, Iqp, Iqq be the second partial derivatives. If Q is the second derivative
matrix

Q =

(
Ipp Ipq
Iqp Iqq

)
,

show

det(Q) =
(p− q)2

p(1− p)q2(1− q)2
.

Exercise 4.3.2 Let I(p, q) be the relative information (4.2.9). With x =
(p, q) and v = (ap(1− p), bq(1− q)), show

226 CHAPTER 4. CALCULUS

d2

dt2

∣∣∣∣
t=0

I(x+ tv) = p(1− p)(a− b)2 + b2(p− q)2.

Conclude that I(p, q) is a convex function of (p, q). Where is it not strictly
convex?

Exercise 4.3.3 Let J(x) = J(x1, x2, . . . , xd) equal

J(x) =
1

2
(x1 − x2)

2 +
1

2
(x2 − x3)

2 + · · ·+ 1

2
(xd−1 − xd)

2 +
1

2
(xd − x1)

2.

Compute Q = D2J .

Exercise 4.3.4 Show

f(x) =
1

2
|Ax− b|2 =⇒ ∇f(x) = AtAx−Atb.

Conclude ∇f(x) is in the row space of A.

Exercise 4.3.5 Let f(Q) = log det(Q) be the log of the determinant of a
positive 2 × 2 matrix Q (Exercise 3.2.6), and let V be a symmetric 2 × 2
matrix. Using ExerciseA.4.12, compute the second derivative of f(Q+tV) at
t = 0 as in (4.3.12). Using Exercise A.4.10, conclude log det(Q) is a concave
function of Q.

Exercise 4.3.6 Let f(b) be strictly convex and proper, and let A be a matrix.
Use the properness of the residual (4.3.8) to show f(Ax) is strictly convex
and proper on the row space of A. Here the shapes of x, A and b are such
that Ax = b is defined.

Exercise 4.3.7 Show a strongly convex function, either single-variable §4.1
or multi-variable §4.5, is proper.

4.4 Back Propagation

In this section, we compute outputs and derivatives on a graph. We already
did this for the graph (4.14), but now we systematize things so that we can
write code.

We consider two cases, when the graph is a chain, or the graph is a network
of neurons. The derivatives are taken with respect to the outputs at each
node of the graph. In §7.2, we consider a third case, and compute outputs
and derivatives on a neural network.

To compute node outputs, we do forward propagation. To compute deriva-
tives, we do back propagation. Corresponding to the three cases, we will code
three versions of forward and back propagation. In all cases, back propagation
depends on the chain rule.

4.4. BACK PROPAGATION 227

The chain rule (§4.1) states

r = f(x), y = g(r) =⇒ dy

dx
=

dy

dr
· dr
dx

.

In this section, we work out the implications of the chain rule on repeated
compositions of functions.

Suppose

r = f(x) = sinx, s = g(r) =
1

1 + e−r
, y = h(s) = s2.

These are three functions f , g, h composed in a chain (Figure 4.15).

f g h
x r s y

Fig. 4.15 Composition of three functions in a chain.

The chain in Figure 4.15 has five nodes and four edges. There is one input
node (no incoming edge from another node) and one output node (no
outgoing edge to another node). The outgoing signals at the first four nodes
are x, r, s, y. The incoming signals at the last four nodes are x, r, s, y.

Start with x = π/4. Evaluating the functions in order,

x = 0.785, r = 0.707, s = 0.670, y = 0.448.

Notice these values are evaluated in the forward direction: x then r then s
then y. This is forward propagation.

Now we evaluate the derivatives of the output y with respect to x, r, s,

dy

dx
,

dy

dr
,

dy

ds
.

With the above values for x, r, s, we have

dy

ds
= 2s = 2 ∗ 0.670 = 1.340.

Since g is the logistic function, by (4.2.4),

g′(r) = g(r)(1− g(r)) = s(1− s) = 0.670 ∗ (1− 0.670) = 0.221.

From this,

dy

dr
=

dy

ds
· ds
dr

= 1.340 ∗ g′(r) = 1.340 ∗ 0.221 = 0.296.

Repeating one more time,

228 CHAPTER 4. CALCULUS

dy

dx
=

dy

dr
· dr
dx

= 0.296 ∗ cosx = 0.296 ∗ 0.707 = 0.209.

Thus the derivatives are

dy

dx
= 0.209,

dy

dr
= 0.296,

dy

ds
= 1.340.

Notice the derivatives are evaluated in the backward direction: First dy/dy =
1, then dy/ds, then dy/dr, then dy/dx. This is back propagation.

Here is another example. Let

r = x2,

s = r2 = x4,

y = s2 = x8.

This is the same function h(x) = x2 composed with itself three times. With
x = 5, we have

x = 5, r = 25, s = 625, y = 390625.

Applying the chain rule as above, check that

dy

dx
= 625000,

dy

dr
= 62500,

dy

ds
= 1250.

To evaluate x, r, s, y in Figure 4.15, first we built the list of functions and
the list of derivatives

from numpy import *

def f(x): return sin(x)

def g(r): return 1/(1+ exp(-r))

def h(s): return s**2

this for next example

def k(t): return cos(t)

func_chain = [f,g,h]

def df(x): return cos(x)

def dg(r): return g(r)*(1-g(r))

def dh(s): return 2*s

4.4. BACK PROPAGATION 229

this for next example

def dk(t): return -sin(t)

der_chain = [df,dg,dh]

Then we evaluate the output vector x = (x, r, s, y), leading to the first
version of forward propagation,

first version: chains

def forward_prop(x_in,func_chain):

x = [x_in]

while func_chain:

f = func_chain.pop(0) # first func

x_out = f(x_in)

x.append(x_out) # insert at end

x_in = x_out

return x

from numpy import *

x_in = pi/4

x = forward_prop(x_in,func_chain)

Now we evaluate the gradient vector δ = (dy/dx, dy/dr, dy/ds, dy/dy).
Since dy/dy = 1, we set

dy/dy = 1

delta_out = 1

The code for the first version of back propagation is

first version: chains

def backward_prop(delta_out,x,der_chain):

delta = [delta_out]

while der_chain:

discard last output

x.pop(-1)

df = der_chain.pop(-1) # last der

der = df(x[-1])

chain rule -- multiply by previous der

der = der * delta[0]

delta.insert(0,der) # insert at start

return delta

delta = backward_prop(delta_out,x,der_chain)

230 CHAPTER 4. CALCULUS

Note forward propagation must be run prior to back propagation.

To apply this code to the second example, use

d = 3

func_chain, der_chain = [h]*d, [dh]*d

x_in, delta_out = 5, 1

x = forward_prop(x_in,func_chain)

delta = backward_prop(delta_out,x,der_chain)

+

max

∗

y

y

a

b

J

x

z

Fig. 4.16 A network composition [33].

Now we work with the network in Figure 4.16, using the multi-variable
chain rule (§4.3). The functions are

a = f(x, y) = x+ y,

b = g(y, z) = max(y, z),

J = h(a, b) = ab.

The composite function is

J = (x+ y)max(y, z),

Here there are three input nodes, labeled 0, 1, 2, three hidden nodes, 3,
4, 5, and an output node, 6. Starting with inputs (x, y, z) = (1, 2, 0), and
plugging in, we obtain the outgoing signals at the first six nodes

4.4. BACK PROPAGATION 231

(x0, x1, x2, x3, x4, x5) = (x, y, z, a, b, J) = (1, 2, 0, 3, 2, 6)

(Figure 4.18). This is forward propagation.

y = z

y

z

y > z
max(y, z) = y

∂g/∂y = 1, ∂g/∂z = 0

y < z
max(y, z) = z

∂g/∂y = 0, ∂g/∂z = 1

Fig. 4.17 The function g = max(y, z).

Now we compute the derivatives

∂J

∂x
,

∂J

∂y
,

∂J

∂z
,

∂J

∂a
,

∂J

∂b
,
∂J

∂J
.

This we do in reverse order. It’s clear ∂J/∂J = 1. We compute

∂J

∂a
= b = 2,

∂J

∂b
= a = 3.

Then
∂a

∂x
= 1,

∂a

∂y
= 1.

Let

1(y > z) =

{
1, y > z,

0, y < z.

By Figure 4.17, since y = 2 and z = 0,

∂b

∂y
= 1(y > z) = 1,

∂b

∂z
= 1(z > y) = 0.

By the chain rule,

232 CHAPTER 4. CALCULUS

∂J

∂x
=

∂J

∂a

∂a

∂x
= 2 ∗ 1 = 2,

∂J

∂y
=

∂J

∂a

∂a

∂y
+

∂J

∂b

∂b

∂y
= 2 ∗ 1 + 3 ∗ 1 = 5,

∂J

∂z
=

∂J

∂b

∂b

∂z
= 3 ∗ 0 = 0.

Hence we have(
∂J

∂x
,
∂J

∂y
,
∂J

∂z
,
∂J

∂a
,
∂J

∂b
,
∂J

∂J

)
= (2, 5, 0, 2, 3, 1).

The outputs (blue) and the derivatives (red) are displayed in Figure 4.18.
Summarizing, by the chain rule,

• derivatives are computed backward,
• derivatives along successive edges are multiplied,
• derivatives along several outgoing edges are added.

2 + 3

+

max

∗

2

2

2

3

3

2

2

3

6

1

1

2 ∗ 1 = 2

0

0

Fig. 4.18 Forward and backward propagation [33].

To label these derivatives systematically, look at a specific node, say in

Figure 4.16 look at the node + . This node has outgoing signal a and incoming
signals x and y. Corresponding to these, we have the upstream derivative
∂J/∂a and downstream derivatives ∂J/∂x and ∂J/∂y. But there is a problem
here, since ∂J/∂y can be considered a downstream derivative on two separate
edges. Because of this, and since there is only one outgoing signal, we label
the derivative at this node to be the upstream derivative,

δ3 =
∂J

∂x3
=

∂J

∂a
.

4.4. BACK PROPAGATION 233

With this notation, we have(
∂J

∂x0
,
∂J

∂x1
,
∂J

∂x2
,
∂J

∂x3
,
∂J

∂x4
,
∂J

∂x5

)
=

(
∂J

∂x
,
∂J

∂y
,
∂J

∂z
,
∂J

∂a
,
∂J

∂b
,
∂J

∂J

)
.

To do this in general, recall a directed graph (§3.3) as in Figure 4.16 has
an adjacency matrix W = (wij) with wij equal to one or zero depending on
whether (i, j) is an edge or not.

Suppose a directed graph has d nodes, labeled 0, 1, 2, . . . , d− 1, and, for
each node i, let xi be the outgoing signal. Then x = (x0, x1, x2, . . . , xd−1) is
the outgoing vector. In the case of Figure 4.16, d = 7 and

x = (x0, x1, x2, x3, x4, x5, x6) = (x, y, z, a, b, J, None).

With this order, the adjacency matrix is

W =



0 0 0 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


.

This we code as a list of lists,

d = 7

w = [[None]*d for _ in range(d)]

w[0][3] = w[1][3] = w[1][4] = w[2][4] = 1

w[3][5] = w[4][5] = w[5][6] = 1

More generally, in a weighed directed graph (§3.3), the weights wij are nu-
meric scalars or None.

Once we have the outgoing vector x, for each node j, let

x−
j = (w0jx0, w1jx1, w2jx2, . . . , wd−1,jxd−1). (4.4.1)

This is the incoming signal list at node j. Here we adopt the convention that
None times anything is None, and any resulting None entry in the list is to be
discarded.

An activation function at node j is a function fj of the incoming signal
list x−

j . Then the outgoing signal at node j is

234 CHAPTER 4. CALCULUS

xj = fj(x
−
j). (4.4.2)

By the chain rule,

∂xj

∂xi
=


∂fj
∂xi

· wij , if (i, j) is an edge,

None, if (i, j) is not an edge.
(4.4.3)

The incoming vector is

x− = (x−
0 , x

−
1 , x

−
2 , . . . , x

−
d−1).

Then x− is a list of lists. In the case of Figure 4.16,

x− = (x−
0 , x

−
1 , x

−
2 , x

−
3 , x

−
4 , x

−
5 , x

−
6),

where

x0minus = [None,None,None,None,None,None,None]

x1minus = [None,None,None,None,None,None,None]

x2minus = [None,None,None,None,None,None,None]

x3minus = [x,y,None,None,None,None,None]

x4minus = [None,y,z,None,None,None,None]

x5minus = [None,None,None,a,b,None,None]

x6minus = [None,None,None,None,None,None,J]

This is before discarding. After discarding,

x0minus = []

x1minus = []

x2minus = []

x3minus = [x,y]

x4minus = [y,z]

x5minus = [a,b]

x6minus = [J]

The activation functions are

activate = [None]*d

activate[3] = lambda x,y: x+y

activate[4] = lambda y,z: max(y,z)

activate[5] = lambda a,b: a*b

To compute the outgoing signal xj at node j, we collect the incoming
signals x−

j following (4.4.1)

4.4. BACK PROPAGATION 235

def incoming(x,w,j):

return [w[i][j] * outgoing(x,w,i) for i in range(d) if w[i][j] !=

↪→ None]

then plug them into the activation function.
To compute the incoming signal at node j, we plug the incoming list into

the activation function,

def outgoing(x,w,j):

if x[j] != None: return x[j]

else:

if activate[j] != None: return activate[j](*incoming(x,w,j))

else: return None

Here * is the unpacking operator.
Summarizing, at each node j, we have the outgoing signal xj , and a list

x−
j of incoming signals.

Now we can define what is meant by a network. A node with an attached
activation function is a neuron. A network is a directed weighed graph where
some nodes are neurons. The code in this section works for any network
without cycles. In §7.2, we specialize to neural networks. Neural networks are
networks with a restricted class of activation functions.

5 −2 7

f g h
5 −2 7

Fig. 4.19 Graph, directed graph, weighed directed graph, network.

Let xin be the outgoing vector over the input nodes. If there are m input
nodes, and d nodes in total, then the length of xin is m, and the length of x
is d. In the example above, xin = (x, y, z).

236 CHAPTER 4. CALCULUS

We assume the list of nodes is ordered so that the initial portion of the list
of nodes is the list of input nodes.

m = len(x_in)

x[:m] = x_in

Here is the second version of forward propagation.

second version: networks

def forward_prop(x_in,w):

d = len(w)

x = [None]*d

m = len(x_in)

x[:m] = x_in

for j in range(m,d): x[j] = outgoing(x,w,j)

return x

For this code to work, we assume there are no cycles in the graph: All back-
ward paths end at input nodes, and all forward paths end at output nodes.

The output function J is a function of all node outputs. For Figure 4.16,
this means J is a function of x, y, z, a, b.

Therefore, at each node i, we have the derivatives

δi =
∂J

∂xi
(x), i = 0, 1, 2, . . . , d− 1.

Then δ = (δ0, δ1, δ2, . . . , δd−1) is the gradient vector. We first compute the
derivatives of J with respect to the output nodes xout, and we assume these
derivatives are assembled into a vector δout.

In Figure 4.16, there is one output node J , and

δJ =
∂J

∂J
= 1.

Hence δout = (1).
We assume the list of nodes is ordered so that the terminal portion of the

list of nodes is the list of output nodes.
For each i, j, let

gij =
∂fj
∂xi

.

Then we have a d × d gradient matrix g = (gij). When (i, j) is not an edge,
gij = 0.

4.4. BACK PROPAGATION 237

These are the local derivatives, not the derivatives obtained by the chain
rule. For example, even though we saw above ∂J/∂y = 1, here the local
derivative is zero, since J does not depend directly on y.

For the example above, with (x1, x2, x3, x4, x5, x6) = (x, y, z, a, b, J),

g = [[None]*d for _ in range(d)]

g[0][3] = lambda x,y: 1

g[1][3] = lambda x,y: 1

g[1][4] = lambda y,z: 1 if y >= z else 0

g[2][4] = lambda y,z: 1 if z > y else 0

g[3][5] = lambda a,b: b

g[4][5] = lambda a,b: a

g[5][6] = lambda J: 1

By the chain rule and (4.4.3),

∂J

∂xi
=
∑
i→j

∂J

∂xj
· ∂xj

∂xi
=
∑
i→j

∂J

∂xj
· ∂fj
∂xi

· wij ,

so
δi =

∑
i→j

δj · gij · wij .

The code is

m is number of output nodes

def derivative(x,m,delta,g,i):

if delta[i] != None: return delta[i]

elif i >= d-m: return 1

else:

return sum([derivative(x,m,delta,g,j) *

↪→ g[i][j](*incoming(x,w,j)) * w[i][j] for j in range(d) if

↪→ g[i][j] != None])

This leads to our second version of back propagation,

second version: networks

m is number of output nodes

def backward_prop(x,m,g):

d = len(g)

delta = [None]*d

for i in range(d): delta[i] = derivative(x,m,delta,g,i)

238 CHAPTER 4. CALCULUS

return delta[:-m]

m = 1

delta = backward_prop(x,m,g)

In §7.2, we derive the third version of propagation, this for neural networks.

Exercises

Exercise 4.4.1 For the network in Figure 4.15, use the second version of
the propagation code and x = π/4 to compute the output vector and the
gradient vector

x = (x, r, s, y), δ =

(
dy

dx
,
dy

dr
,
dy

ds
,
dy

dy

)
.

Exercise 4.4.2 In Figure 4.20, the activation function at each neuron is the
sum of the squares of the incoming signals to that neuron. Starting with
x = 1, compute (x, a, b, c, d, p, q, J), and the corresponding derivatives of J .
Do this by hand and by coding. You should get

x = (1, 1, 2, 5, 26, 667, 2, 458333),

δ = (18449628, 5632648, 2816320, 704080, 70408, 1354, 4, 1).

c

b

aa

q

p

d

J

x

x

x
x

x

x

Fig. 4.20 A network with outgoing signals.

Exercise 4.4.3 Compute the outgoing vector x and gradient vector δ for the
network in Figure 4.21. The outgoing signal at each neuron is the sum of the
squares of the incoming signals at that neuron. Here the input node signal is
the variable t, so both x and δ will have powers of t in them.

4.5. CONVEX FUNCTIONS 239

t

J

Fig. 4.21 Another network.

4.5 Convex Functions

Let f(x) be a scalar function of points x = (x1, . . . , xd) in Rd. For example,
in two dimensions,

f(x) = f(x1, x2) = max(|x1|, |x2|), f(x) = f(x1, x2) =
x2
1

4
+ x2

2

are scalar functions of points in R2.

x∗

x∗
x∗

Fig. 4.22 Level sets and sublevel sets in two dimensions.

A level set of f(x) is the set

E : f(x) = 1.

This is the level set corresponding to level 1. One can have level sets corre-
sponding to any level c, f(x) = c. In two dimensions, level sets are also called
level curves.

240 CHAPTER 4. CALCULUS

Fig. 4.23 Level curves in two dimensions.

For example, the variance ellipse x ·Qx = 1 is a level set. The perimeters
(not their interiors) of the square and ellipse in Figure 4.22 are level sets

max(|x1|, |x2|) = 1,
x2
1

16
+

x2
2

4
= 1.

The level curves of

f(x) = f(x1, x2) =
x2
1

16
+

x2
2

4

are in Figure 4.23.

A sublevel set of f(x) is the set

E : f(x) ≤ 1.

This is the sublevel set corresponding to level 1. One can have sublevel sets
corresponding to any level c, f(x) ≤ c. Sublevel sets were used in the def-
inition of proper functions (4.3.7). For example, in Figure 4.22, the (blue)
interior of the square, together with the square itself, is a sublevel set. Sim-
ilarly, the interior of the ellipse, together with the ellipse itself, is a sublevel
set. The interiors of the ellipsoids, together with the ellipsoids themselves, in
Figure 4.30 are sublevel sets. We always consider the level set to be part of
the sublevel set.

The level set f(x) = 1 is the boundary of the sublevel set f(x) ≤ 1. Thus
the square and the ellipse in Figure 4.22 are boundaries of their respective
sublevel sets, and the unit variance ellipsoid x · Qx = 1 is the boundary of
the sublevel set x ·Qx ≤ 1.

4.5. CONVEX FUNCTIONS 241

Given points x0 and x1 in Rd, let v = x1 − x0 be the vector joining them.
Then

(1− t)x0 + tx1 = x0 + tv, 0 ≤ t ≤ 1.

The line segment [x0, x1] joining x0, x1 consists of linear combinations

x = (1− t)x0 + tx1 = x0 + tv, 0 ≤ t ≤ 1

(Figure 4.24).
More generally, given points x1, x2, . . . , xN , a linear combination

t1x1 + t2x2 + · · ·+ tNxN

is a convex combination if t1, t2, . . . , tN are nonnegative, and

t1 + t2 + · · ·+ tN = 1.

x0

v

x1

x0

tv (1− t)x0 + tx1

x1

Fig. 4.24 Line segment [x0, x1].

In this section we study convex sets and convex functions. We start with
convex sets. A convex set is a subset E in Rd that contains the line segment
joining any two points in it: If x0 and x1 are in E, then the line segment
[x0, x1] is in E. To be consistent with sublevel sets, we only consider convex
sets that contain their boundaries.

More generally, given points x1, x2, . . . , xN in E, the convex combination

x = t1x1 + t2x2 + · · ·+ tNxN

is also in E. The set of all convex combinations of x1, x2, . . . , xN is the
convex hull of x1, x2, . . . , xN (Figure 4.25).

The convex hull of a dataset is a convex set. Conversely, if E is convex
and contains a dataset x1, x2, . . . , xN , then E contains the convex hull of
the dataset.

242 CHAPTER 4. CALCULUS

x1

x2

x3

x4

x5

x6 x7

Fig. 4.25 Convex hull of x1, x2, x3, x4, x5, x6, x7.

The interiors of the square and the ellipse in Figure 4.22, together with
their boundaries, are convex sets. The interior of the ellipsoid in Figure 4.30,
together with the ellipsoid, is a convex set.

The following code generates convex hulls,

from scipy.spatial import ConvexHull

from numpy import *

from numpy.random import default_rng

samples = default_rng().random

30 random points in the plane

points = samples((30, 2))

hull = ConvexHull(points)

and this plots the facets of the convex hull

from matplotlib.pyplot import *

plot(points[:,0], points[:,1], 'o')
for facet in hull.simplices:

plot(points[facet,0], points[facet,1], 'k-')

facet = hull.simplices[0]

plot(points[facet, 0], points[facet, 1], 'r--')

grid()

show()

resulting in Figure 4.26.

4.5. CONVEX FUNCTIONS 243

Fig. 4.26 A convex hull with one facet highlighted.

Let E be any convex set, and let x0 be any point. We search for a point
x∗ in E that is nearest to x0. Since |x − x0| is the distance between x and
x0, the nearest point x∗ satisfies

|x∗ − x0|2 = min
x in E

|x− x0|2.

Here we minimize the distance squared, since the distance minimizer is the
same as the distance-squared minimizer.

If x0 is in E, then clearly x∗ = x0 is the unique distance minimizer. In x0 is
not in E, the results in §A.8 guarantee the existence of a distance minimizer
x∗. This means there is at least one point in E that is nearest to x0.

Let x0 be any point not in E. We show there is exactly one point x∗ in
E nearest to x0. Let δ be the minimum distance-squared between E and x0.
To this end, suppose x′ is another point in E at the same distance from x0

as x∗. Then
|x∗ − x0|2 = δ = |x′ − x0|2.

If xa = (x∗ + x′)/2 is the average of x∗ and x′, since E is convex, xa is in E,
hence |xa − x0|2 ≥ δ. By expanding the squares, check that

4|xa − x0|2 + |x∗ − x′|2 = 2|x∗ − x0|2 + 2|x′ − x0|2.

Since xa is in E, the left side is no less than 4δ+|x∗−x′|2. On the other hand,
the right side equals 4δ. This implies |x∗ − x′|2 = 0, or x∗ = x′, completing
the proof.

244 CHAPTER 4. CALCULUS

Unique Nearest Point in Convex Set

Given any point x0 and any convex set E, there is a unique point x∗

in E nearest to x0.

x∗

x0

Fig. 4.27 A convex set has a unique nearest point to any x0.

Let n be a nonzero vector. In two dimensions, the vectors orthogonal
to n form a line (Figure 4.28). In three dimensions, the vectors orthogonal
to n form a plane (Figure 4.28). In d dimensions, these vectors form the
orthogonal complement n⊥ (2.7.5), which is a (d− 1)-dimensional subspace.
This subspace is a hyperplane passing through the origin.

Given a point x0 and a nonzero vector n, the hyperplane passing through
x0 orthogonal to n consists of all x satisfying

H : n · (x− x0) = 0. (4.5.1)

The hyperplane equation may be written

H : m · x+ b = 0, (4.5.2)

with a nonzero vector m and scalar b. In this section, we use (4.5.1); in §7.6,
we use (4.5.2).

A hyperplane separates the whole space Rd into two half-spaces,

n · (x− x0) < 0 n · (x− x0) = 0 n · (x− x0) > 0.

The vector n is the normal vector to the hyperplane. Note replacing n by any
nonzero multiple of n leaves the hyperplane unchanged.

4.5. CONVEX FUNCTIONS 245

x0

n

x0

n

Fig. 4.28 Hyperplanes in two and three dimensions.

Separating Hyperplane I

Let E be a convex set, let x0 be a point not in E, and let x∗ be the
point in E nearest to x0. If n = x0 − x∗, then the hyperplane passing
through x∗ and orthogonal to n separates x0 and E: n · (x0 − x∗) > 0
and

n · (x− x∗) ≤ 0, for every x in E. (4.5.3)

A diagram of the proof is Figure 4.29. If x is in E, then by convexity, the
line segment [x∗, x] is in E, hence x∗ + tv, v = x− x∗, is in E for 0 ≤ t ≤ 1.
Since x∗ is the point of E nearest to x0,

|x∗ − x0|2 ≤ |x∗ + tv − x0|2 for 0 ≤ t ≤ 1.

Expanding, we have

|x∗ − x0|2 ≤ |x∗ − x0|2 + 2t(x∗ − x0) · v + t2|v|2, 0 ≤ t ≤ 1.

Canceling |x∗ − x0|2 then canceling t, we obtain

0 ≤ 2(x∗ − x0) · v + t|v|2, 0 ≤ t ≤ 1.

Since this is true for small positive t, sending t → 0 results in v ·(x∗−x0) ≥ 0.
Since n = x0 − x∗, v = x− x∗, we obtain

n · (x− x∗) ≤ 0 and n · (x0 − x∗) > 0.

246 CHAPTER 4. CALCULUS

x∗

x0

x0

x′
n

x∗ + tvx

Fig. 4.29 Separating hyperplane I.

Now suppose x0 is a point in the boundary of a convex set E. Since x0 is
in E, we cannot find a separating hyperplane for x∗ = x0. In this case, the
best we can hope for is a hyperplane passing through x0, with E to one side
of the hyperplane:

x in E =⇒ (x− x0) · n ≤ 0. (4.5.4)

Such a hyperplane is a supporting hyperplane for E at x0. Figures 4.22 and
4.30 display examples of supporting hyperplanes.

Here is the basic result relating convex sets and supporting hyperplanes.

Supporting Hyperplane for Convex Set

Let E be a convex set and let x0 be a point on the boundary of E.
Then there is a supporting hyperplane at x0.

If x0 is in the boundary of E, there are points x′ not in E approximating
x0 (Figure 4.29). Applying the separating hyperplane theorem to x′, with x∗

the point in E nearest to x′, and taking the limit x′ → x0, results in x∗ → x0,
leading to a supporting hyperplane at x0.

Supporting hyperplanes characterize convex sets in the following sense: If
through every point x0 in the boundary of E, there is a supporting hyper-
plane, then E is convex.

4.5. CONVEX FUNCTIONS 247

Fig. 4.30 Ellipsoids in three dimensions with supporting hyperplanes.

Recall a bit is either zero or one. A dataset x1, x2, . . . , xN is a two-class
dataset if there are bits p1, p2, . . . , pN corresponding to each sample. Then
the two classes correspond to p = 1 and p = 0 respectively.

Let m · x+ b = 0 be a hyperplane. The level of a sample x relative to the
hyperplane is y = m · x+ b. Theb x is in the hyperplane iff its level is zero.

A hyperplane is separating if

y ≥ 0, if p = 1,

y ≤ 0, if p = 0,
for every sample x. (4.5.5)

When there is a separating hyperplane, we say the dataset is separable. Be-
cause samples are separated by level, positive, negative, or zero, a separating
hyperplane is a decision boundary.

The dataset x1, x2, . . . , xN lies in the hyperplane m · x+ b = 0 if

m · xk + b = 0, k = 1, 2, . . . , N. (4.5.6)

When a two-class dataset lies in a hyperplane, the hyperplane is separating,
so the question of separability is only interesting when the dataset does not
lie in a hyperplane.

248 CHAPTER 4. CALCULUS

If a two-class dataset does not lie in a hyperplane and is separable, then
the means of the two classes are distinct (Exercise 4.5.1).

Separating Hyperplane II

Let x1, x2, . . . , xN be a two-class dataset and assume neither class
lies in a hyperplane. Let K0 and K1 be the convex hulls of the two
classes. Then

the dataset is separable ⇐⇒ K0 ∩K1 has no interior.
(4.5.7)

To derive this result, from Exercise 4.5.12 both K0 and K1 have interiors.
Suppose there is a separating hyperplane m · x + b = 0. If x0 is any point
in the interior K0 ∩ K1, then we have m · x0 + b ≤ 0 and m · x0 + b ≥ 0,
so m · x0 + b = 0. This shows the separating hyperplane passes through x0.
Since K0 lies on one side of the hyperplane, x0 cannot be in the interior of
K0. Similarly for K1. Hence x0 cannot be in the interior of K0 ∩ K1. This
implies K0 ∩K1 has no interior.

x∗
0

K0

H0

x∗
1

K1

H1

tK0

H

tK1

Fig. 4.31 Separating hyperplane II.

Conversely, for the reverse direction, suppose K0 ∩ K1 has no interior.
There are two cases, whether K0 ∩K1 is empty or not. If K0 ∩K1 is empty,
then the minimum of |x1 − x0|2 over all x1 in K1 and x0 in K0 is positive. If
we let

|x∗
1 − x∗

0|2 = min
x0 in K0
x1 in K1

|x1 − x0|2, (4.5.8)

then x∗
1 is on the boundary of K1, x

∗
0 is on the boundary of K0, and the

points x∗
0, x

∗
1 are distinct.

In the first case, since K0 and K1 don’t intersect, x∗
1 is not in K0, and x∗

0

is not in K1. Let m = x∗
1 − x∗

0. Since x∗
0 is the point in K0 closest to K1,

by separating hyperplane I, the hyperplane H0 : m · (x − x∗
0) = 0 separates

4.5. CONVEX FUNCTIONS 249

K0 from x∗
1. Similarly, since x∗

1 is the point in K1 closest to K0, the hyper-
plane H1 : m · (x − x∗

1) = 0 separates K1 from x∗
0. Thus (Figure 4.31) both

hyperplanes separate K0 from K1.
In the second case, whenK0 andK1 intersect, then the minimum in (4.5.8)

is zero, hence x∗
0 = x∗

1 = x∗. Let 0 < t < 1, and let tK0 be K0 scaled to-
wards its mean. Similarly, let tK1 be K1 scaled towards its mean. By Exer-
cise 4.5.16, both tK0 and tK1 lie in the interiors of K0 and K1 respectively,
so tK0 and tK1 do not intersect. By applying the first case to tK0 and tK1,
and choosing t close to 1, t → 1, we obtain a hyperplane H separating K0

and K1. We skip the details.
In Figure 4.22, at the corner of the square, there are multiple supporting

hyperplanes. However, at every other point a on the boundary of the square,
there is a unique (up to scalar multiple) supporting hyperplane. For the ellipse
or ellipsoid, at every point of the boundary, there is a unique supporting
hyperplane.

We now look at convex functions. Convexity in the multi-variable setting
is defined by reducing to the single-variable case.

Let f(x) = f(t1, t2, . . . , td) be a function of d features x = (t1, t2, . . . , td).
If we fix a point a and a direction v, then g(t) = f(a + tv) is a function of
the single variable t.

A function f(x) is convex if g(t) = f(a+ tv) is convex in t, for every point
a and direction v. A function f(x) is strictly convex if g(t) = f(a + tv) is
strictly convex, for every point a and direction v.

It can be shown f(x) is convex iff

f(t1x1 + · · ·+ tNxN) ≤ t1f(x1) + · · ·+ tNf(xN), (4.5.9)

for any convex combination of points x1, x2, . . . , xN .
In terms of derivatives, f(x) is convex when D2f(x) ≥ 0, and f(x) is

strictly convex when D2f(x) > 0. By (4.3.12), we have

Second Directional Derivatives and Convexity

A function f(x) is convex when

d2

dt2

∣∣∣∣
t=0

f(x+ tv) ≥ 0, for all v, (4.5.10)

and f(x) is strictly convex when

d2

dt2

∣∣∣∣
t=0

f(x+ tv) > 0, for all v ̸= 0. (4.5.11)

250 CHAPTER 4. CALCULUS

Let f(x) be a function and let ∇f(a) be the gradient at a. The tangent
hyperplane at a is

y = f(a) +∇f(a) · (x− a). (4.5.12)

Then as in §4.1,

Convex Function Graph Lies Above the Tangent Hyperplane

If f(x) is convex and has a gradient ∇f(a), then

f(a) +∇f(a) · (x− a) ≤ f(x). (4.5.13)

This result is obtained by applying the corresponding result in §4.1 to the
function g(t) = f(a+ tv), with v = x− a.

Recall m ≤ Q ≤ L means the eigenvalues of the symmetric matrix Q are
between L and m. We say f(x) is strongly convex there are positive constants
m and L satisfying m ≤ D2f(x) ≤ L for every x.

As in the scalar case, in order of breadth, we have

• quadratic functions, D2f(x) is constant,
• strongly convex functions, L ≥ D2f(x) ≥ m,
• strictly convex functions, D2f(x) > 0,
• general convex functions, D2f(x) ≥ 0.

Let f(x) be strongly convex with bounds m ≤ L. Given two points a and
x, let v = x − a and g(t) = f(x + tv). By (4.3.12), g(t) is a strongly convex
function of the scalar variable t with bounds m|x−a|2 ≤ L|x−a|2. Moreover

g(1) = f(x), g(0) = f(a), g′(0) = ∇f(a)·(x−a), g′(1) = ∇f(x)·(x−a).

Applying the scalar strongly convex results in §4.1 to g(t) and the points
t = 0, t = 1, we obtain the following vector versions of those results.

Lower and Upper Tangent Paraboloids

Let f(x) be strongly convex, with m ≤ D2f(x) ≤ L. Then

m

2
|x− a|2 ≤ f(x)− f(a)−∇f(a) · (x− a) ≤ L

2
|x− a|2. (4.5.14)

4.5. CONVEX FUNCTIONS 251

Strongly Convex Implies Unique Global Minimizer

A strongly convex function has exactly one global minimizer x∗.

Strongly Convex Gradient Bounds

Let f(x) be strongly convex. If q = ∇(x) and p = ∇f(a), then

m|x− a|2 ≤ (q − p) · (x− a) ≤ L|x− a|2. (4.5.15)

Coercivity of the Gradient

Let f(x) be strongly convex. If q = ∇f(x) and p = ∇f(a), then

mL

m+ L
|x− a|2 + 1

m+ L
|q − p|2 ≤ (q − p) · (x− a). (4.5.16)

If a = x∗ is a global minimizer, then ∇f(x∗) = 0, and f(x) lies between
two quadratics globally,

m

2
|x− x∗|2 ≤ f(x)− f(x∗) ≤ L

2
|x− x∗|2. (4.5.17)

These results are used in gradient descent §7.8.

We describe the convex dual in the multi-variable setting (the single-
variable case was done in §4.1). If f(x) is a scalar convex function of x,
and x = (t1, t2, . . . , td) has d features, the convex dual is

g(p) = max
x

(p · x− f(x)) . (4.5.18)

Here the maximum is over all vectors x, and p = (p1, p2, . . . , pd), the dual
variable, also has d features.

As in the scalar case, when f(x) is strongly convex, the maximizer in
(4.5.18) is well-defined, and we have

Dual of the Dual

Let f(x) be strongly convex. If g(p) is the convex dual of f(x), then
f(x) is the convex dual of g(p), g(p) is strongly convex, and

D2g(p) = D2f(x)−1 ⇐⇒ p = ∇f(x) ⇐⇒ x = ∇g(p).

It follows that the convex dual g(p) is strongly convex with

252 CHAPTER 4. CALCULUS

1

L
≤ D2g(p) ≤ 1

m
.

Using this, we also have (Exercise 4.1.20)

Dual Second Derivative Bounds

Let f(x) be strongly convex. If p = ∇f(x) and q = ∇f(a), then

1

2L
|p− q|2 ≤ f(x)− f(a)−∇f(a) · (x− a) ≤ 1

2m
|p− q|2. (4.5.19)

Combining (4.5.14) and (4.5.19), we have

Lipschitz Bounds

Let f(x) be strongly convex. If p = ∇f(x) and q = ∇f(a), then

m|x− a| ≤ |p− q| ≤ L|x− a|. (4.5.20)

These are used in gradient descent §7.8.

We list some technical properties and definitions of sets that play a role
in some of the proofs in this section. They make precise the intuitive notions
of interior and boundary of a set, and they may be safely skipped in a first
reading.

Let a be a point in Rd and let r be a positive scalar. The closed ball of
radius r and center a is the set of points x satisfying |x− a|2 ≤ r2. The open
ball of radius r and center a is the set of points x satisfying |x− a|2 < r2.

The sphere of radius r and center a is the set of points x satisfying |x−a|2 =
r2. Then the closed ball of radius r and center a is the union of the open ball
of radius r and center a and the sphere of radius r and center a.

Let E be any set in Rd. The complement of E is the set Ec of points that
are not in E. If E and F are sets, the intersection E ∩ F is the set of points
that lie in both sets.

A point a is in the interior of E if there is a ball B centered at a contained
in E; this is usually written B ⊂ E. Here the ball may be either open or
closed, the interior is the same.

A point a is in the boundary of E if every ball centered at a contains points
of E and points of Ec. From the definitions, it is clear that there are no points
that lie in both the interior of E and the boundary of E.

Let E be a set. If E equals its interior, then E is an open set. If E contains
its boundary, then E is a closed set . When a set is closed, we have

set = interior + boundary.

4.5. CONVEX FUNCTIONS 253

The complement of an open set is a closed set (Exercise 4.5.18).

Exercises

Exercise 4.5.1 If a two-class dataset does not lie in a hyperplane and is sepa-
rable, then the means of the two classes are distinct. (Argue by contradiction:
Assume the means are equal, and look at levels of samples.)

Exercise 4.5.2 Let e0 = 0 and let e1, e2, . . . , ed be the one-hot encoded
basis in Rd. The d-simplex Σd is the convex hull of e0, e1, e2, . . . , ed. Draw
pictures of Σ1, Σ2, and Σ3. Show Σd is the suspension (§1.5) of Σd−1 from
ed. Conclude

Vol(Σd) =
1

d!
, d = 0, 1, 2, 3, . . .

(Since Σ0 is one point, we start with Vol(Σ0) = 1.)

Exercise 4.5.3 If Q > 0 be a positive symmetric matrix, then

1

2
(p−Qx) ·Q−1(p−Qx) =

1

2
p ·Q−1p− p · x+

1

2
x ·Qx. (4.5.21)

Conclude the convex dual of f(x) = x ·Qx/2 is g(p) = p ·Q−1p/2.

x

y

y = 1/x

λ1 λ2 λ3 λ4
0 α

β

0 α

1/α

β

γ

m L

(m, 1/m)

(L, 1/L)

Fig. 4.32 y = 1/x is a convex function.

Exercise 4.5.4 Let 0 < λ1 < λ2 < λ3 < λ4 be positive scalars, and let
Pk = (λk, 1/λk), k = 1, 2, 3, 4, be four points on the graph of y = 1/x. If

(α, β) = t1P1 + t2P2 + t3P3 + t4P4

is a convex combination of the four points, then (α, β) is located in the blue
region in Figure 4.32. Why? Conclude 1 ≤ αβ ≤ αγ.

254 CHAPTER 4. CALCULUS

Exercise 4.5.5 With m = λ1 and L = λ4 and γ as in Figure 4.32, show

γ =
m+ L− α

mL
and 1 ≤ αβ ≤ αγ ≤ (m+ L)2

4mL
.

(maximize f(α) = αγ over m < α < L).

Exercise 4.5.6 Use the previous two exercises to obtain

1 ≤
(
t1λ1 + t2λ2 + t3λ3 + t4λ4

)
×
(
t1
λ1

+
t2
λ2

+
t3
λ3

+
t4
λ4

)
≤ (m+ L)2

4mL
.

Exercise 4.5.7 If Q is a symmetric nonzero d× d matrix with nonnegative
eigenvalues, and L and m are the greatest and least positive eigenvalues of
Q, show

1 ≤ (u ·Qu)(u ·Q+u) ≤ (m+ L)2

4mL
(4.5.22)

for every unit vector u in the row space of Q. Use EVD and Exercise 4.5.6.
See Exercise 4.1.19 for the 2× 2 case.

Exercise 4.5.8 Let A be any nonzero matrix and let σ1 and σ2 be the great-
est and least nonzero singular values of A. If u is any vector and A+ is the
pseudo-inverse, show

1 ≤ |Au| ×
∣∣(A+)tu

∣∣ ≤ 1

2

(
σ1

σ2
+

σ2

σ1

)
for every unit vector u in the row space of A. Use Exercises 4.5.7 and 2.6.14.

Exercise 4.5.9 Let x1, x2, . . . , xd be positive scalars. Use convexity of x = et

to show

1

d

d∑
i=1

xi ≥ (x1x2 . . . xd)
1/d.

Exercise 4.5.10 Derive (4.5.16) by applying (4.1.20) to f(a+ tv), v = b−a,
0 ≤ t ≤ 1.

Exercise 4.5.11 We know strong convexity implies Lipschitz bounds (4.5.20).
Show the converse: If

m|x− a| ≤ |∇f(x)−∇f(a)| ≤ L|x− a|

for all x, then m ≤ D2f(a) ≤ L. (Insert x = a+ tv with v a unit eigenvector
of D2f(a), and let t → 0.)

Exercise 4.5.12 Let K be the convex hull of a dataset, and suppose the
mean µ of the dataset lies on the boundary of K. Then the dataset lies in
the supporting hyperplane at µ.

4.5. CONVEX FUNCTIONS 255

Exercise 4.5.13 Let K be the convex hull of a dataset, and suppose the
dataset does not lie in a hyperplane. Then the mean µ of the dataset is in
the interior of K.

Exercise 4.5.14 A sphere in Rd with center µ and radius r is the set of
points x satisfying |x− µ|2 = r2. Show a hyperplane in Rd cannot contain a
sphere, hence a hyperplane has no interior.

Exercise 4.5.15 Let K be the convex hull of a dataset. Then the dataset
lies in a hyperplane iff K has no interior.

Exercise 4.5.16 Let K be a convex set, let x0 lie on the boundary of K, and
let µ be in the interior of K. Then, apart from x0, the line segment joining
µ and x0 lies in the interior of K.

Exercise 4.5.17 The boundaries of the open ball {x : |x − a| < r} and the
closed ball {x : |x− a| ≤ r} both are the sphere {x : |x− a| = r}.

Exercise 4.5.18 The complement of an open set is closed.

Exercise 4.5.19 A hyperplane inRd is a closed set (look at its complement).

Exercise 4.5.20 Let B be a ball in Rd. Then the span of B is Rd.

Chapter 5

Probability

Many concepts of probability are already present in a coin-tossing context.
Because of this, we first start with a section on basic notions of probability,
then we dive into coin-tossing, and discuss binomial probability. Here we show
how, even in this simplest setting, entropy is an inescapable feature, a basic
measure of randomness.

We also show how Bayes theorem allows us to flip things and gain inference.
For this, we need the fundamental theorem of calculus §A.6.

After this, random variables and the normal and chi-squared distributions
are covered. The presentation is layered so that a reader with only minimal
prior exposure will come away with an appreciation of probabilistic reasoning.

5.1 Probability

Let us start with an experiment. An experiment is a procedure that yields an
outcome, one of a set of possible outcomes. Each time we run the experiment,
the result, possibly an aggregate of several interrelated samples, is considered
a single outcome.

Tossing a coin once yields one of two outcomes, heads or tails, H or T ,
which we also write as 1 or 0. Rolling a six-sided die yields outcomes 1, 2, 3,
4, 5, 6. Rolling two six-sided dice yields 36 outcomes (1, 1), (1, 2),. . . . Tossing
a coin three times yields outcomes TTT , TTH, THT , THH, HTT , HTH,
HHT , HHH, which we also write as 111, 110, 101, 100, 011, 010, 000.

The outcome space of an experiment is the set S of all possible outcomes. If
#(S) is the number of outcomes, then for the four experiments above, #(S)
equals 2, 6, 36, and 8. The outcome space S is also called the sample space,
and the population.

An event is a specific subset A of S. For example, when rolling two dice,
let A1 can be the subset of outcomes where the sum of the dice equals 7.

257

258 CHAPTER 5. PROBABILITY

Then the event A1 consists of the outcomes (1, 6), (2, 5), (3, 4), (4, 3), (5, 2),
(6, 1). Here #(S) = 36 and #(A1) = 6.

Let A2 be the event of obtaining three heads when tossing a coin seven
times. Here #(S) = 27 = 128 and #(A2) = 35, which is the number of ways
you can choose three things out of seven things (§A.1):

#(A2) = 7-choose-3 =

(
7

3

)
=

7 · 6 · 5
1 · 2 · 3

= 35.

Suppose A is an event in an experiment, and suppose the outcome of the
experiment is in A. Then we say A has occured. For example, if rolling two
dice results in (2, 5), the event A1 has occured. If tossing a coin seven times
results in four heads and three tails, the event A2 has not occured.

If an event always occurs, then it is a certain event. For example, when
tossing a coin seven times, obtaining fewer than ten heads is a certain event.
Every outcome is in a certain event. There is only one certain event, the whole
outcome space. Even so, we often say “a certain event” because certainty can
be presented in many ways.

If an event never occurs, it is an impossible event. For example, when
tossing a coin seven times, obtaining eight heads is an impossible event.
There are no outcomes in an impossible event. There is only one impossible
event, the event with no outcomes. Even so, we often say “an impossible
event” because impossibility can be presented in many ways.

The intersection of events A and B is the event (A and B) = A ∩ B of
outcomes common to both events. If A3 is the event of obtaining at least one
5 when rolling two dice, then the outcomes in (A1 and A3) are (2, 5), (5, 2).
Here #(A3) = 11 and #(A1 and A3) = 2.

Events A and B are exclusive if there is no outcome common to both
events. Two events are exclusive if their intersection is impossible.

The union of events A and B is the event (A or B) = A ∪B of outcomes
that are in A or in B. If A3 is the event of obtaining at least one 5 when
rolling two dice, then check that #(A1 or A3) = 15.

Events A and B are exhaustive if every outcome is either in A or in B.
Two events are exhaustive if their union is certain.

If A is an event, the complementary event is the event Ac of outcomes not
in A. Thus A occurs exactly when Ac does not occur: the events A and Ac

are exclusive and exhaustive.
The difference of A minus B are the outcomes in A but not in B: The

outcomes of A1−A3 are (1, 6), (3, 4), (4, 3), (6, 1). Similarly, the outcomes of
A3 −A1 are (5, 1), (5, 3), (5, 4), (5, 5), (5, 6), (1, 5), (3, 5), (4, 5), (5, 5), (6, 5).

An event A is part of event B if every outcome in A is also in B. If A is
part of B, then A ∩B is A, A ∪B is B, and A−B is impossible.

5.1. PROBABILITY 259

Moreover, for any A, B, A−B is part of A and B−A is part of B, A∩B
is part of both, and all are part of A ∪B.

These concepts carry over to several events. Events A, B, C are exclusive
if A ∩B, A ∩C, and B ∩C are impossible. Events A, B, C are exhaustive if
A ∪B ∪ C is certain.

A probability on an outcome space S is an assignment of a number Prob(A)
to every event A in S, satisfying three axioms.

Axioms for Probability

A probability on S satisfies

1. 0 ≤ Prob(A) ≤ 1 for every event A in S,
2. Prob(S) = 1,
3. (Additivity) If A, B, . . . are exclusive events in S,

Prob(A ∪B ∪ . . .) = Prob(A) + Prob(B) + (5.1.1)

Suppose the number of outcomes #(S) is finite. Then the simplest prob-
ability is the discrete uniform distribution, assigning to each event A the
proportion of outcomes in A,

Prob(A) =
#(A)

#(S)
. (5.1.2)

When this is so and #(S) = N , each outcome has probability 1/N , and we
say the outcomes are equally likely.

Here are examples of discrete uniform distributions.

1. A coin is fair if, after one toss, the two outcomes are equally likely. Then
Prob(heads) = Prob(tails) = 1/2.

2. A 6-sided die is fair if, after one roll, the outcomes are equally likely. Let
A be the event that the outcome is less than 3. Since the outcome is then
1 or 2, Prob(A) = 2/6 = 1/3.

3. With A1 as above, assuming the dice are fair, leads to Prob(A1) = 6/36 =
1/6.

4. With A2 as above, assuming the coin is fair, leads to Prob(A2) = 35/128.
5. With A3 as above, assuming the dice are fair, leads to Prob(A3) = 11/36.

Here are some consequences of the probability axioms. Since A and Ac are
exclusive and exhaustive, the first consequence is

260 CHAPTER 5. PROBABILITY

Complementary Probabilities

For any event A,
Prob(Ac) = 1− Prob(A).

An event A is sure if Prob(A) = 1. An event A is null if Prob(A) = 0.
Then A is sure iff Ac is null. A certain event is sure, and an impossible event
is null. However, as we see below, sure and certain are not the same, nor are
null and impossible.

The second consequence of additivity is

Monotonicity of Probabilities

Let A be an event, and let B be part of A. Then

Prob(B) ≤ Prob(A). (5.1.3)

This follows from Exercise 5.1.7. A useful variation of additivity (5.1.1) is

Additivity of Probabilities

If A1, A2, . . . are exclusive and exhaustive events, and B is any event,
then

Prob(B) = Prob(B and A1) + Prob(B and A2) + (5.1.4)

In particular, if A and B are any events,

Prob(B) = Prob(B and A) + Prob(B and Ac). (5.1.5)

Also, when the events are not exclusive, we have

Sub-Additivity of Probabilities

If the event A is part of the union of events A1, A2, . . . , then

Prob(A) ≤ Prob(A1) + Prob(A2) + (5.1.6)

This follows from additivity (Exercise 5.1.10).

Suppose we sample numbers X at random from the interval [0, 1] in a uni-
form manner. This means the outcome space is S = [0, 1], and the probability
of sampling from a sub-interval [a, b] equals its length,

5.1. PROBABILITY 261

Prob(a < X < b) = b− a, 0 ≤ a < b ≤ 1.

Since a single number a is a sub-interval [a, a] with zero length, the event A
of sampling X exactly equal to 0.5 is a null event. Since A is possible, A is
not impossible. Moreover Ac is a sure event, but Ac is not certain.

0 a µ b 1

Fig. 5.1 Uniform probability density function.

Here is a more sophisticated example of a null event that is not impossible.
Because this example relates to the LLN (see below and Exercise 5.1.11),
we go over it carefully.

Toss a fair coin n times. Then the outcome space Sn consists of all n-tuples
x = (t1, t2, . . . , tn) of 0’s and 1’s. Here the number of outcomes is 2n, and the
probability of each outcome is 2−n.

Now toss a coin infinitelymany times. Then the outcome space S∞ consists
of all infinite tuples x = (t1, t2, . . .) of 0’s and 1’s. Here the number of samples
in each outcome is infinite, and it turns out the probability of each outcome
is zero.

Why is the probability of each outcome x in S∞ zero? To understand why,
we first have to discuss how to measure probabilities of events in S∞.

If an event A in S∞ depends only on the first n samples, this is easy. We
consider A as part of Sn, and Prob(A) is taken from the discrete uniform
distribution (5.1.2) on Sn. For example, if A consists of all outcomes in S∞
with 3 heads in the first 7 samples, then Prob(A) = 35/128. Events that
depends only on finitely many samples are called finite-sample events.

Of course, the interesting events in S∞ are those that are not finite-sample
events, see the LLN below. Even so, it turns out there is one and only one way
to specify probabilities Prob on all events in S∞, finite-sample or otherwise,
once Prob is specified on finite-sample events as above.

Now let x = (t1, t2, . . .) be a specific outcome, and let An be the event
of all outcomes in S∞ whose first n samples are exactly (t1, t2, . . . , tn). Since
An depends only on the first n samples, Prob(An) = 2−n. Since x is in An

for every n ≥ 1, by monotonicity (5.1.3), Prob(x) ≤ 2−n for every n ≥ 1. In
this inequality, let n increase without bound. Since the right side approaches
zero, we obtain Prob(x) = 0. This shows each outcome has probability zero.

262 CHAPTER 5. PROBABILITY

Now, for k < n, let An,k be the event of outcomes in S∞ with k heads in
the first n samples. Since there are

(
n
k

)
ways of obtaining k heads (§A.1),

Prob (An,k) = 2−n

(
n

k

)
.

Let A∞,k be the event of infinite tuple outcomes with exactly k heads.
Then each outcome x in A∞,k is in An,k for some n. In fact, an outcome
x in A∞,k is necessarily in An,k for all sufficiently large n. This means the
following: if x is in A∞,k, then for some N ≥ 1, x is in An,k for every n greater
or equal than N . Therefore, for each outcome x in A∞,k, there is some N ,
depending on x, with x in⋂

n≥N

An,k = AN,k ∩AN+1,k ∩AN+2,k ∩

This shows the event A∞,k is part of the union of the events
⋂

n≥N An,k over
N = 1, 2,

Since
⋂

n≥N An,k is part of Am,k for everym ≥ N , by monotonicity (5.1.3),

Prob

 ⋂
n≥N

An,k

 ≤ 2−m

(
m

k

)
, for every m ≥ N.

With k fixed, let m increase without bound in this inequality. Since the right
side approaches zero (Exercise A.7.1),

⋂
n≥N An,k is a null event.

Since A∞,k is part of the union of
⋂

n≥N An,k over N ≥ 1, by subadditivity
(5.1.6), A∞,k is also a null event. However, since there definitely are outcomes
in S∞ with k heads, A∞,k is not impossible.

Finally, let A∞ be the event of all outcomes with a finite, but unspecified,
number of heads. Then A∞ equals

A∞,0 ∪A∞,1 ∪A∞,2 ∪

By subadditivity again, A∞ is a null event.
The moral here is if you try to specify a pattern of infinitely many tosses

of a coin, you end up with a null event. This is why coin-tossing is called
random.

The conditional probability of A given B is

Prob(A | B) =
Prob(A and B)

Prob(B)
. (5.1.7)

The definition (5.1.7) is equivalent to the chain rule

5.1. PROBABILITY 263

Prob(A and B) = Prob(A | B)Prob(B). (5.1.8)

Events A and B are independent if

Prob(A and B) = Prob(A)× Prob(B). (5.1.9)

When A and B are independent,

Prob(A | B) =
Prob(A and B)

Prob(B)
=

Prob(A)× Prob(B)

Prob(B)
= Prob(A).

When A and B are independent, the conditional probability equals the uncon-
ditional probability.

Are A1 and A3 above independent? Since Prob(A1) = 6/36 = 1/6 and

Prob(A1 | A3) =
Prob(A1 and A3)

Prob(A3)
=

2/36

11/36
=

2

11
,

A1 and A3 are not independent.
Additivity of probabilities and the chain rule can be combined into

Law of Total Probability

If A1, A2, . . . are exclusive and exhaustive events, and B is any event,
then

Prob(B) = Prob(B | A1)Prob(A1) + Prob(B | A2)Prob(A2) +
(5.1.10)

In particular, if A and B are any events,

Prob(B) = Prob(B | A)Prob(A) + Prob(B | Ac)Prob(Ac). (5.1.11)

Suppose in a certain community 15% of families have no children, 20%
have one child, 35% have two children, and 30% have three children. Suppose
also each child is equally likely to be a boy or a girl. Let B and G be the
number of boys and girls in a randomly selected family. Then

Prob(B = 0 and G = 0) = Prob(no children) = 0.15,

and

Prob(B = 0 and G = 1) = Prob(G = 1 | 1 child)Prob(1 child) =
1

2
0.20 = 0.1,

and

264 CHAPTER 5. PROBABILITY

Prob(B = 1 and G = 2) = Prob(G = 2 | 3 children)Prob(3 children) =
3

8
0.30 = .1125.

Continuing in this manner, the complete table is

Prob((B,G) = (i, j)) G = 0 G = 1 G = 2 G = 3

B = 0 0.15 0.10 .0875 .0375

B = 1 0.10 .175 .1125 0

B = 2 .0875 .1125 0 0

B = 3 .0375 0 0 0

Table 5.2 Joint distribution of boys and girls [30].

Now suppose we conduct an experiment by tossing a coin (always assumed
fair unless otherwise mentioned) 10 times. Because the coin is fair, we expect
to obtain heads around 5 times. Will we obtain heads exactly 5 times? Let’s
run the experiment with Python. In fact, we will run the experiment 20 times.
If we count the number of heads after each run of the experiment, we obtain
a digit between 0 and 10 inclusive.

To simulate this, we use binomial(n,p,N). When N = 1, this returns the
number of heads obtained after a single experiment, consisting of tossing a
coin n times, where the probability of obtaining heads in each toss is p.

More generally, binomial(n,p,N) runs this experimentN times, returning
a vector v with N components. For example, the code

from numpy import *

from numpy.random import default_rng

samples = default_rng().binomial

p, n, N = .5, 10, 20

v = samples(n,p,N)

print(v)

returns

[9 6 7 4 4 4 3 3 7 5 6 4 6 9 4 5 4 7 6 7]

The outcome space S corresponding to (p, n,N) consists of all vectors v =
(v1, v2, . . . , vN) with N components, with each component equal to to 0, 1,
. . . , n. So here #(S) = (n+ 1)N .

5.1. PROBABILITY 265

Now we conduct three experiments: tossing a coin 5 times, then 50 times,
then 500 times. The code

p = .5

for n in [5,50,500]: print(binomial(n,p,1))

This returns the count of heads after 5 tosses, 50 tosses, and 500 tosses,

3, 28, 266

The proportions are the count divided by the total number of tosses in the
experiment. For the above three experiments, the proportions after 5 tosses,
50 tosses, and 500 tosses, are

3/5=.600, 28/50=.560, 266/500=.532

Fig. 5.3 100,000 sessions, with 5, 15, 50, and 500 tosses per session.

Now we repeat each experiment 100,000 times and we plot the results in
a histogram.

from matplotlib.pyplot import *

from numpy.random import default_rng

samples = default_rng().binomial

N, p = 100000, .5

266 CHAPTER 5. PROBABILITY

for n in [5,50,500]:

data = samples(n,p,N)

hist(data,bins=n,edgecolor ='Black')
grid()

show()

This results in Figure 5.3.

The takeaway from these graphs are the two fundamental results of prob-
ability:

Law of Large Numbers (LLN)

The proportion in a repeated experiment is the sample proportion.
The sample proportion tends to be near the underlying probability
p. The underlying probability is the population proportion. The larger
the sample size in the experiment, the closer the proportion is to p.
Another way of saying this is: For large sample size, the sample mean
is approximately equal to the population mean.

Central Limit Theorem (CLT)

For large sample size, the shape of the graph of the proportions or
counts is approximately normal. The normal distribution is studied in
§5.4. Another way of saying this is: For large sample size, the shape
of the sample mean histogram is approximately normal.

The law of large numbers is qualitative and the central limit theorem is
quantitative. While the law of large numbers says one thing is close to another,
it does not say how close. The central limit theorem provides a numerical
measure of closeness, using the normal distribution.

One may think that the LLN and the CLT above depend on some aspect
of the binomial distribution. After all, the binomial is a specific formula and
something about this formula may lead to the LLN and the CLT. To show
that this is not at all the case, to show that the LLN and the CLT are
universal, we bring in the petal lengths of the Iris dataset. This time the
experiment is not something we invent, it is a result of something arising in
nature, Iris petal lengths.

We begin by loading the Iris dataset,

5.1. PROBABILITY 267

from sklearn import datasets

iris = datasets.load_iris()

dataset = iris["data"]

iris["feature_names"]

This code shows the petal lengths are the third feature in the dataset, and
we compute the mean of the petal lengths using

petal_lengths = dataset[:,2]

mean(petal_lengths)

This returns the petal length population mean µ = 3.758. If we plot the
petal lengths in a histogram with 50 bins using the code

from matplotlib.pyplot import *

grid()

hist(petal_lengths,bins=50)

show()

we obtain Figure 5.4.

Fig. 5.4 The histogram of Iris petal lengths.

Now we sample the Iris dataset randomly. More generally, we take a ran-
dom batch of samples of size n and take the mean of the samples in the batch.
For example, the following code grabs a batch of n = 5 petals lengths X1,

268 CHAPTER 5. PROBABILITY

X2, X3, X4, X5 at random and takes their mean,

X1 +X2 +X3 +X4 +X5

5
.

The code is

from numpy import *

from numpy.random import default_rng

rng = default_rng()

n = batch_size

def random_batch_mean(n):

rng.shuffle(petal_lengths)

return mean(petal_lengths[:n])

random_batch_mean(5)

This code shuffles the dataset, then selects the first n petal lengths, then
returns their mean.

Fig. 5.5 Iris petal lengths sampled 100,000 times.

To sample a single petal length randomly 100,000 times, we run the code

N = 100000

n = 1

5.1. PROBABILITY 269

Xbar = [random_batch_mean(n) for _ in range(N)]

hist(Xbar,bins=50)

grid()

show()

Since we are sampling single petal lengths, here we take n = 1. This code
returns the histogram in Figure 5.5.

In Figure 5.4, the bin heights add up to 150. In Figure 5.5, the bin heights
add up to 100,000. Moreover, while the shapes of the histograms are almost
identical, a careful examination shows the histograms are not identical. Nev-
ertheless, there is no essential difference between the two figures.

Fig. 5.6 Iris petal lengths batch means sampled 100,000 times, batch sizes 3, 5, 20.

Now repeat the same experiment, but with batches of various sizes, and
plot the resulting histograms. If we do this with batches of size n = 3, n = 5,
n = 20 using

from matplotlib.pyplot import *

figure(figsize=(8,4))

three subplots

rows, cols = 1, 3

N = 100000

for i,n in enumerate([3,5,20],start=1):

Xbar = [random_batch_mean(n) for _ in range(N)]

subplot(rows,cols,i)

grid()

hist(Xbar,bins=50)

270 CHAPTER 5. PROBABILITY

show()

we obtain Figure 5.6.
This shows the CLT is universal, since here it arises from sampling the

petal lengths of Irises, whose dataset has the histogram in Figure 5.4. Of
course, we also have the LLN, which says the peak of each of the bell-shaped
curves is near µ = 3.758.

Exercises

Exercise 5.1.1 [30] A communications channel transmits bits 0 and 1. Be-
cause of noise, the probability of transmitting a bit incorrectly is 0.2. To
reduce error probabilities, each bit is repeated five times: 1 is sent as 11111
and 0 is sent as 00000. If the recipient uses majority decoding, what is the
probability of mis-reading a message consisting of one bit? Majority decoding
means five consecutive bits will be read as 1 if at least three of the bits are
1, and similarly for 0.

Exercise 5.1.2 Check the values in Table 5.2.

Exercise 5.1.3 A fair coin is tossed infinitely many times. Show that the
event of outcomes with both infinitely many heads and infinitely many tails
is sure.

Exercise 5.1.4 [30] Approximately 80,000 marriages took place in New York
last year. Assuming any day is equally likely, what is the probability that for
at least one of these couples, both partners were born on January 1? Both
partners celebrate their birthdays on the same day of the year?

Exercise 5.1.5 This problem has nothing to do with calculus or probabil-
ity or data science, and just uses addition of numbers, so can be presented
to grade school students. Let dataset be any five numbers, for example
[-11.2,sqrt(2),1.4,11, 23.4], and run the code

from matplotlib.pyplot import *

from numpy import *

def sums(dataset,k):

if k == 1: return dataset

else:

s = sums(dataset,k-1)

return array([a+b for a in dataset for b in s])

for k in range(5):

s = sums(dataset,k)

5.1. PROBABILITY 271

grid()

hist(s,bins=50,edgecolor="k")

show()

for k = 1, 2, 3, 4, What does this code do? What does it return? What
pattern do you see? What if dataset were changed? What if the samples in
the dataset were vectors?

Exercise 5.1.6 [30] At least one-half of an airplane’s engines are required
to function in order for it to operate. If each engine functions independently
with probability p, for what value of 0 < p < 1 is a 4-engine plane as likely
to operate as a 2-engine plane? (Write the binomial probability as a function
of p and use numpy.roots.)

Exercise 5.1.7 Let A and B be any events, not necessarily exclusive. Show

Prob(A or B) = Prob(B) + Prob(A−B).

Exercise 5.1.8 Let A and B be any events, not necessarily exclusive. Extend
(5.1.1) to show

Prob(A or B) = Prob(A) + Prob(B)− Prob(A and B). (5.1.12)

(Break A ∪B into three exclusive events A−B, A ∩B, and B −A.)

Exercise 5.1.9 [30] There is a 60% chance an event A will occur. If A does
not occur, there is a 10% chance B occurs. What is the chance A or B occurs?

Exercise 5.1.10 Let A, B, C be any events, not necessarily exclusive. Use
Exercise 5.1.8 to show

Prob(A or B or C) ≤ Prob(A) + Prob(B) + Prob(C).

(Start with two events, then go from two to three events.) With a = Prob(Ac),
b = Prob(Bc), c = Prob(Cc), this exercise is the same as Exercise A.3.4.

Exercise 5.1.11 Toss a coin infinitely many times, and let A1 be the out-
comes x = (x1, x2, . . .) where the limit of the sample means

lim
n→∞

x1 + x2 + · · ·+ xn

n

equals 1. Show the event A1 is not certain nor impossible. Here each xk is
1 or 0. More generally, let t = a/b be any fraction, and let At be the event
of outcomes where the limit of the sample means equals t. Show At is not
certain nor impossible.

Exercise 5.1.12 If A is any event in S∞, let Ā be the event A with heads
and tails interchanged. This means xk is replaced by 1− xk in the definition

272 CHAPTER 5. PROBABILITY

of A. Then Prob(A) = Prob(Ā). We call A symmetric if Ā = A. Show for A
symmetric,

Prob(A and x1 = 1) =
1

2
Prob(A) = Prob(A and x1 = 0).

Conclude a symmetric event A is independent of the event x1 = 1. (Use
additivity.)

Exercise 5.1.13 Let At be the event in Exercise 5.1.11. Show At = A1−t.
Conclude A0.5 is symmetric.

5.2 Binomial Probability

Suppose a coin is tossed repeatedly, landing heads or tails each time. After
tossing the coin 100 times, we obtain 53 heads. What can we say about this
coin? Can we claim the coin is fair? Can we claim the probability of obtaining
heads is .53?

Whatever claims we make about the coin, they should be reliable, in that
they should more or less hold up to repeated verification.

To obtain reliable claims, we therefore repeat the above experiment 20
times, obtaining for example the following count of heads

[57, 49, 55, 44, 55, 50, 49, 50, 53, 49, 53, 50, 51, 53, 53, 54, 48, 51, 50, 53].

On the other hand, suppose someone else repeats the same experiment 20
times with a different coin, and obtains

[69, 70, 79, 74, 63, 70, 68, 71, 71, 73, 65, 63, 68, 71, 71, 64, 73, 70, 78, 67].

In this case, one suspects the two coins are statistically distinct, and have
different probabilities of obtaining heads.

In this section, we study how the probabilities of coin-tossing behave, with
the goal of answering the question: Is a given coin fair?

Assume we are tossing a coin. If we let p = Prob(H) and q = Prob(T) be
the probabilities of obtaining heads and tails in a single toss, then

p+ q = 1.

The proportion p is the coin’s bias. In particular, we see q = 1 − p, and the
bias p may be any proportion between 0 and 1, depending on the particular

5.2. BINOMIAL PROBABILITY 273

coin being tossed. When p = 1/2, Prob(H) = Prob(T), we say the coin is
fair.

If we toss the coin twice, we obtain one of four possibilities, HH, HT ,
TH, or TT . If we make the natural assumption that the coin has no memory,
that the result of the first toss has no bearing on the result of the second
toss, then the probabilities are

Prob(HH) = p2, P rob(HT) = pq, Prob(TH) = qp, Prob(TT) = q2. (5.2.1)

These are valid probabilities since their sum equals 1,

p2 + pq + qp+ q2 = (p+ q)2 = 12 = 1.

We use (5.1.7) to compute the probability that we obtain heads on the sec-
ond toss given that we obtain tails on the first toss. Introduce the convenient
notation

Xn =

{
1, if the n-th toss is heads,

0, if the n-th toss is tails.

Then Xn is a random variable (§5.3) and represents a numerical reward
function of the outcome (heads or tails) at the n-th toss.

With this notation, (5.2.1) may be rewritten

Prob(X1 = 1 and X2 = 1) = p2,

P rob(X1 = 1 and X2 = 0) = pq,

Prob(X1 = 0 and X2 = 1) = qp,

Prob(X1 = 0 and X2 = 0) = q2.

In particular, by (5.1.5), this implies (remember q = 1− p)

Prob(X1 = 1) = Prob(X1 = 1 and X2 = 0) + Prob(X1 = 1 and X2 = 1)

= pq + p2 = p(p+ q) = p.

Similarly, Prob(X2 = 1) = p. Computing,

Prob(X2 = 1 | X1 = 0) =
Prob(X1 = 0 and X2 = 1)

Prob(X1 = 0)
=

qp

q
= p = Prob(X2 = 1),

so
Prob(X2 = 1 | X1 = 0) = Prob(X2 = 1).

Thus X1 = 0 has no effect on the probability that X2 = 1, and similarly for
the other possibilities. This is often referred to as the independence of the
coin tosses. We conclude

274 CHAPTER 5. PROBABILITY

Multiplication of Probabilities: Independent Coin-Tossing

With the conditional probability definition (5.1.7), a coin has no mem-
ory between successive tosses iff the probabilities at distinct tosses
multiply,

Prob(X1 = a1, X2 = a2, . . .) = Prob(X1 = a1)Prob(X2 = a2) . . .
(5.2.2)

Here a1, a2, . . . are 0 or 1.

Since we are tossing the same coin repeatedly, we can set

Prob(Xn = 1) = p, Prob(Xn = 0) = q = 1− p, n ≥ 1.

Thus all probabilities in (5.2.2) are determined by the parameter p, which
may be any number between 0 and 1.

It is natural to ask for the probability of obtaining k heads in n tosses,
Prob(Sn = k). Here k varies between 0 and n, corresponding to all tails or
all heads respectively.

There are n+ 1 possibilities Sn = 0, Sn = 1, Sn = 2, . . . , Sn = n for the
number of heads in n tosses. If we have no data to think otherwise, then all
possibilities are equally likely, so one expects

Prob(Sn = k) =
1

n+ 1
, 0 ≤ k ≤ n.

Notice the total probability is 1,

n∑
k=0

Prob(Sn = k) =

n∑
k=0

1

n+ 1
= 1,

as it should be.
Assume we know the coin’s bias p. Since the number of ways of choosing

k heads from n tosses is the binomial coefficient
(
n
k

)
(see §A.2), and the

probabilities of distinct tosses multiply, the probability of k heads in n tosses
is as follows.

Coin-Tossing With Known Bias

If a coin has bias p, the probability of obtaining k heads in n tosses
is the binomial distribution

5.2. BINOMIAL PROBABILITY 275

Prob(Sn = k) =

(
n

k

)
pk(1− p)n−k. (5.2.3)

Why is this? Because the probabilities multiply, so the probability of a
specific pattern of k heads in n tosses is pk(1−p)n−k. By (5.1.4), probabilities
of exclusive events add, and there are

(
n
k

)
exclusive events here, because

(
n
k

)
is the number of ways of choosing k heads from n tosses.

By the binomial theorem,

n∑
k=0

Prob(Sn = k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ 1− p)n = 1,

again as it should be.
The binomial distribution with n = 1 corresponds to a single coin toss,

and is called the Bernoulli distribution. The corresponding random variable
X,

Prob(X = 1) = p, Prob(X = 0) = 1− p,

is a Bernoulli random variable.
The code for N samples of head-counts in n tosses is

from numpy import *

from numpy.random import default_rng

samples = default_rng().binomial

n, p, N = 5, .5, 10

counting heads from n tosses sampled N times

samplesl(n,p,N)

This returns array([2, 2, 2, 0, 4, 3, 4, 2, 4, 2]).
The code for the probability of k heads in n tosses of a coin with bias p is

from scipy.stats import binom

k,n,p = 5, 10, .5

B = binom(n,p)

probability of k heads

B.pmf(k)

This returns 0.24609375000000003.
More generally,

276 CHAPTER 5. PROBABILITY

from scipy.stats import binom

from scipy.special import comb

code to verify binomial pmf

def f(n,k,p): return binom(n,p).pmf(k)

def g(n,k,p): return comb(n,k,exact=True) * p**k * (1-p)**(n-k)

k,n,p = 5, 10, .5

pmf1 = array([f(n,k,p) for k in range(n+1)])

pmf2 = array([g(n,k,p) for k in range(n+1)])

allclose(pmf1,pmf2)

returns True.
Be careful to distinguish between

numpy.random.default_rng.binomial and scipy.stats.binom.

The former returns samples from a binomial distribution, while the latter
returns a binomial random variable. Samples are just numbers; random vari-
ables have cdf’s, pmf’s or pdf’s, etc.

We explain the connection between entropy (§4.2) and coin-tossing. Recall
the binomial coefficient

(
n
k

)
is the number of ways of selecting k objects from

n objects (A.1.1).
Toss the coin n times, and let #n = #n(p) be the number of outcomes

where the proportion k/n of heads is p. Here p may or may not equal the
coin’s bias, which we assume not known. Then the number of heads is k = np,
so,

#n(p) =

(
n

np

)
.

When p is an irrational, np is replaced by the floor ⌊np⌋, but we ignore
this point. Using (A.1.2), a straightforward calculation yields the following
result.1

Entropy and Coin-Tossing

Let 0 ≤ p ≤ 1 be a proportion. Toss a coin n times, and let #n(p) be
the number of outcomes where the heads-proportion is p. Then

1 This result is a precise interpretation of the original definition of entropy, due to the

physicist Boltzmann (1875), as the log of the number of outcomes, or configurations, or
possibilities.

5.2. BINOMIAL PROBABILITY 277

#n(p) is approximately equal to enH(p) for n large.

In more detail, using Stirling’s approximation (A.1.7), one can derive the
asymptotic equality

#n(p) ≈
1√
2πn

· 1√
p(1− p)

· enH(p), for n large. (5.2.4)

Asymptotic equality means the ratio of the two sides approaches 1 as n → ∞
(see §A.7).

Fig. 5.7 Asymptotics of binomial coefficients.

Figure 5.7 is returned by the code below, which compares both sides of
the asymptotic equality (5.2.4) for n = 10 and 0 ≤ p ≤ 1.

from numpy import *

from scipy.special import comb

from scipy.stats import entropy

from matplotlib.pyplot import *

n = 10

p = arange(.01,1,.01)

def H(p): return entropy([p,1-p])

def stirling(n,p):

return exp(n*H(p))/sqrt(2*n*pi*p*(1-p))

plot(p, comb(n,n*p), label="binomial coefficient")

278 CHAPTER 5. PROBABILITY

plot(p, stirling(n,p), label="entropy approximation")

title("number of tosses " + "$n=" + str(n) +"$", usetex=True)

legend()

grid()

show()

Suppose a coin has bias q and toss the coin n times. Then we expect the
long-term proportion of heads in n tosses to approximately equal q. Now let
p be another probability, 0 ≤ p ≤ 1.

Toss a coin n times, and let Pn(p, q) be the probability of obtaining out-
comes with heads-proportion p, given that the coin’s bias is q.

If p = q, one’s first guess is Pn(p, p) ≈ 1 for n large. However, this is
not correct, because Pn(p, p) is specifying a specific proportion p, predicting
specific behavior from the coin tosses. Because this is too specific, it turns
out Pn(p, p) ≈ 0, see Exercise 5.2.8.

On the other hand, if p ̸= q, we definitely expect the proportion of heads
to not equal p. In other words, we expect Pn(p, q) to be small for large n. In
fact, when p ̸= q, it turns out Pn(p, q) → 0 exponentially, as n → ∞.

We derive a formula for the speed of this decay. With k = np in the
binomial distribution (5.2.3),

Pn(p, q) =

(
n

np

)
qnp(1− q)n−np.

Let H(p, q) be the relative entropy (§4.2). Using (A.1.2), a straightforward
calculation results in

Relative Entropy and Coin-Tossing

Assume a coin’s bias is q. Toss the coin n times, and let Pn(p, q) be
the probability of obtaining outcomes where the heads-proportion is
p. Then

Pn(p, q) is approximately equal to enH(p,q) for n large.
(5.2.5)

In more detail, using Stirling’s approximation (A.1.7), one can derive the
asymptotic equality

Pn(p, q) ≈
1√
2πn

· 1√
p(1− p)

· enH(p,q), for n large. (5.2.6)

5.2. BINOMIAL PROBABILITY 279

The law of large numbers (§5.1)) states that the heads-proportion in n
tosses equals approximately q for large n. Therefore, when p ̸= q, we ex-
pect the probabilities that the heads-proportions equal p become successively
smaller as n get larger, and in fact vanish when n = ∞. Since H(p, q) < 0
when p ̸= q, (5.2.6) implies this is so. Thus (5.2.6) may be viewed as a quanti-
tative strengthening of the law of large numbers, in the setting of coin-tossing.

Now we assume the coin parameter p is unknown, and we interpret (5.2.3)
as the conditional probability that Sn = k given knowledge of p, which we
rewrite as

Prob(Sn = k | p) =
(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n. (5.2.7)

By additivity of probabilities, Prob(Sn = k) is the sum of the probabilities
Prob(Sn = k and p) over 0 ≤ p ≤ 1.

By the conditional probability chain rule (5.1.8),

Prob(Sn = k and p) = Prob(Sn = k | p)Prob(p).

Thus Prob(Sn = k) is the sum of Prob(Sn = k | p)Prob(p) over 0 ≤ p ≤ 1.
Since p varies continuously over 0 ≤ p ≤ 1, the sum is replaced by the integral,
and

Prob(Sn = k) =

∫ 1

0

Prob(Sn = k | p) Prob(p) dp.

Integrals are reviewed in §A.6.
Since we don’t know anything about p, it’s simplest to assume a uniform

prior probability Prob(p) = 1. Based on this, we obtain

Prob(Sn = k) =

∫ 1

0

(
n

k

)
pk(1− p)n−k dp. (5.2.8)

Usually, this integral is evaluated using integration by parts. However, it
is easier to evaluate this for all 0 ≤ k ≤ n at once, by writing

I(c) =

n∑
k=0

ck Prob(Sn = k).

Using (5.2.8) and the binomial theorem (A.2.7), I(c) equals∫ 1

0

(
n∑

k=0

(
n

k

)
ckpk(1− p)n−k

)
dp =

∫ 1

0

(1− p+ cp)n dp.

If we set

280 CHAPTER 5. PROBABILITY

f(p) = (1− p+ cp)n, F (p) =
(1− p+ cp)n+1

(c− 1)(n+ 1)
,

then F ′(p) = f(p) (see (4.1.5)). By the fundamental theorem of calculus
(A.6.2),

I(c) = F (1)− F (0) =
1

n+ 1
· c

n+1 − 1

c− 1
. (5.2.9)

But by (A.3.5) with n replaced by n+ 1,

1

n+ 1
· c

n+1 − 1

c− 1
=

n∑
k=0

ck · 1

n+ 1
.

Matching coefficients of powers of c here and in I(c), we conclude

Coin-Tossing With Unknown Bias

If a coin has unknown bias p, distributed uniformly on 0 ≤ p ≤ 1,
then the probability of obtaining k heads in n tosses is

Prob(Sn = k) =
1

n+ 1
, k = 0, 1, 2, . . . , n. (5.2.10)

Notice the difference: In (5.2.3), we know the coin’s bias p, and obtain the
binomial distribution, while in (5.2.10), since we don’t know p, and there are
n+ 1 possibilities 0 ≤ k ≤ n, we obtain the uniform distribution 1/(n+ 1).

We now turn things around: Suppose we toss the coin n times, and obtain
k heads. How can we use this data to estimate the coin’s bias p?

To this end, we introduce the fundamental

Bayes Theorem I

Prob(A | B) =
Prob(B | A) · Prob(A)

Prob(B)
. (5.2.11)

The proof of Bayes Theorem is straightforward:

Prob(A | B) =
Prob(A and B)

Prob(B)

=
Prob(A and B)

Prob(A)
· Prob(A)

Prob(B)

= Prob(B | A) · Prob(A)

Prob(B)
.

5.2. BINOMIAL PROBABILITY 281

The depth of the result lies in its widespread usefulness.
We now write Bayes Theorem to compute

Prob(p | Sn = k) = Prob(Sn = k | p) · Prob(p)

Prob(Sn = k)
. (5.2.12)

But Prob(Sn = k | p) is as in (5.2.7), Prob(Sn = k) is as in (5.2.10).
Since p is uniformly distributed, Prob(p) = 1. Inserting these quantities into
(5.2.12) leads to

(n+ 1) ·
(
n

k

)
· pk(1− p)n−k =

(n+ 1)!

k!(n− k)!
· pk(1− p)n−k. (5.2.13)

Summarizing,

Posterior Probability Given k Heads in n Tosses

Assume the unknown bias p of a coin is uniformly distributed on
0 ≤ p ≤ 1. Then the conditional probability Prob(p | Sn = k) that
the bias is p given k heads in n tosses equals (5.2.13).

Fig. 5.8 The posterior density of p given 7 heads in 10 tosses.

In (5.2.7), p is fixed, and k is the variable. In (5.2.13), k is fixed, and
p is the variable. Nevertheless, we call (5.2.13) the binomial density. This
posterior density for (n, k) = (10, 7) is plotted in Figure 5.8, and it peaks at
k/n = 7/10 (Exercise 4.1.5). The code generating Figure 5.8 is

282 CHAPTER 5. PROBABILITY

from matplotlib.pyplot import *

from numpy import arange

from scipy.stats import binom

n = 10

k = 7

def f(p): return (n+1) * binom(n,p).pmf(k)

p = arange(0,1,.01)

plot(p,f(p),color="blue",linewidth=.5)

grid()

show()

Because Bayes Theorem is so useful, here are two alternate forms. Suppose
A1, A2, . . . , Ad are several exclusive and exhaustive events, so

Prob(A1) + Prob(A2) + · · ·+ Prob(Ad) = 1.

Then by the law of total probability (5.1.10) and the first version (5.2.11),
we have the second version

Bayes Theorem II

If A1, A2, . . . are several exclusive and exhaustive events, then for
i = 1, 2, . . . , Prob(Ai | B) equals

Prob(B | Ai)Prob(Ai)

Prob(B | A1)Prob(A1) + Prob(B | A2)Prob(A2) + . . .
. (5.2.14)

In particular, Prob(A | B) equals

Prob(B | A)Prob(A)

Prob(B | A)Prob(A) + Prob(B | Ac)Prob(Ac)
.

As an example, suppose 20% of the population are smokers, and the preva-
lence of lung cancer among smokers is 90%. Suppose also 80% of non-smokers
are cancer-free. Then what is the probability that someone who has cancer
is actually a smoker?

To use the second version, set A = smoker and B = cancer. This means
A is the event that a randomly sampled person is a smoker, and B is the
event that a randomly sampled person has cancer. Then

Prob(A) = .2, P rob(B | A) = .9, P rob(Bc | Ac) = .8.

5.2. BINOMIAL PROBABILITY 283

From this, we have

Prob(B | Ac) = 1− Prob(Bc | Ac) = 1− .8 = .2,

and

Prob(A | B) =
Prob(B | A)Prob(A)

Prob(B | A)Prob(A) + Prob(B | Ac)Prob(Ac)

=
.9× .2

.9× .2 + .2× .8
= .52941.

Thus the probability that a person with lung cancer is indeed a smoker is
53%.

0 < p < 1−∞ < y < ∞ σ

Fig. 5.9 The logistic function takes real numbers to probabilities.

Fig. 5.10 The logistic function.

284 CHAPTER 5. PROBABILITY

To describe the third version of Bayes theorem, bring in the logistic func-
tion. Let

p = σ(y) =
1

1 + e−y
. (5.2.15)

This is the logistic function or sigmoid function. The logistic function takes
as inputs real numbers y, and returns as outputs probabilities p (Figure 5.9),
and is plotted in Figure 5.10.

We think of the input y as an activation energy, the output p as the
probability of activation, and y = 0 as the activation threshold.

In Python, σ is the expit function.

from scipy.special import expit

p = expit(y)

The multinomial or vector-valued version of σ(y) is the softmax function
§5.6.

Dividing the numerator and denominator of (5.2.14) by the numerator, we
obtain Bayes Theorem in terms of log-probability,

Bayes Theorem III

Prob(A | B) = σ

(
log

(
Prob(B | A)Prob(A)

Prob(B | Ac)Prob(Ac)

))
. (5.2.16)

When there are several mutually exclusive events A1, A2, . . . , Ad, the
same result holds with σ the softmax function (§5.6).

Here is an application of the third version. Suppose we have two groups
of scalars, selected as follows. A fair coin is tossed. Depending on the result,
select a scalar x at random with normal probability density (§5.4)

Prob(x | H) =
1√
2π

· e−(x−mH)2/2,

P rob(x | T) = 1√
2π

· e−(x−mT)2/2.

(5.2.17)

This says the the two groups of scalars are centered around the means mH

and mT respectively, according to whether the coin toss results in heads or
tails.

Given a scalar x, what is the probability x is in the heads group? In other
words, what is

Prob(H | x)?

5.2. BINOMIAL PROBABILITY 285

This question is begging for Bayes theorem.
Assume the two groups are distinct, by assuming mH ̸= mT , and let

w = mH −mT , w0 = −1

2
m2

H +
1

2
m2

T .

Then w ̸= 0. Since Prob(H) = Prob(T), here we have Prob(A) = Prob(Ac).
Inserting the formulas for Prob(x | H) and Prob(x | T) leads to the log-
probability

log

(
Prob(x | H)Prob(H)

Prob(x | T)Prob(T)

)
= wx+ w0. (5.2.18)

By (5.2.14),
Prob(H | x) = σ(wx+ w0).

This shows the group membership of x is determined by the activation thresh-
old wx+ w0 = 0, or by the cut-off x∗ = −w0/w. Simplifying, the cut-off is

x∗ = −w0

w
= −1

2

−m2
H +m2

T

mH −mT
=

mH +mT

2
,

which is the midpoint of the line segment joining mH and mT .

mH cut-off mT

Fig. 5.11 Decision boundary in R.

More generally, if the points x are in Rd, then the same question may be
asked, using the normal distribution with variance I in Rd (§5.5). In this
case, w is a nonzero vector, and w0 is still a scalar,

w = mH −mT , w0 = −1

2
|mH |2 + 1

2
|mT |2.

Then the cut-off or decision boundary between the two groups is the hyper-
plane

w · x+ w0 = 0,

which is the hyperplane halfway between mH and mT , and orthogonal to the
vector joining mH and mT . Written this way, the probability

Prob(H | x) = σ(w · x+ w0) (5.2.19)

is a single-layer perceptron (§7.2). For hyperplanes, see §4.5.

286 CHAPTER 5. PROBABILITY

cut-off

mT

mH

Fig. 5.12 Decision boundary in R3.

Exercises

Exercise 5.2.1 A fair coin is tossed. What is the probability of obtaining 5
heads in 8 tosses?

Exercise 5.2.2 A coin with bias p is tossed. What is the probability of ob-
taining 5 heads in 8 tosses?

Exercise 5.2.3 A coin with bias p is tossed 8 times and 5 heads are obtained.
What is the most likely value for p?

Exercise 5.2.4 A coin with unknown bias p is tossed 8 times and 5 heads
are obtained. Assuming a uniform prior for p, what is the probability that
p lies between 0.5 and 0.7? Use scipy.integrate.quad (§A.6) to integrate
(5.2.13) over 0.5 ≤ p ≤ 0.7.)

Exercise 5.2.5 A fair coin is tossed n times. Sometimes you get more heads
than tails, sometimes the reverse. If you’re really lucky, the number of heads
may equal exactly the number of tails. What is the least n for which the
probability of this happening is less than 10%?

Exercise 5.2.6 A fair coin is tossed n times. Sometimes you get more heads
than tails, sometimes the reverse. If you’re really lucky, the number of heads
may equal exactly the number of tails. What is the least n for which the
probability of this happening is less than 10%?

Exercise 5.2.7 A coin is tossed. Depending on the result, select a scalar x
at random with normal probability densities as in (5.2.17). If the coin bias is
p, compute the decision boundary.

Exercise 5.2.8 If a fair coin is tossed 2n times, show the probability of
obtaining n heads and n tails is approximately 1/

√
πn for n large. (Use

(5.2.6).)

Exercise 5.2.9 Show∫ 1

0

pα−1(1− p)β−1 dp =
(α− 1)!(β − 1)!

(α+ β − 1)!
.

5.3. RANDOM VARIABLES 287

(The integral of (5.2.13) over 0 < p < 1 is 1.)

Exercise 5.2.10 The posterior is an updating of the prior of p: Based on our
observing k heads in n tosses, our estimate of p goes from a uniform prior
to a binomial posterior (5.2.13) peaking at p̂ = k/n. Now assume a binomial
prior for p as in (5.2.13), with (k, n) replaced by (α, β). This prior peaks
at p̂ = α/β (Exercise 4.1.5). Given k heads in n tosses, show the posterior
Prob(p | Sn = k) is binomial peaking at p̂ = (k + α)/(n+ β).

5.3 Random Variables

Suppose a real number x is selected at random. Even if we don’t know any-
thing about x, we know x is a number, so our confidence that −∞ < x < ∞
equals 100%, the chance that x satisfies −∞ < x < ∞ equals 1, and the
probability that x satisfies −∞ < x < ∞ equals 1.

When we say x is “selected at random”, we think of a machine X that is
the source of the numbers x (Figure 5.13). Such a source of numbers is called
a random number, short for random number generator, just like a source for
apples should be called a random apple, short for random apple generator.
It is standard to call such a source X a random variable.

Definition of Random Variable

A random variable X is a function of outcomes: Each outcome results
in a sample x of X.

In §1.3, this was called vectorization. In this section, random variables are
scalar-valued. In §5.5 and §6.4, they are vector-valued.

xX

Fig. 5.13 When we sample X, we get x.

Let X and Y be random variables. Since X is a function of outcomes, the
outcomes where X = 5 is an event A (§5.1). For simplicity, we write X = 5
for this event, rather than introduce the superfluous symbol A. Similarly,
(X = 5 and Y = 7) is the event consisting of outcomes where X = 5 and
Y = 5. With this understood, Prob(X = 5) and Prob(X = 5 and Y = 7) are
well-defined probabilities of events.

288 CHAPTER 5. PROBABILITY

Let X be a random variable and let x be a sample of X. What is the
chance, what is our confidence, what is the probability, of selecting x from
an interval [a, b]? If we write

Prob(a < X < b)

for this quantity, then we are asking to compute the probability of the event
that X lies in the interval [a, b]. If we don’t know anything about X, then
we can’t figure out the probability, and there is nothing we can say. Knowing
something about X means knowing the distribution of X: Where X is more
likely to be and where X is less likely to be. Any quantity X where proba-
bilities of events Prob(a < X < b) can be computed is a random variable.

For example, suppose we want to estimate the proportion of American
college students who have a smart phone. Instead of asking every student,
we take a sample and make an estimate based on the sample.

Let p be the actual proportion of students that in fact have a smartphone.
If there are N students in total, and m of them have a smartphone, then
p = m/N . For each student, let

X =

{
1, if the student has a smartphone,

0, if not.

Then X is a random variable: X is a machine that returns 0 or 1 depending
on the chosen student.

A random variable taking on only two values is a Bernoulli random vari-
able. Since X takes on the two values 0 and 1, X is a Bernoulli random
variable.

Throughout we adopt the convention that random variables are written in
uppercase, X, while the numbers resulting when sampled are written lower-
case, x. In other words, when we sample X, we obtain x.

We will meet many different random variables X, Y , Z, The letter Z is
reserved for a standard random variable, one having mean zero and variance
one. Samples from Z are written as z.

Every dataset x1, x2, . . . , xN may be viewed as the samples of a random
variable X, as follows.

Define

E(X) =
1

N

N∑
k=1

xk. (5.3.1)

Then E(X) is the mean of the random variable X associated to the dataset.
Similarly,

5.3. RANDOM VARIABLES 289

E(X2) =
1

N

N∑
k=1

x2
k

is the second moment of the random variable X associated to the dataset.
More generally, given any function f(x), we have the mean of f(x1), f(x2),

. . . , f(xN),

E(f(X)) =
1

N

N∑
k=1

f(xk). (5.3.2)

Given any interval (a, b), we may set

f(x) =

{
1, a < x < b,

0, otherwise,

Then f(xk) is only counted when a < xk < b, so

E(f(X)) =
1

N

N∑
k=1

f(xk) =
#{xk : a < xk < b}

N
= Prob(a < X < b)

is the probability that a randomly selected sample lies in (a, b).
This shows probabilities are special cases of means. Since we can compute

means by (5.3.2), we can compute probabilities for X. This is what is meant
by “selecting a random sample from the dataset”.

Suppose X is a random variable taking on three values a, b, c with prob-
abilities p, q, r,

P (X = a) = p, P (X = b) = q, P (X = c) = r.

Then the mean or average or expected value of X is

E(X) = ap+ bq + cr.

Since p + q + r = 1, the expected value of X lies between the greatest of a,
b, c, and the least,

min(a, b, c) ≤ E(X) ≤ max(a, b, c).

Let µ = E(X) be the mean. The variance of X is a measure of how far X
deviates from its mean,

V ar(X) = E((X − µ)2).

For the random variable X above,

290 CHAPTER 5. PROBABILITY

V ar(X) = (a− µ)2 · p+ (b− µ)2 · q + (c− µ)2 · r.

By expanding the squares, one has the identity

V ar(X) = E(X2)− µ2.

This is valid for any random variable X.

Random variables are either discrete or continuous. Even though the
derivations and identities below are carried out in the context of discrete
random variables, these results remain valid in the context of continuous
random variables.

In the text and exercises, we consider three discrete random variables,

Bernoulli(p) → binomial(n, p) → Poisson(λ).

The Bernoulli random variable is the outcome of a single toss of a coin with
bias p, and the binomial random variable is the outcome of n tosses of a coin
with bias p.

As we see below (5.3.23), the mean of a binomial random variable is np. If
we let the number of tosses grow without bound, n → ∞, while keeping the
mean fixed at λ = np, we obtain the Poisson random variable.

In the text and the exercises, we consider several continuous random vari-
ables,

uniform, exponential, logistic, arcsine,

and
normal, chi-squared, student.

A random variable X is discrete if X takes on discrete values x1, x2, . . . ,
with probabilities p1, p2, Here the values may be scalars or vectors, and
there may be finitely many or infinitely many values. If all the values are
equal to the same scalar µ, then we say X is a constant.

For a discrete random variable, the probability mass function (pmf in
Python) is

p(x) = Prob(X = x),

and the cumulative distribution function (cdf in Python) is

F (x) = Prob(X ≤ x).

Then pk = p(xk). By additivity of probabilities (5.1.1), F (x) is the sum of
p(xk) over all xk ≤ x.

5.3. RANDOM VARIABLES 291

Definition of Expectation: Discrete Case

Let X take on values x1, x2, . . . , with probabilities p1, p2, The
expectation of X is

E(X) = x1p1 + x2p2 + (5.3.3)

E(X) is also called the mean or average or first moment of X, and is
usually denoted µ.

When there are N values, and we take p1 = p2 = · · · = 1/N , we say the
values are equally likely or X is uniform. In this case, the mean reduces to
(1.3.1).

More generally, let f(x) be a function. The mean or expectation of f(X)
is

E(f(X)) = f(x1)p1 + f(x2)p2 + . . . (5.3.4)

Since the total probability is one, when f(x) = 1,

E(1) = p1 + p2 + · · · = 1.

If a is a constant then the values of aX are ax1, ax2, . . . , with probabilities
p1, p2,. . . , so

E(aX) = ax1p1 + ax2p2 + · · · = a(x1p1 + x2p2 + . . .) = aE(X). (5.3.5)

When f(x) = x2, the mean of f(X) is the second moment

E(X2) = x2
1p1 + x2

2p2 + . . .

When f(x) = etx, the mean of f(X) is the moment-generating function

M(t) = E
(
etX
)
= etx1p1 + etx2p2 + . . .

The log of the moment-generating function is the cumulant-generating
function

Z(t) = logM(t) = logE
(
etX
)
.

A basic property of expectation is the

Linearity of the Expectation

For any random variables X and Y and constants a and b,

292 CHAPTER 5. PROBABILITY

E(aX + bY) = aE(X) + bE(Y). (5.3.6)

Linearity is used routinely whenever we compute expectations, and is de-
ceptively simple to state. Because the derivation of linearity uses additivity
of probabilities (5.1.1), it is instructive to go over this carefully.

Let X have values x1, x2, . . . , and probabilities p1, p2, . . . , and let Y have
values y1, y2, . . . , and probabilities q1, q2,

If
rjk = Prob(X = xj and Y = yk), j, k = 1, 2, . . . ,

then, by additivity of probabilities (5.1.1),

pj = Prob(X = xj)

= Prob(X = xj and Y = y1) + Prob(X = xj and Y = y2) + . . .

= rj1 + rj2 + · · · =
∑
k

rjk.

Similarly,

qk = r1k + r2k + · · · =
∑
j

rjk.

Since the values of X + Y are xj + yk, with probabilities rjk, j, k = 1, 2, . . . ,
by definition of expectation,

E(X + Y) =
∑
j

∑
k

(xj + yk)rjk.

But this double sum may be written in two parts as∑
j

∑
k

xjrjk +
∑
j

∑
k

ykrjk =
∑
j

xjpj +
∑
k

ykqk = E(X) + E(Y).

We conclude
E(X + Y) = E(X) + E(Y).

Since we already know E(aX) = aE(X) (5.3.5), this derives linearity.

Let µ be the mean of a random variable X. The variance of X is

V ar(X) = E((X − µ)2). (5.3.7)

The variance measures the spread of X about its mean. Since the mean of
aX is aµ, the variance of aX is the mean of (aX − aµ)2 = a2(X − µ)2. Thus

V ar(aX) = a2 V ar(X).

5.3. RANDOM VARIABLES 293

However, the variance of a sum X+Y is not simply the sum of the variances
of X and Y : This only happens if X and Y are independent, see (5.3.21).

Using (5.3.2), we can view a dataset as the samples of a random variable
X. In this case, the mean and variance of X are the same as the mean and
variance of the dataset, as defined by (1.4.1) and (1.4.2).

When X is a constant, then X = µ, so V ar(X) = 0. Conversely, if
V ar(X) = 0, then by definition

0 = (x1 − µ)2p1 + (x2 − µ)2p2 + . . . ,

so all values are equal to µ, hence X is a constant.
The square root of the variance is the standard deviation. If we write

V ar(X) = σ2, then the standard deviation is σ.
Expanding the square in (5.3.7),

V ar(X) = E(X2)− 2µE(X) + µ2.

Since µ = E(X), we obtain the alternate formula for the variance

V ar(X) = E(X2)− E(X)2. (5.3.8)

This displays the variance in terms of the first moment E(X) and the second
moment E(X2). Equivalently,

E(X2) = µ2 + σ2 = (E(X))2 + V ar(X). (5.3.9)

The simplest discrete random variable is the Bernoulli random variable X
resulting from a coin toss, with X = 1 corresponding to heads, and X = 0
corresponding to tails,

Prob(X = 1) = p, Prob(X = 0) = 1− p.

We say X is Bernoulli with bias p.
The probability mass function is

p(k) =

{
1− p, if k = 0,

p, if k = 1.

This is presented graphically in Figure 5.14.

294 CHAPTER 5. PROBABILITY

0

1− p

1

p

Fig. 5.14 Probability mass function p(x) of a Bernoulli random variable.

The mean of the Bernoulli random variable is

E(X) = 1 · Prob(X = 1) + 0 · Prob(X = 0) = 1 · p+ 0 · (1− p) = p.

The second moment is

E
(
X2
)
= 12 · Prob(X = 1) + 02 · Prob(X = 0) = p.

From this,

V ar(X) = E(X2)− E(X)2 = p− p2 = p(1− p).

When p = 0 or p = 1, the variance is zero, there is no randomness. When
p = 1/2, the randomness is maximized and the maximum variance equals
1/4.

Mean and Variance of Bernoulli

If X is Bernoulli with bias p, then

E(X) = p, var(X) = p(1− p).

The moment-generating function is

M(t) = E
(
etX
)
= et1p+ et0(1− p) = pet + (1− p).

The cumulant-generating function is

Z(t) = logM(t) = log(pet + 1− p).

0

1− p

1

p
1

Fig. 5.15 Cumulative distribution function F (x) of a Bernoulli random variable.

5.3. RANDOM VARIABLES 295

The cumulative distribution function F (x) is in Figure 5.15. Because the
Bernoulli random variable takes on only the values x = 0, 1, these are the
values where F (x) jumps.

More generally, let A be any event, and define

B =

{
1, if the outcome is in A,

0, if the outcome is in Ac.
(5.3.10)

Then B has values 1 and 0 with probabilities

p = Prob(B = 1) = Prob(A), 1− p = Prob(B = 0) = Prob(Ac),

hence B is Bernoulli with bias p. We say B is the Bernoulli random variable
corresponding to event A.

By definition of B,

E(B) = p, V ar(B) = p(1− p).

The relation between A and B is discussed further in Exercise 5.3.2.
Bernoulli random variables are used to count sample proportions. Let X

be a random variable, and fix a threshold a for X. Let X1, X2, . . . , Xn be
a repeated sampling of X, and let B1, B2, . . . , Bn be the Bernoulli random
variables corresponding to the events X1 > a, X2 > a, . . . , Xn > a. Then

p̂ =
B1 +B2 + · · ·+Bn

n
(5.3.11)

is the proportion of samples greater than threshold a. This is a special case
of vectorization (§1.3).

Let X be any random variable. Since the total probability is one,

M(0) = E(e0X) = E(1) = 1.

The derivative of the moment-generating function is

M ′(t) = E
(
XetX

)
.

When t = 0,
M ′(0) = E(X) = µ.

Similarly, since the derivative of log x is 1/x, for the cumulant-generating
function,

296 CHAPTER 5. PROBABILITY

Z ′(0) =
M ′(0)

M(0)
= E(X) = µ.

The second derivative of M(t) is

M ′′(t) = E
(
X2etX

)
,

so M ′′(0) is the second moment E(X2).
By the quotient rule, the second derivative of Z(t) is

Z ′′(t) =

(
M ′(t)

M(t)

)′

=
M ′′(t)M(t)−M ′(t)2

M(t)2
.

Inserting t = 0, and recalling (5.3.8), we have

Cumulant-Generating Function and Variance

Let Z(t) be the cumulant-generating function of a random variable
X. Then

Z ′(0) = E(X) and Z ′′(0) = V ar(X). (5.3.12)

In §5.1, we discussed independence of events. Now we do the same for
random variables.

Definition of Uncorrelated

Random variables X and Y are uncorrelated if

E(XY) = E(X)E(Y). (5.3.13)

Otherwise, we say X and Y are correlated.

By (5.3.8), a random variable X is always correlated to itself, unless it is
a constant.

Suppose X and Y take on the values X = ±1 and Y = 0, 1 with the
probabilities

5.3. RANDOM VARIABLES 297

(X,Y) =


(1, 1) with probability a,

(1, 0) with probability b,

(−1, 1) with probability b,

(−1, 0) with probability c.

(5.3.14)

We investigate when X and Y are uncorrelated. Here a > 0, b > 0, and c > 0.
First, because the total probability equals 1,

a+ 2b+ c = 1. (5.3.15)

Also we have

Prob(X = 1) = a+b = Prob(Y = 1), P rob(X = −1) = b+c = Prob(Y = 0),

and
E(X) = a− c, E(Y) = a+ b.

Now X and Y are uncorrelated if

a− b = E(XY) = E(X)E(Y) = (a− c)(a+ b). (5.3.16)

Solving (5.3.15), (5.3.16) using Python,

from sympy import *

a,b,c = symbols('a,b,c')
eq1 = a + 2*b + c - 1

eq2 = a - b - (a-c)*(a+b)

solutions = solve([eq1,eq2],a,b)

print(solutions)

we see X and Y are uncorrelated if

b =
√
c− c, a = c− 2

√
c+ 1. (5.3.17)

For example, X and Y are uncorrelated when c = 1/4, which leads to a =
b = 1/4. Also, X and Y are uncorrelated if c = .01, which leads to a = .81
and b = .09.

Let X and Y be random variables. We say X and Y are independent if all
powers of X are uncorrelated with all powers of Y .

Definition of Independence

Random variables X and Y are independent if

E(XnY m) = E(Xn)E(Y m) (5.3.18)

298 CHAPTER 5. PROBABILITY

for all positive powers n and m. When X and Y are discrete, this is
equivalent to the events X = x and Y = y being independent, for
every value x of X and every value y of Y .

Clearly, if X and Y are independent, then, by taking n = 1 and m = 1, X
and Y are uncorrelated.

Suppose X and Y satisfy (5.3.14) and (5.3.17). Since X = ±1, Xn = 1 for
n even and Xn = X for X odd. Since Y = 0, 1, Y n = Y for all n. This is
enough to show that, in this case, X and Y uncorrelated is equivalent to X
and Y independent. However, this is certainly not true in general.

Here is an example of uncorrelated random variables that are not inde-
pendent. Let X, Y be as above and set U = XY . We check when U and
Y are uncorrelated versus when they are independent. As before, check that
E(UY) = E(U)E(Y) is equivalent to

a− b = (a− b)(a+ b).

This happens in one of two cases. Either a− b ̸= 0, or a− b = 0. If a− b ̸= 0,
then canceling a − b leads to a + b = 1. By (5.3.15), this leads to b + c = 0,
which can’t happen, since both b and c are positive or zero. Hence we must
have the other case, a− b = 0. By (5.3.15), this leads to

a =
1

3
− c

3
, b =

1

3
− c

3
. (5.3.19)

Thus U and Y are uncorrelated when (5.3.19) holds, for any choice of c.
However, since X2 = 1 and Y 2 = Y , U2 = Y , so U2 and Y are always

correlated, unless Y is constant. Hence U and Y are never independent, unless
Y is constant. Note Y is a constant when a = 1 or c = 1.

Let X and Y be random variables. The joint moment-generating function
of the pair (X,Y) is

MX,Y (s, t) = E
(
esX+tY

)
.

Expanding the exponentials into their series, and using (5.3.18), one can show

Independence and Moment-Generating Functions

Let X and Y be random variables. Then X and Y are independent if
their moment-generating functions multiply,

MX,Y (s, t) = MX(s)MY (t).

As a special case, choosing s = t, we see

5.3. RANDOM VARIABLES 299

Independent Sums and Moment-Generating Functions

Let X and Y be independent random variables. Then the moment-
generating function of X + Y is

MX+Y (t) = MX(t)MY (t). (5.3.20)

As an illustration, consider an ordinary dice with X = 1, X = 2, . . . ,
X = 6 equally probable. Then Prob(X = k) = 1/6, k = 1, 2, . . . , 6. Now
suppose we have a random variable Y with values Y = 0, Y = 1, . . . ,Y = 6,
and assume X and Y are independent.

If we are told the sum X+Y is uniform over 1 ≤ X+Y ≤ 12, how should
we choose the probabilities for Y = 0, Y = 1, . . . ,Y = 6?

To answer this, we use (5.3.20). By Exercise 5.3.1,

MX(t) =
1

6

e7t − et

et − 1
.

By Exercise 5.3.1 again,

MX+Y (t) =
1

12

e13t − et

et − 1
,

It follows, by (5.3.20),

1

12

e13t − et

et − 1
=

1

6

e7t − et

et − 1
·MY (t).

Factoring

e13t − et = et(e6t − 1)(e6t + 1), e7t − et = et(e6t − 1),

we obtain

MY (t) =
1

2
(e6t + 1).

This says

Prob(Y = 0) =
1

2
, P rob(Y = 6) =

1

2
,

and all other probabilities are zero.

Taking the log in (5.3.20), independence is related to cumulant-generating
functions as follows.

300 CHAPTER 5. PROBABILITY

Independent Sums and Cumulant-Generating Functions

Let X and Y be independent random variables. Then the cumulant-
generating function of X + Y is

ZX+Y (t) = ZX(t) + ZY (t).

Taking the second derivative, plugging in t = 0, and using (5.3.12), we
obtain

V ar(X + Y) = V ar(X) + V ar(Y).

This holds when X and Y are independent. In general, the result is

Independent Sums and Variances

Let X1, X2, . . . , Xn be independent random variables, and let

S = X1 +X2 + · · ·+Xn.

Then

V ar(S) = V ar(X1) + V ar(X2) + · · ·+ V ar(Xn). (5.3.21)

While this result depends strongly on independence, the corresponding
result for means

E(S) = E(X1) + E(X2) + · · ·+ E(Xn)

is valid for any sum, by linearity of the expectation (5.3.6).

The next simplest discrete random variable is the binomial random vari-
able,

S = X1 +X2 + · · ·+Xn

obtained from n independent Bernoulli random variables.
Then S has values 0, 1, 2, . . . , n, and the probability mass function

p(k) =

(
n

k

)
pk(1− p)n−k, if k = 0, 1, 2, . . . , n. (5.3.22)

Since the cdf F (x) is the sum of the pmf p(k) for k ≤ x, the code

from scipy.stats import binom

n, p = 8, .5

5.3. RANDOM VARIABLES 301

B = binom(n,p)

for k in range(n+1): print(k, B.pmf(k), B.cdf(k))

returns

0 0.003906250000000007 0.00390625

1 0.031249999999999983 0.03515625

2 0.10937500000000004 0.14453125

3 0.21874999999999992 0.36328125

4 0.27343749999999994 0.63671875

5 0.2187499999999999 0.85546875

6 0.10937500000000004 0.96484375

7 0.031249999999999983 0.99609375

8 0.00390625 1.0

Since

E(S) = E(X1) + E(X2) + · · ·+ E(Xn) = p+ p+ · · ·+ p = np,

the mean of S is np.
Since X1, X2 . . . , Xn are independent, by (5.3.21), V ar(S) = np(1 − p).

Summarizing,

Mean and Variance of Binomial

If S is binomial with bias p and tosses n, then

E(S) = np, V ar(S) = np(1− p). (5.3.23)

If p̂n is the proportion of heads, then p̂n = S/n, so

E(p̂n) = p, V ar(p̂n) =
p(1− p)

n
. (5.3.24)

By the binomial theorem, the moment-generating function is

E
(
etS
)
=

n∑
k=0

etk
(
n

k

)
pk(1− p)n−k =

(
pet + 1− p

)n
.

Then the cumulant-generating function is

Z(t) = n log
(
pet + 1− p

)
.

302 CHAPTER 5. PROBABILITY

A random variable X is Poisson with parameter λ if X is discrete and
takes on the nonnegative integer values k = 0, 1, 2, . . . with probability mass
function

Prob(X = k) = e−λ · λ
k

k!
, k = 0, 1, 2, (5.3.25)

Here λ > 0. From the exponential series (A.3.13),

∞∑
k=0

Prob(X = k) = e−λ
∞∑
k=0

λk

k!
= 1,

so the total probability is one. The Python code for a Poisson random variable
is

from scipy.stats import poisson

lamda = 1

P = poisson(lamda)

for k in range(10): print(k, P.pmf(k), P.cdf(k))

Mean and Variance of Poisson

If X is Poisson with parameter λ, then

E(X) = λ, V ar(X) = λ. (5.3.26)

This is derived in Exercise 5.3.13. The Poisson random variable with
parameter λ is the limit of the binomial random variable as n → ∞ while
keeping the mean λ = np fixed (Exercise 5.3.16).

A continuous random variable X takes on continuous values x with prob-
ability density function p(x) (pdf in Python). Here means are computed by
integrals using the fundamental theorem of calculus (A.6.2).

Definition of Expectation: Continuous Case

Let X have probability density function p(x). The expectation of X is

E(X) =

∫
x p(x) dx. (5.3.27)

E(X) is also called the mean or average or first moment of X, and is
usually denoted µ.

5.3. RANDOM VARIABLES 303

Here the integration is over the entire range of the random variable: If X
takes values in the interval [a, b], the integral is from a to b. For a normal
random variable, the range is (−∞,∞). For a chi-squared random variable,
the range is (0,∞). Below, when we do not specify the limits of integration,
the integral is taken over the whole range of X.

More generally, let f(x) be a function. The mean of f(X) or expectation
of f(X) is

E(f(X)) =

∫
f(x)p(x) dx. (5.3.28)

Since the total probability is one,

E(1) =

∫
p(x) dx = 1.

This only holds when the integral is over the complete range of X. When this
is not so,

Prob(a < X < b) =

∫ b

a

p(x) dx

is the green area in Figure 5.16. Thus

chance = confidence = probability = area.

0 ba 0 ba

Fig. 5.16 Confidence that X lies in interval [a, b].

When f(x) = x2, the mean of f(X) is the second moment

E(X2) =

∫
x2p(x) dx.

When f(x) = etx, the mean of f(X) is the moment-generating function

M(t) = E
(
etX
)
=

∫
etxp(x) dx.

As before, the log of the moment-generating function is the cumulant-
generating function

304 CHAPTER 5. PROBABILITY

Z(t) = logM(t) = logE
(
etX
)
.

The simplest continuous distribution is the uniform distribution. A random
variable X is distributed uniformly over the interval [0, 1] if (Figure 5.1)

Prob(a < X < b) = b− a =

∫ b

a

1 dx, 0 ≤ a < b ≤ 1.

Here the probability density function is

p(x) =

{
1, a < x < b,

0, otherwise,

for any interval (a, b) inside (0, 1).
The mean of a uniform random variable is

E(X) =

∫ 1

0

x dx.

Since

F (x) =
1

2
x2 =⇒ F ′(x) = x,

by the fundamental theorem of calculus (A.6.2),

E(X) =

∫ 1

0

x dx = F (1)− F (0) =
1

2
.

Since F (x) = x3/3 implies F ′(x) = x2, the second moment is

E(X2) =

∫ 1

0

x2 dx = F (1)− F (0) =
1

3
.

Hence the variance is

V ar(X) = E(X2)− E(X)2 =
1

3
− 1

4
=

1

12
.

The moment-generating function is

M(t) = E(etX) =

∫ 1

0

etx dx =
et − 1

t
.

The cumulative distribution function is

5.3. RANDOM VARIABLES 305

F (x) =


0, if x < 0,

x, if 0 ≤ x ≤ 1,

1, if x > 1.

(5.3.29)

More generally, fix an interval [a, b]. A random variable X is uniform on
[a, b] if the probability density function of X is

p(x) =


1

b− a
, a < x < b,

0, otherwise,
.

For such an X, the mean is

µ = E(X) =
1

b− a

∫ b

a

x dx =
1

b− a
· b

2 − a2

2
=

1

2
(a+ b), (5.3.30)

and the variance is

V ar(X) =
1

b− a

∫ b

a

(x− µ)2 dx =
1

12
(b− a)2. (5.3.31)

In particular, if [a, b] = [−1, 1], then the mean is zero, the variance is 1/3,
and

E(f(X)) =
1

2

∫ 1

−1

f(x) dx.

We summarize the differences between discrete and continuous random
variables. In both cases, the cumulative distribution function is

F (x) = Prob(X ≤ x).

When X is discrete,

F (x) =
∑
xk≤x

pk.

When X is continuous,

F (x) =

∫ x

−∞
p(z) dz.

Then each green area in Figure 5.16 is the difference between two areas,

F (b)− F (a).

306 CHAPTER 5. PROBABILITY

1

0

Fig. 5.17 Continuous cumulative distribution function.

When X is discrete, the probability mass function is

p(x) = Prob(X = x).

When X is continuous, the probability density function p(x) satisfies

Prob(a < X < b) =

∫ b

a

p(x) dx.

discrete continuous

density pmf pdf

distribution cdf cdf

sum cdf(x)= sum([pmf(k)for k in range(x+1)]) cdf(x)= integrate(pdf,x)

difference pmf(k)= cdf(k)-cdf(k-1) pdf(x)= derivative(cdf,x)

Table 5.18 Densities versus distributions.

For a continuous random variable the probability density function is the
derivative of the cumulative distribution function,

p(x) = F ′(x). (5.3.32)

Table 5.18 summarizes the situation. For the distribution on the left in
Figure 5.16, the cumulative distribution function is in Figure 5.17.

A logistic random variable is a random variable X with cumulative distri-
bution function σ(x) (5.2.15). For a logistic random variable, the probability
density function is

p(x) = σ′(x) = σ(x)(1− σ(x)), (5.3.33)

the mean is zero, and the variance is π2/3 (see the exercises).

5.3. RANDOM VARIABLES 307

Let X and Y be independent uniform random variables on [0, 1], and let
Z = max(X,Y). We compute the pdf p(x), the cdf F (x), and the mean of
Z. By definition of max(X,Y),

F (x) = Prob(Z ≤ x) = Prob(max(X,Y) ≤ x)) = Prob(X ≤ x and Y ≤ x).

By independence, for 0 ≤ x ≤ 1, this equals

Prob(X ≤ x)Prob(Y ≤ x) = x2.

Hence

F (x) = Prob(max(X,Y) ≤ x) =


0, if x < 0,

x2, if 0 ≤ x ≤ 1,

1, if x > 1.

From this,

p(x) = F ′(x) =


0, if x < 0,

2x, if 0 ≤ x ≤ 1,

0, if x > 1.

From this, by the FTC (§A.6),

E(max(X,Y)) =

∫
xp(x) dx =

∫ 1

0

x(2x) dx =
2

3
x3

∣∣∣∣x=1

x=0

=
2

3
.

Let X have mean µ and variance σ2, and write

Z =
X − µ

σ
.

Then

E(Z) =
1

σ
E(X − µ) =

E(X)− µ

σ
=

µ− µ

σ
= 0,

and

E(Z2) =
1

σ2
E((X − µ)2) =

σ2

σ2
= 1.

We conclude Z has mean zero and variance one.
A random variable is standard if its mean is zero and its variance is one.

The variable Z is the standardization of X. For example, the standardization
of a Bernoulli random variable is

308 CHAPTER 5. PROBABILITY

Z =
X − p√
p(1− p)

,

and the standardization of a uniform random variable on [0, 1] is

Z =
√
12(X − 1/2).

Definition of Identically Distributed

Random variables X and Y are identically distributed if

E(Xn) = E(Y n), n ≥ 1.

This is equivalent to X and Y having equal probabilities,

Prob(a < X < b) = Prob(a < Y < b),

for every interval [a, b], and equivalent to having the same moment-
generating functions,

MX(t) = MY (t)

for every t.

For example, if X and Y satisfy (5.3.14), then X and 2Y − 1 are identi-
cally distributed. However, X and 2Y − 1 are independent iff X and Y are
independent, which, as we saw above, happens only when (5.3.17) holds.

On the other hand, Let X be any random variable, and let Y = X. Then
X and Y are identically distributed, but are certainly correlated. So identical
distributions does not imply independence, nor vice-versa.

LetX be a random variable. A simple random sample of size n is a sequence
of random variables X1, X2, . . . , Xn that are independent and identically
distributed. We also say the sequence X1, X2, . . . , Xn is an i.i.d. sequence
(independent identically distributed).

For example, going back to the smartphone example, suppose we select n
students at random, where we are allowed to select the same student twice.
We obtain numbers x1, x2, . . . , xn. So the result of a single selection experi-
ment is a sequence of numbers x1, x2, . . . , xn. To make statistical statements
about the results, we repeat this experiment many times, and we obtain a
sequence of numbers x1, x2, . . . , xn each time.

This process can be thought of n machines producing x1, x2, . . . , xn each
time, or n random variables X1, X2, . . . , Xn (Figure 5.19). By making each
of the n selections independently, we end up with an i.i.d. sequence, or a
simple random sample.

5.3. RANDOM VARIABLES 309

x1, x2, . . . , xnX1, X2, . . . , Xn

Fig. 5.19 When we sample X1, X2, . . . , Xn, we get x1, x2, . . . , xn.

Let X1, X2, . . . , Xn be independent and identically distributed, and let µ
be their common mean E(X). The sample mean is

X̄n =
Sn

n
=

X1 +X2 + · · ·+Xn

n
=

1

n

n∑
k=1

Xk.

Then

E(X̄n) =
1

n
(E(X1) + E(X2) + · · ·+ E(Xn)) =

1

n
· nµ = µ.

We conclude the mean of the sample mean equals the population mean.
Now let σ2 be the common variance of X1, X2, . . . , Xn. By (5.3.21), the

variance of Sn is nσ2, hence the variance of X̄n is σ2/n. Summarizing,

Mean and Variance of Sample Mean

If X1, X2, . . . , Xn are independent and identically distributed, each
with mean µ and variance σ2, then

E(X̄n) = µ, V ar(X̄n) =
σ2

n
, (5.3.34)

and
√
n

(
X̄n − µ

σ

)
(5.3.35)

is standard.

For example, when X1, X2, . . . , Xn are independent and identically dis-
tributed according to a random variable X, the proportion p̂ of samples
(5.3.11) greater than a threshold a has mean p = Prob(X > a), and variance
p(1− p)/n. It follows that

Z =
√
n · p̂− p√

p(1− p)

310 CHAPTER 5. PROBABILITY

is standard.

Exercises

Exercise 5.3.1 Let a and b be integers and let X have values a, a+1, a+2,
. . . , b− 1. Assume the values are equally likely. Use (A.3.5) to show

MX(t) =
1

b− a
· e

tb − eta

et − 1
.

Exercise 5.3.2 Let A and B be events and let X and Y be the Bernoulli
random variables corresponding to A and B (5.3.10). Show that A and B are
independent (5.1.9) if and only if X and Y are independent (5.3.18).

Exercise 5.3.3 [30] Let X be a binomial random variable with mean 7 and
variance 3.5. What are Prob(X = 4) and Prob(X > 14)?

Exercise 5.3.4 The proportion of adults who own a mobile phone in a cer-
tain Canadian city is believed to be 90%. Thirty adults are selected at random
from the city. Let X be the number of people in the sample who own a mobile
phone. What is the distribution of the random variable X?

Exercise 5.3.5 If two random samples of sizes n1 and n2 are selected inde-
pendently from two populations with means µ1 and µ2, show the mean of the
sample mean difference X̄1 − X̄2 equals µ1 − µ2. If σ1 and σ2 are standard
deviations of the two populations, then the standard deviation of X̄1 − X̄2

equals √
σ2
1

n1
+

σ2
2

n2
.

Exercise 5.3.6 Check (5.3.30) and (5.3.31).

Exercise 5.3.7 [30] You arrive at the bus stop at 10:00am, knowing the bus
will arrive at some time uniformly distributed during the next 30 minutes.
What is the probability you have to wait longer than 10 minutes? Given that
the bus hasn’t arrived by 10:15am, what is the probability that you’ll have
to wait at least an additional 10 minutes?

Exercise 5.3.8 IfX and Y satisfy (5.3.14), showX and 2Y −1 are identically
distributed for any a, b, c.

Exercise 5.3.9 Let B and G be the number of boys and the number of girls
in a randomly selected family with probabilities as in Table 5.2. Are B and
G independent? Are they identically distributed?

Exercise 5.3.10 If X and Y satisfy (5.3.14), use Python to verify (5.3.17)
and (5.3.19).

5.3. RANDOM VARIABLES 311

Exercise 5.3.11 If X and Y satisfy (5.3.14), compute V ar(X) and V ar(Y)
in terms of a, b, c. What condition on a, b, c maximizes V ar(X)? What
condition on a, b, c maximizes V ar(Y)?

Exercise 5.3.12 Let X be Poisson with parameter λ. Show the cumulant-
generating function is

Z(t) = λ(et − 1).

(Use the exponential series (A.3.13).)

Exercise 5.3.13 Let X be Poisson with parameter λ. Show both E(X) and
V ar(X) equal λ (Use (5.3.12).)

Exercise 5.3.14 Let X and Y be independent Poisson with parameter λ
and µ respectively. Show X + Y is Poisson with parameter λ+ µ.

Exercise 5.3.15 If X1, X2, . . . , Xn are i.i.d. Poisson with parameter λ, show

S = X1 +X2 + · · ·+Xn

is Poisson with parameter nλ.

Exercise 5.3.16 With p = λ/n, use the compound-interest formula (A.3.9)
to show the binomial pmf (5.3.22) converges to the Poisson pmf (5.3.25) as
n → ∞.

Exercise 5.3.17 The relu(x) function is a common activation function in
neural networks (§7.2),

relu(x) =

{
x if x ≥ 0,

0 if x < 0.

If S is Poisson with parameter n, then

E (relu(S − n)) = e−n · n
n+1

n!
.

(Use Exercise A.1.2.)

Exercise 5.3.18 Suppose X is a logistic random variable (5.3.33). Show the
probability density function of X is σ(x)(1− σ(x)).

Exercise 5.3.19 Suppose X is a logistic random variable (5.3.33). Show the
mean of X is zero.

Exercise 5.3.20 Suppose X is a logistic random variable (5.3.33). Use
(A.3.18) with a = −e−x to show the variance of X is

4

∞∑
n=1

(−1)n−1

n2
= 4

(
1− 1

4
+

1

9
− 1

16
+ . . .

)
.

312 CHAPTER 5. PROBABILITY

(This requires knowledge of integration substitution.) Using other tools, it
can be shown separately this sum equals π2/3 [16].

Exercise 5.3.21 Let X1, X2, . . . , Xn be i.i.d. each uniformly distributed on
[0, 1]. Let

Xmax = max(X1, X2, . . . , Xn).

Compute F (x) = Prob(Xmax ≤ x). From that, compute the pdf p(x) of
Xmax, then the mean E(Xmax). (To evaluate the integral in E(Xmax), use
the FTC.)

Exercise 5.3.22 Let X1, X2, . . . , Xn be i.i.d. each uniformly distributed on
[0, 1]. Let

Xmin = min(X1, X2, . . . , Xn).

Compute 1 − F (x) = Prob(Xmin > x). From that, compute the pdf p(x)
of Xmin, then the mean E(Xmin). (To evaluate the integral in E(Xmin), use
(5.2.13) with k = 1.)

Exercise 5.3.23 A random variable X is exponential with parameter a > 0
if Prob(X > x) = e−x/a. Then Prob(X ≤ 0) = 0, so the values of X are
positive. Show that the mean and standard deviation of X are both a.

Exercise 5.3.24 A random variable is arcsine if its pdf is given by Fig-
ure 3.11. Compute the mean and variance of an arcsine random variable.
(Substitute x = (2/π) arcsin(

√
λ/2) in the integrals and use the double-angle

formula.)

Exercise 5.3.25 For k and n fixed, compute the mean of the conditional
probability of a coin’s bias p given k heads in n tosses. The answer is not
k/n. (Use (5.2.13) with n, k replaced by n+ 1, k + 1.)

Exercise 5.3.26 Let X and Y be discrete random variables, with values x1,
x2, . . . for X. The conditional expectation of X given Y = y is

E(X | Y = y) =
∑
k

xk Prob(X = xk | Y = y).

Then the following holds for every value y of Y .

• E(aX + bZ | Y = y) = aE(X | Y = y) + bE(Z | Y = y).
• If X and Y are independent, then E(X | Y = y) = E(X).
• E(f(X,Y) | Y = y) = E(f(X, y) | Y = y).

These properties, also valid for continuous random variables, are used in §7.8.

Exercise 5.3.27 If f(y) = E(X | Y = y), we define X̂ to be f(Y), and
we also write X̂ = E(X | Y). Continuing the previous exercise, show
E(X̂f(Y)) = E(Xf(Y)) for every f(y). In particular, E(X̂) = E(X).

Exercise 5.3.28 By definition, X̂ is a function of Y . Continuing the previous
exercises, show X̂ minimizes E

(
(X − f(Y))2

)
over all functions f(Y). Use

the same argument that the mean minimizes the MSD (§1.4).

5.4. NORMAL DISTRIBUTION 313

5.4 Normal Distribution

A random variable Z has a standard normal distribution or Z distribution or
gaussian distribution if its probability density function is given by the famous
formula

p(z) =
1√
2π

· e−z2/2. (5.4.1)

This means the normal distribution is continuous and the probability that
Z lies in a small interval [a, b] is

Prob(a < Z < b)

b− a
≈ p(z), a < z < b,

When the interval [a, b] is not small, this is not correct. The exact formula
for Prob(a < Z < b) is the area under the graph (Figure 5.20). This is
obtained by integration (§A.6),

Prob(a < Z < b) =

∫ b

a

p(x) dx. (5.4.2)

Under this interpretation, this probability corresponds to the area under
the graph (Figure 5.20) between the vertical lines at a and at b, and the total
area under the graph corresponds to a = −∞ and b = ∞.

0 ba

Fig. 5.20 The pdf of the standard normal distribution.

The normal probability density function is plotted by

from scipy.stats import norm as Z

from numpy import *

from matplotlib.pyplot import *

Z defaults to standard normal

for non-standard, use Z(mu,sdev)

grid()

314 CHAPTER 5. PROBABILITY

z = arange(mu-3*sdev,mu+3*sdev,.01)

p = Z.pdf(z)

plot(z,p)

show()

The curious constant
√
2π in (5.4.1) is inserted to make the total area

under the graph equal to one. That this is so arises from the fact that 2π is
the circumference of the unit circle. Using Python, we see

√
2π is the correct

constant, since the code

from numpy import *

from scipy.integrate import quad

def p(z): return exp(-z**2/2)

a,b = -inf, inf

I = quad(p,a,b)[0] # integral from a to b

allclose(I, sqrt(2*pi))

returns True.

The mean of Z is

E(Z) =

∫
zp(z) dz.

More generally, means of f(Z) are

E(f(Z)) =

∫
f(z)p(z) dz,

with the integral computed using the fundamental theorem of calculus (A.6.2)
or Python.

Let p(z) be the probability density function of Z. If we shift the graph of
p(z) by horizontally by t, we obtain p(z − t). Since shifting a graph doesn’t
change the total area under the graph,

5.4. NORMAL DISTRIBUTION 315∫
p(z − t) dz = 1. (5.4.3)

By definition, the moment-generating function of Z is

M(t) = E
(
etZ
)
=

∫
etzp(z) dz.

Using (5.4.3), one can show (Exercise 5.4.11)

M(t) = et
2/2 = exp(t2/2). (5.4.4)

From this, the cumulant-generating function is t2/2. Using (5.3.12), it follows
Z is indeed a standard random variable,

E(Z) = 0, V ar(Z) = 1

Expand both sides of the definition of MZ(t) in exponential series. This
results in

1 + tE(Z) +
t2

2!
E(Z2) +

t3

3!
E(Z3) +

t4

4!
E(Z4) + . . .

= 1 +
t2

2
+

1

2!

(
t2

2

)2

+
1

3!

(
t2

2

)3

+

From this, the odd moments of Z are zero, and the even moments are

E(Z2n) =
(2n)!

2nn!
, n = 0, 1, 2, . . .

By separating the even and the odd factors, this simplifies to

E(Z2n) =
(1 · 3 · 5 · · · · · (2n− 1))(2 · 4 · · · · · 2n)

2nn!

=
(1 · 3 · 5 · · · · · (2n− 1))2nn!

2nn!
= 1 · 3 · 5 · · · · · (2n− 1), n ≥ 1.

(5.4.5)

For example,

E(Z) = 0, E(Z2) = 1, E(Z3) = 0, E(Z4) = 3, E(Z5) = 0, E(Z6) = 15.

More generally, we say X has a normal distribution with parameters µ and
σ2, if its moment-generating function is

316 CHAPTER 5. PROBABILITY

MX(t) = E
(
etX
)
= exp(µt+ σ2t2/2). (5.4.6)

Then its cumulant-generating function is

ZX(t) = µt+
1

2
σ2t2,

hence its mean and variance are

Z ′
X(0) = µ, Z ′′

X(0) = σ2.

From this, if X is normal with parameters µ and σ2, then its standardization
Z = (X − µ)/σ is standard normal.

We restate the two fundamental results of probability in the language of
this section and in terms of limits. We usually deal with limits in an intuitive
manner. For additional information on limits, see §A.7.

Given a sample from a random variable X, the population mean is µ =
E(X), and the population variance is σ2 = V ar(X). The LLN says for large
sample size, the sample mean X̄ approximately equals µ.

Law of Large Numbers (LLN)

Let X1, X2, . . . , Xn be independent identically distributed random
variables, each with mean µ and variance σ2, and let

X̄n =
X1 +X2 + · · ·+Xn

n

be the sample mean. Then the event of outcomes where

lim
n→∞

X̄n = µ

is sure (sure events are defined in §5.1).

In other words, the LLN says the outcomes where the limiting sample
mean is not equal to µ form a null event. The event specified in the LLN is
sure, but not certain (see §5.1 and Exercise 5.1.11 for the distinction).

The LLN is qualitative: There is no measure of closeness in the LLN state-
ment. On the other hand, the CLT is more quantitative. The CLT says for
large sample size, the sample mean is approximately normal with mean µ
and variance σ2/n. More exactly,

5.4. NORMAL DISTRIBUTION 317

Central Limit Theorem (CLT)

Let

Z̄n =
√
n

(
X̄n − µ

σ

)
be the standardized sample mean, and let Z be a standard normal
random variable. Then

lim
n→∞

Prob
(
a < Z̄n < b

)
= Prob(a < Z < b)

for every interval [a, b].

An equivalent form of the CLT is

lim
n→∞

E
(
f
(
Z̄n

))
= E(f(Z)) (5.4.7)

for every function f(x).
Let Mn(t) be the moment-generating function of Z̄n. Another equivalent

form of the CLT is convergence of the moment-generating functions,

lim
n→∞

Mn(t) = et
2/2, (5.4.8)

for every t.

Toss a coin n times, assume the coin’s bias is p, and let Sn be the number
of heads. Then, by (5.3.23), Sn is binomial with mean µ = np and standard
deviation σ =

√
np(1− p). By the CLT, Sn is approximately normal with the

same mean and variance, so the cumulative distribution function of Sn ap-
proximately equals the cumulative distribution function of a normal random
variable with the same mean and variance.

The code

from numpy import *

from scipy.stats import binom, norm

from matplotlib.pyplot import *

n, p = 100, pi/4

mu = n*p

sigma = sqrt(n*p*(1-p))

B = binom(n,p)

Z = norm(mu,sigma)

318 CHAPTER 5. PROBABILITY

x = arange(mu - 2*sigma, mu + 2*sigma, .01)

plot(x, Z.cdf(x), label="normal approx")

plot(x, B.cdf(x), label="binomial")

grid()

legend()

show()

returns Figure 5.21.

Fig. 5.21 The binomial cdf and its CLT normal approximation.

Using the compound-interest formula (A.3.9), it is simple to derive the
CLT. We derive the third version (5.4.8) of the CLT. Let x1, x2, . . . , xN be
a scalar dataset, and assume the dataset is standardized. Then its mean and
variance are zero and one,

N∑
k=1

xk = 0,
1

N

N∑
k=1

x2
k = 1.

If the samples of the dataset are equally likely, then sampling the dataset
results in a random variable X, with expectations given by (5.3.2). It follows
that X is standard, and the moment-generating function of X is

E(etX) =
1

N

N∑
k=1

etxk .

5.4. NORMAL DISTRIBUTION 319

If X1, X2, . . . , Xn are obtained by repeated sampling of the dataset, then
they are i.i.d. following X.

If X̄n is the sample mean

X̄n =
X1 +X2 + · · ·+Xn

n
,

then, by (5.3.35), Z̄n =
√
nX̄n is standard.

By independence, the moment-generating function Mn(t) of Z̄n is the
product

Mn(t) = E
(
et

√
nX̄n

)
= E

(
et(X1+X2+···+Xn)/

√
n
)
=
(
E
(
etX/

√
n
))n

.

By the exponential series,

etX/
√
n = 1 +

t√
n
X +

t2

2n
X2 + . . .

Since the mean and variance of X are zero and 1, taking expectations of both
sides,

E
(
etX/

√
n
)
= 1 +

t2

2n
+

From this,

Mn(t) =

(
1 +

t2

2n
+ . . .

)n

.

By the compound-interest formula (A.3.9) (the missing terms . . . don’t affect
the result)

lim
n→∞

Mn(t) = et
2/2,

which is the moment-generating function of the standard normal distribution.
Even though we couched this derivation in terms of a standardized dataset,

it is valid in general. This completes the derivation of the CLT.

The standard normal distribution is symmetric about zero, and has a
specific width. Because of the symmetry, a random number Z following this
distribution is equally likely to satisfy Z < 0 and Z > 0, so Prob(Z < 0) =
Prob(Z > 0). Since the total area equals 1,

Prob(Z < 0) + Prob(Z > 0) = 1,

we expect the chance that Z < 0 should equal 1/2. In other words, because
of the symmetry of the curve, we expect to be 50% confident that Z < 0, or
0 is at the 50-th percentile level. So

320 CHAPTER 5. PROBABILITY

chance = confidence = percentile = area

To summarize, we expect Prob(Z < 0) = 1/2.

z

p

z

p

Fig. 5.22 z = Z.ppf(p) and p = Z.cdf(z).

When
Prob(Z < z) = p,

we say z is the z-score z corresponding to the p-value p. Equivalently, we say
our confidence that Z < z is p, or the percentile of z equals 100p. In Python,
the relation between z and p (Figure 5.22) is specified by

from scipy.stats import norm as Z

p = Z.cdf(z)

z = Z.ppf(p)

ppf is the percentile point function, and cdf is the cumulative distribution
function.

0−z 0 z−z

0 z

Fig. 5.23 Confidence (green) or significance (red) (lower-tail, two-tail, upper-tail).

In Figure 5.23, the red areas are the lower tail p-value Prob(Z < z), the
two-tail p-value Prob(|Z| > z), and the upper tail p-value Prob(Z > z).

5.4. NORMAL DISTRIBUTION 321

To go backward, suppose we are given Prob(|Z| < z) = p and we want
to compute the cutoff z. Then Prob(|Z| > z) = 1 − p, so Prob(Z > z) =
(1− p)/2. This implies

Prob(Z < z) = 1− (1− p)/2 = (1 + p)/2.

By symmetry of the graph, upper-tail and two-tail p-values can be com-
puted from lower tail p-values.

Prob(a < Z < b) = Prob(Z < b)− Prob(Z < a),

and

Prob(|Z| < z) = Prob(−z < Z < z) = Prob(Z < z)− Prob(Z < −z),

and
Prob(Z > z) = 1− Prob(Z < z).

In Python,

from scipy.stats import norm as Z

p = P(|Z| < z)

z = Z.ppf((1+p)/2)

p = Z.cdf(z) - Z.cdf(-z)

Now let’s zoom in closer to the graph and mark off z-scores 1, 2, 3 on the
horizontal axis to obtain specific colored areas as in Figure 5.25. These areas
are governed by the 68-95-99 rule (Table 5.24). Our confidence that |Z| < 1
equals the blue area 0.685, our confidence that |Z| < 2 equals the sum of the
blue plus green areas 0.955, and our confidence that |Z| < 3 equals the sum
of the blue plus green plus red areas 0.997. This is summarized in Table 5.24.

cutoff abs confidence two-tail p-value

z 1− p p

1 .685 .315

2 .955 .045

3 .997 .003

Table 5.24 Cutoffs, confidence levels, p-values.

322 CHAPTER 5. PROBABILITY

The possibility |Z| > 1 is called a 1-sigma event, |Z| > 2 a 2-sigma event,
and so on. So a 2-sigma event is 95.5% unlikely, or 4.5% likely. An event is
considered statistically significant if it’s a 2-sigma event or more. In other
words, something is significant if it’s unlikely. A six-sigma event |Z| > 6 is
two in a billion. You want a plane crash to be six-sigma.

2 31−3 −2 −1 0

Fig. 5.25 68%, 95%, 99% confidence cutoffs for standard normal.

These terms are defined for two-tail p-values. The same terms may be used
for upper-tail or lower tail p-values.

Figure 5.25 is not to scale, because a 1-sigma event should be where the
curve inflects from convex to concave (in the figure this happens closer to
2.7). Moreover, according to Table 5.24, the left-over white area should be
.03% (3 parts in 10,000), which is not what the figure suggests.

An event is statistically significant if its p-value is 5% or less (Table 5.26).
For example, Z > z is statistically significant if Prob(Z > z) is .05 or
less, which means z is greater than 1.64, Z < z is statistically significant
if Prob(Z < z) is .05 or less, which means z is less than −1.64, and |Z| > z
is statistically significant if Prob(|Z| > z) is .05 or less, which means |z| is
greater than 1.96.

event type p-value z-score

Z > z upper tail .05 1.64

Z < z lower tail .05 -1.64

|Z| > z two-tail .05 1.96

Z > z upper tail .01 2.33

Z < z lower tail .01 -2.33

|Z| > z two-tail .01 2.56

Table 5.26 p-values at 5% and at 1%.

5.4. NORMAL DISTRIBUTION 323

An event is highly significant if its p-value is 1% or less (Table 5.26). For
example, Z > z is highly significant if Prob(Z > z) is .01 or less, which
means z is greater than 2.33, Z < z is highly significant if Prob(Z < z) is .01
or less, which means z is less than −2.33, and |Z| > z is highly significant if
Prob(|Z| > z) is .01 or less, which means |z| is greater than 2.56.

Significant and Highly Significant

An event A is significant if Prob(A) ≤ 0.05. An event A is highly
significant if Prob(A) ≤ 0.01.

In general, the normal distribution is not centered at the origin, but else-
where. We say X is normal with mean µ and standard deviation σ if

Z =
X − µ

σ

is distributed according to a standard normal. We write N(µ, σ) for the nor-
mal with mean µ and standard deviation σ. As its name suggests, it is easily
checked that such a random variable X has mean µ and standard deviation
σ. For the normal distribution with mean µ and standard deviation σ, the
cutoffs are as in Figure 5.27. In Python, norm(mu,sigma) returns the normal
with mean m and standard deviation s.

µ+ 3σµ+ σµ− 3σ µ− σ µ

Fig. 5.27 68%, 95%, 99% cutoffs for non-standard normal.

Here is a sample computation. Let X be a normal random variable with
mean µ and standard deviation σ, and suppose Prob(X < 7) = .15, and
Prob(X < 19) = .9. Given this data, we find µ and σ as follows.

With Z as above, we have

Prob(Z < (7− µ)/σ) = .15, and Prob(Z < (19− µ)/σ) = .9.

Also, since Z is standard, we compute

324 CHAPTER 5. PROBABILITY

a = Z.ppf(.15)

b = Z.ppf(.9)

By definition of ppf (see above), we then have

a =
7− µ

σ
, b =

19− µ

σ
.

These are two equations in two unknowns. Multiplying both equations by σ
then subtracting, we obtain µ and σ,

σ =
19− 7

b− a
, µ = 7− aσ.

Let X̄ be the sample mean

X̄ =
X1 +X2 + · · ·+Xn

n
,

drawn from a normally distributed population with mean µ and standard
deviation σ. By (5.3.34), the standard deviation of X̄ is σ/

√
n.

Standard Deviation of Sample Mean is Standard Error

The standard deviation of the sample mean is called the standard
error. If the samples have standard deviation σ, the standard error is
σ/

√
n.

To compute probabilities for X̄ whenX has mean µ and standard deviation
σ, standardize X̄ by writing

Z =
√
n · X̄ − µ

σ
,

then compute standard normal probabilities.

Here are two examples. In the first example, suppose student grades are
normally distributed with mean µ = 80 and variance σ2 = 16. This says the
average of all grades is 80, and the standard deviation is σ = 4. If a grade is
g, the standardized grade is

z =
g − µ

σ
=

g − 80

4
.

5.4. NORMAL DISTRIBUTION 325

A student is picked and their grade was g = 84. Is this significant? Is it highly
significant? In effect, we are asking, how unlikely is it to obtain such a grade?
Remember,

significant = unlikely

Since the standard deviation is 4, the student’s z-score is

z =
g − 80

4
=

84− 80

4
= 1.

What’s the upper-tail p-value corresponding to this z? It’s

Prob(Z > z) = Prob(Z > 1) =
1

2
Prob(|Z| > 1) = .16,

or 16%. Since the upper-tail p-value is more than 5%, this student’s grade is
not significant.

For the second example, suppose a sample of n = 9 students are selected
and their sample average grade is ḡ = 84. Is this significant? Is it highly
significant? This time we take

z =
√
n · ḡ − 80

4
= 3

84− 80

4
= 3.

What’s the upper-tail p-value corresponding to this z? It’s

Prob(Z > z) = Prob(Z > 2.5) = 0.0013,

or .13%. Since the upper-tail p-value is less than 1%, yes, this sample average
grade is both significant and highly significant.

The same grade, g = 84, is not significant for a single student, but is
significant for nine students. This is a reflection of the law of large numbers,
which says the sample mean approaches the population mean as the sample
size grows.

To extract samples from a normal distribution, use a random generator.
The code below uses the default random number generator,

from numpy.random import default_rng

samples = default_rng().normal

mean, sdev, n = 80, 4, 20

samples(mean,sdev,n)

This returns 20 normally distributed numbers, with specified mean and stan-
dard deviation.

326 CHAPTER 5. PROBABILITY

Be careful to distinguish between

numpy.random.default_rng.normal and scipy.stats.norm.

The former returns samples from a normal distribution, while the latter re-
turns a normal random variable. Samples are just numbers; random variables
have cdf’s, pmf’s or pdf’s, etc.

Suppose student grades are normally distributed with mean 80 and vari-
ance 16. How many students should be sampled so that the chance that at
least one student’s grade lies below 70 is at least 50%?

To solve this, if p is the chance that a single student has a grade below 70,
then 1 − p is the chance that the student has a grade above 70. If n is the
sample size, (1−p)n is the chance that all sample students have grades above
70. Thus the requested chance is 1− (1− p)n. The following code shows the
answer is n = 112.

from scipy.stats import norm as Z

z = 70

mean, sdev = 80, 4

p = Z(mean,sdev).cdf(z)

for n in range(2,200):

q = 1 - (1-p)**n

print(n, q)

Here is the code for computing tail probabilities for the sample mean X̄
drawn from a normally distributed population with mean µ and standard
deviation σ. When n = 1, this applies to a single normal random variable.

########################

P-values

########################

from numpy import *

from scipy.stats import norm as Z

def pvalue(mean,sdev,n,xbar,type):

Xbar = Z(mean,sdev/sqrt(n))

if type == "lower-tail": p = Xbar.cdf(xbar)

elif type == "upper-tail": p = 1 - Xbar.cdf(xbar)

elif type == "two-tail": p = 2 *(1 - Xbar.cdf(abs(xbar)))

5.4. NORMAL DISTRIBUTION 327

else:

print("What's the tail type (lower-tail, upper-tail,

↪→ two-tail)?")

return

print("sample size: ",n)

print("mean,sdev,xbar: ",mean,sdev,xbar)

print("mean,sdev,n,xbar: ",mean,sdev,n,xbar)

print("p-value: ",p)

z = sqrt(n) * (xbar - mean) / sdev

print("z-score: ",z)

type = "upper-tail"

mean = 80

sdev = 4

n = 1

xbar = 90

pvalue(mean,sdev,n,xbar,type)

Exercises

Exercise 5.4.1 Let X be a normal random variable and suppose Prob(X <
1) = 0.3, and Prob(X < 2) = 0.4 What are the mean and variance of X?

Exercise 5.4.2 [27] Consider a normal distribution curve where the middle
90% of the area under the curve lies above the interval (4, 18). Use this
information to find the mean and the standard deviation of the distribution.

Exercise 5.4.3 Let Z be a normal random variable with mean 30.4 and
standard deviation of 0.7. What is Prob(29 < Z < 31.1)?

Exercise 5.4.4 [27] Consider a normal distribution where the 70th percentile
is at 11 and the 25th percentile is at 2. Find the mean and the standard
deviation of the distribution.

Exercise 5.4.5 [27] Let X1, X2, . . . , Xn be an i.i.d. sample each with mean
300 and standard deviation of 21. What is the mean and standard deviation
of the sample mean X̄?

Exercise 5.4.6 Suppose the scores of students are normally distributed with
a mean of 80 and a standard deviation of 4. A sample of size n is selected,
and the sample mean is 84. What is the least n for which this is significant?
What is the least n for which this is highly significant?

Exercise 5.4.7 [27] A manufacturer says their laser printers’ printing speeds
are normally distributed with mean 17.63 ppm and standard deviation 4.75

328 CHAPTER 5. PROBABILITY

ppm. An i.i.d. sample of n = 11 printers is selected, with speeds X1, X2, . . . ,
Xn. What is the probability the sample mean speed X̄ is greater than 18.53
ppm?

Exercise 5.4.8 [27] Continuing Exercise 5.4.7, let Yk be the Bernoulli ran-
dom variable corresponding to the event Xk > 18 (5.3.10),

Yk =

{
1, if Xk > 18,

0, otherwise.
.

We count the proportion of printers in the sample having speeds greater than
18 by setting

p̂ =
Y1 + Y2 + · · ·+ Yn

n
.

Compute E(p̂) and V ar(p̂). Use the CLT to compute the probability that
more than 50.9% of the printers have speeds greater than 18.

Exercise 5.4.9 [27] The level of nitrogen oxides in the exhaust of a particular
car model varies with mean 0.9 grams per mile and standard deviation 0.19
grams per mile . What sample size is needed so that the standard deviation
of the sampling distribution is 0.01 grams per mile?

Exercise 5.4.10 [27] The scores of students had a normal distribution with
mean µ = 559.7 and standard deviation σ = 28.2. What is the probability
that a single randomly chosen student scores 565 or higher? Now suppose
n = 30 students are sampled, assume i.i.d. What are the mean and standard
deviation of the sample mean score? What z-score corresponds to the mean
score of 565? What is the probability that the mean score is 565 or higher?

Exercise 5.4.11 Complete the square in the moment-generating function of
the standard normal pdf and use (5.4.3) to derive (5.4.4).

Exercise 5.4.12 Let Z be a standard normal random variable, and let
relu(x) be as in Exercise 5.3.17. Show

E(relu(Z)) =
1√
2π

.

(Use the fundamental theorem of calculus (A.6.2).)

Exercise 5.4.13 [7] Let X1, X2, . . . , Xn be i.i.d. Poisson random variables
(5.3.25) with parameter 1, let S = X1 +X2 + · · ·+Xn, and let X̄n = S/n be
the sample mean. Then the mean of X̄n is 1, and the variance of X̄n is 1/n,
so

Z̄n =
√
n(X̄n − 1) =

S − n√
n

is standard (5.3.35). By the CLT, with Z standard normal,

5.5. CHI-SQUARED DISTRIBUTION 329

E(relu(Z̄n)) → E(relu(Z)), n → ∞.

Use this to derive Stirling’s approximation (A.1.7). (Exercises 5.3.17 and
5.4.12.)

5.5 Chi-squared Distribution

LetX and Y be independent standard normal random variables. Then (X,Y)
is a random point in the plane. What is the probability that the point (X,Y)
lies inside a square (Figure 5.28)?

Specifically, assume the square is |X| ≤ 1 and |Y | ≤ 1. Since X and Y
independent, the probability (X,Y) lies in the square is

Prob(|X| ≤ 1 and |Y | ≤ 1) = Prob(|X| ≤ 1)Prob(|Y | ≤ 1)

= Prob(|X| ≤ 1)2 = .6852 = .469.

What is the probability (X,Y) lies inside the unit disk,

Prob(X2 + Y 2 ≤ 1)?

Here the answer is not as straightforward, and leads us to introduce the
chi-squared distribution.

Fig. 5.28 (X,Y) inside the square and inside the disk.

A random variable U has a chi-squared distribution with degree 1 if

330 CHAPTER 5. PROBABILITY

MU (u) = E(euU) =
1√

1− 2u
.

To compute the moments of U , we use the binomial theorem (4.1.25)

(1 + x)p =

∞∑
n=0

(
p

n

)
xn = 1 + px+

(
p

2

)
x2 +

(
p

3

)
x3 + . . .

to write out MU (u). Taking p = −1/2 and x = −2u,

1√
1− 2u

= (1− 2u)−1/2 =

∞∑
n=0

(
−1/2

n

)
(−2u)n.

Since
1√

1− 2u
= E

(
euU

)
=

∞∑
n=0

un

n!
E(Un),

comparing coefficients of un/n! shows

E(Un) = (−2)nn!

(
−1/2

n

)
, n = 0, 1, 2, . . . (5.5.1)

Using the definition(
p

n

)
=

p · (p− 1) · · · · · (p− n+ 1)

n!
,

(
p
n

)
makes sense for fractional p (see (A.2.11)). With this, we have

E(Un) = (−2)nn!
(−1/2) · (−1/2− 1) · · · · · (−1/2− n+ 1)

n!
= 1 · 3 · 5 · 7 · · · · · (2n− 1).

But this equals the right side of (5.4.5). Thus the left sides of (5.4.5) and
(5.5.1) are equal. This shows

Chi-squared is the Square of Normal

If Z is standard normal, then U = Z2 is chi-squared with degree 1,
and E(U) = 1, V ar(U) = 2.

More generally, we say U is chi-squared with degree d if

U = U1 + U2 + · · ·+ Ud = Z2
1 + Z2

2 + · · ·+ Z2
d , (5.5.2)

5.5. CHI-SQUARED DISTRIBUTION 331

with independent standard normal Z1, Z2, . . . , Zd.
By independence, the moment-generating functions multiply (§5.3), so the

moment-generating function for chi-squared with degree d is

MU (t) = E(etU) =
1

(1− 2t)d/2
.

Going back to the question posed at the beginning of the section, we have
X and Y independent standard normal and we want

Prob(X2 + Y 2 ≤ 1).

If we set U = X2 + Y 2, we want2 Prob(U ≤ 1). Since U is chi-squared with
degree d = 2, we use chi2.cdf(u,d). Then the code

from scipy.stats import chi2 as U

d = 2

u = 1

U(d).cdf(u)

returns 0.39.

Fig. 5.29 Chi-squared distribution with different degrees.

2 Geometrically, the p-value Prob(U > 1) is the probability that a normally distributed

point in d-dimensional space is outside the unit sphere.

332 CHAPTER 5. PROBABILITY

Figure 5.29 is returned by the code

from scipy.stats import chi2 as U

from matplotlib.pyplot import *

from numpy import *

u = arange(0,15,.01)

for d in range(1,7):

p = U(d).pdf(u)

plot(u,p,label="d: " + str(d))

ylim(ymin=0,ymax=.6)

grid()

legend()

show()

Let us compute the mean and variance of a chi-squared U with degree d.
When d = 1, we already know E(U) = 1 and V ar(U) = 2. In general, by
(5.5.2) and (5.3.21),

E(U) =

d∑
k=1

E(Z2
k) =

d∑
k=1

1 = d,

and

V ar(U) =

d∑
k=1

V ar(Z2
k) =

d∑
k=1

2 = 2d.

We conclude

Mean and Variance of Chi-squared

If U is chi-squared with degree d, the mean and variance of U are

E(U) = d, and V ar(U) = 2d.

The peak (maximum likelihood point) in the chi-squared density of degree
d is not at the mean d. Using polar coordinates, one can show the peak is at
d− 2 (Figure 5.30).

5.5. CHI-SQUARED DISTRIBUTION 333

Fig. 5.30 With degree d ≥ 2, the chi-squared density peaks at d− 2.

Because
1

(1− 2t)d/2
1

(1− 2t)d′/2
=

1

(1− 2t)(d+d′)/2
,

we obtain

Independent Chi-squared Variables

If U and U ′ are independent chi-squared with degrees d and d′, then
U + U ′ is chi-squared with degree d+ d′.

To compute distributions for sample variances (below) and chi-squared
tests (§6.4), we need to derive chi-squared for correlated normal samples.
This is best approached using vector-valued random variables.

A vector-valued random variable is a vector X = (X1, X2, . . . , Xd) in Rd

whose components are random variables. A vector-valued random variable is
also called a random vector. For example, a simple random sample X1, X2,
. . . , Xn may be collected into a single random vector

X = (X1, X2, . . . , Xn)

in Rn.

334 CHAPTER 5. PROBABILITY

Random vectors have means, variances, moment-generating functions,
and cumulant-generating functions, just like scalar-valued random variables.
Moreover we can have simple random samples of random vectors X1, X2,
. . . , Xn.

If X is a random vector in Rd, its mean is the vector

µ = E(X) = (E(X1), E(X2), . . . , E(Xd)) = (µ1, µ2, . . . , µd).

The variance of X is the d× d matrix Q whose (i, j)-th entry is

Qij = E((Xi − µi)(Xj − µj)), 1 ≤ i, j ≤ d.

In the notation of §2.2,

Q = E((X − µ)⊗ (X − µ)).

By (2.2.13),

w · ((X − µ)⊗ (X − µ))w = ((X − µ) · w)2,

hence
w ·Qw = E

(
((X − µ) · w)2

)
. (5.5.3)

Thus the variance of a random vector is a nonnegative matrix
A random vector is standard if µ = 0 and Q = I. If X is standard, then

E(X · w) = 0, V ar(X · w) = |w|2. (5.5.4)

In §2.2, we defined the mean and variance of a dataset (2.2.18). Then the
mean and variance there is the same as the mean and variance defined here,
that of a random variable.

To see this, we must build a random variable X corresponding to a dataset
x1, x2, . . . , xN . But this was done in (5.3.2). Thus every dataset may be
interpreted as a random variable.

In §5.3, we considered i.i.d. sequences of scalar random variables. We can
also do the same with random vectors. If X1, X2, . . . , Xn is an i.i.d. se-
quence of random vectors, each with mean µ and variance Q, then the same
calculation as in §5.3 shows

√
n

(
1

n

n∑
k=1

Xk − µ

)
(5.5.5)

5.5. CHI-SQUARED DISTRIBUTION 335

has mean zero and variance Q.

A random vector X is normal with mean µ and variance Q if for every
vector w, the scalar random variable X · w is normal with mean µ · w and
variance w ·Qw. When µ = 0 and Q = I, then X is standard normal.

From §5.3, we see

Standard Normal Random Vectors

Z1, Z2, . . . , Zd is a simple random sample of standard normal random
variables iff

Z = (Z1, Z2, . . . , Zd)

is a standard normal random vector in Rd.

The central limit theorem remains valid for random vectors: If X1, X2,
. . . , Xn is an i.i.d. sequence of random vectors with mean µ and variance
Q, then (5.5.5) is approximately normal, with mean zero and variance Q, for
large n.

From (5.5.2),

Uncorrelated Chi-squared

If Z = is a standard normal random vector in Rd, then

|Z|2 (5.5.6)

is chi-squared with degree d.

If X is a normal random vector with mean zero and variance Q, then, by
definition, X · w is normal with mean zero and V ar(X · w) = w ·Qw. Using
(5.4.6) with t = 1, µ = 0, and σ2 = w ·Qw, the moment-generating function
of the random vector X is

MX(w) = E
(
ew·X) = ew·Qw/2. (5.5.7)

In Python, the probability density function of a normal random variable
with mean µ and variance Q is

from numpy import *

from scipy.stats import multivariate_normal as Z

mu is mean vector array

Q is variance matrix array

336 CHAPTER 5. PROBABILITY

here x.shape == mu.shape

Z.pdf(x, mean=mu, cov=Q)

If x and y are arrays, then cartesian_product(x,y) is defined by

from numpy import *

def cartesian_product(x,y): return dstack(meshgrid(x,y))

If x and y have shapes (m,) and (n,) then xy = cartesian_product(x,y)

has shape (m,n,2), with xy[i,j,:] = array([x[i],y[j]]).

Fig. 5.31 Normal probability density on R2.

Using this, we can plot the probability density function of a normal random
vector in R2,

%matplotlib ipympl

from numpy import *

from matplotlib.pyplot import *

from scipy.stats import multivariate_normal as Z

standard normal

mu = array([0,0])

Q = array([[1,0],[0,1]])

x = arange(-3,3,.01)

5.5. CHI-SQUARED DISTRIBUTION 337

y = arange(-3,3,.01)

xy = cartesian_product(x,y)

last axis of xy is fed into pdf

z = Z(mu,Q).pdf(xy)

ax = axes(projection='3d')
ax.set_axis_off()

x,y = meshgrid(x,y)

ax.plot_surface(x,y,z, cmap='cool')
show()

resulting in Figure 5.31.

In §5.3 we studied correlation and independence. We saw how indepen-
dence implies uncorrelatedness, but not conversely. Now we show that, for
normal random vectors, they are in fact the same.

Independence and Correlation

If (X,Y) is a normal random vector, then X and Y are uncorrelated
iff X and Y are independent.

Saying (X,Y) is normal is more than just saying X is normal and Y is
normal, This is joint normality of X and Y . By subtracting their means, we
may assume the means of X and Y are zero.

To derive the result, we write down

E(X ⊗X) = A, E(X ⊗ Y) = B, E(Y ⊗ Y) = C.

Then the variance of (X,Y) is

Q =

(
E(X ⊗X) E(X ⊗ Y)
E(Y ⊗X) E(Y ⊗ Y)

)
=

(
A B
Bt C

)
. From this, we see X and Y are uncorrelated when B = 0.

With w = (u, v), we write

w ·Qw =

(
u
v

)
·
(
A B
Bt C

)(
u
v

)
= u ·Au+ u ·Bv + v ·Btu+ v · Cv.

Then

MX,Y (w) = E
(
ew·(X,Y)

)
= ew·Qw/2 = MX(u)MY (v) e

(u·Bv+v·Btu)/2.

338 CHAPTER 5. PROBABILITY

From this, X and Y are independent when B = 0. Thus, for normal random
vectors, independence and uncorrelatedness are the same.

If Z is a standard normal random vector in Rd, then (5.5.6) we saw |Z|2 is
chi-squared with degree d. Now we generalize this result to correlated normal
random vectors.

Correlated Chi-squared

Let X be a normal random vector with mean zero and variance Q.
Let r be the rank of Q, and let Q+ be the pseudo-inverse (§2.3) of Q.
Then

X ·Q+X (5.5.8)

is chi-squared with degree r.

To derive this, we use the eigenvalue decomposition (3.2.6) of Q: There is
a square diagonal matrix E and a matrix U satisfying

E = U tQU, Q+ = UE+U t,

and

E =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
.
0 . . . 0 λr 0
0 0 0 0 0

 , E+ =


1/λ1 0 0 . . . 0
0 1/λ2 0 . . . 0
.
0 . . . 0 1/λr 0
0 0 0 0 0

 .

Here r, the number of nonzero eigenvalues of Q, is the rank of Q.
Then, with Y = U tX,

X ·Q+X = X · (UE+U t)X = (U tX) · E+(U tX) = Y · E+Y =

r∑
i=1

Y 2
i

λi
.

Since Y has variance U tQU (Exercise 5.5.5), and U tQU = E, X · Q+X is
chi-squared with degree r (Exercise 5.5.6).

Let µ be a unit vector in Rd, and let Q = I−µ⊗µ. Then Q has rank d−1
(Exercise 2.9.2). Suppose X is a normal random vector with mean zero and
variance Q. Then

5.5. CHI-SQUARED DISTRIBUTION 339

E((X · µ)2) = µ ·Qµ = µ · (I − µ⊗ µ)µ = µ− (µ · µ)µ = 0,

so X · µ = 0.
By Exercise 2.6.7, Q+ = Q. Since X · µ = 0,

X ·Q+X = X ·QX = X · (X − (X · µ)µ) = |X|2.

We conclude

Singular Chi-squared

Let µ be a unit vector, and let X be a normal random vector with
mean zero and variance I−µ⊗µ. Then |X|2 is chi-squared with degree
d− 1.

We use the above to derive the distribution of the sample variance. Let
X1, X2, . . . , Xn be a random sample, and let X̄ be the sample mean,

X̄ =
X1 +X2 + · · ·+Xn

n
.

Let S2 be the sample variance,

S2 =
(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

n− 1
. (5.5.9)

Since (n− 1)S2 is a sum-of-squares similar to (5.5.2), we expect (n− 1)S2

to be chi-squared. In fact this is so, but the degree is n − 1, not n. We will
show

Independence of Sample Mean and Sample Variance

Let Z1, Z2, . . . , Zn be independent standard normal random vari-
ables, let Z̄ be the sample mean, and let S2 be the sample variance.
Then (n − 1)S2 is chi-squared with degree n − 1, and Z̄ and S2 are
independent.

To see this, we work with the random vector Z = (Z1, Z2, . . . , Zn) with
mean zero and variance I. Let u and v be vectors in Rn, let

1 = (1, 1, . . . , 1)

be in Rn, and let µ = 1/
√
n. Then µ is a unit vector and

340 CHAPTER 5. PROBABILITY

Z · µ =
1√
n

n∑
k=1

Zk =
√
n Z̄.

Since Z1, Z2, . . . , Zn are i.i.d standard, Z · µ =
√
nZ̄ is standard.

Now let U = I − µ⊗ µ and

X = UZ = Z − (Z · µ)µ = (Z1 − Z̄, Z2 − Z̄,Zn − Z̄).

Then the mean of X is zero. Since Z has variance I, by Exercises 2.2.3 and
5.5.5,

V ar(X) = U tIU = U2 = U = I − µ⊗ µ.

By singular chi-squared above,

(n− 1)S2 = |X|2

is chi-squared with degree n− 1. Since Z · µ is standard,

E(X(Z · µ)) = E(Z(Z · µ))− E((Z · µ)2)µ = µ− µ = 0,

so X and Z · µ are uncorrelated. Since X and Z · µ are normal, X and Z · µ
are independent. Since (n − 1)S2 = |X|2 and

√
nZ̄ = Z · µ, S2 and Z̄ are

independent.

Exercises

Exercise 5.5.1 Let X and Y be independent uniform random variables with
values in the interval [−1, 1]. Then (X,Y) is a point in the square {|x| ≤
1, |y| ≤ 1}. Let

B =

{
1 if X2 + Y 2 ≤ 1,

0 otherwise

be the Bernoulli variable corresponding to (X,Y) being in the unit disk. Then
(5.3.10) the mean p = E(B) equals Prob

(
X2 + Y 2 ≤ 1

)
. Show that p = π/4.

(This uses integration with polar coordinates rdrdθ replacing dxdy.)

Exercise 5.5.2 LetX1,X2, . . . ,Xn, and Y1, Y2, . . . , Yn be independent i.i.d.
samples of uniform random variables with values in the interval [−1, 1]. Then
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) are points in the square {|x| ≤ 1, |y| ≤ 1}
(Figure 5.28). Let p̂n be the proportion of points (5.3.11) lying in the unit
disk {x2 + y2 ≤ 1}. Use the LLN to estimate p̂n for large n.

Exercise 5.5.3 Continuing the previous problem with n = 20, use the CLT
to estimate the probability that fewer than 50% of the points lie in the unit
disk. Is this a 1-sigma event, a 2-sigma event, or a 3-sigma event?

5.6. MULTINOMIAL PROBABILITY 341

Exercise 5.5.4 Let X be a random vector with mean zero and variance Q
Show v is a zero variance direction (§2.5) for Q iff X · v = 0.

Exercise 5.5.5 Let µ and Q be the mean and variance of a random d-vector
X, and let A be any N × d matrix. Then AX is a random vector with mean
Aµ and variance AQAt.

Exercise 5.5.6 Let Y1, Y2, . . . , Yr be independent normal random variables
with mean zero and variances λ1, λ2, . . . , λr. Then

Y 2
1

λ1
+

Y 2
2

λ2
+ · · ·+ Y 2

r

λr

is chi-squared with degree r.

Exercise 5.5.7 If X is a random vector with mean zero and variance Q, then

E((X · u)(X · v)) = u ·Qv.

(Insert w = u+ v in (5.5.3).)

Exercise 5.5.8 Assume the classes of the Iris dataset are normally dis-
tributed with their means and variances (Exercise 2.2.9), and assume the
classes are equally likely. Using Bayes theorem (5.2.14), write a Python
function that returns the probabilities (p1, p2, p3) that a given iris x =
(t1, t2, t3, t4) lies in each of the three classes. Feed your function the 150
samples of the Iris dataset. How many samples are correctly classified?

5.6 Multinomial Probability

Let X be a discrete random variable, with values i = 1, 2, . . . , d, and proba-
bilities p = (p1, p2, . . . , pd). Then each pi ≥ 0 and

p1 + p2 + · · ·+ pd = 1.

Such a vector p is a probability vector.
Since the values of X are 1, 2, . . . , d, the moment-generating function of

X is
M(t) = E(etX) = etp1 + e2tp2 + · · ·+ edtpd.

A vector v = (v1, v2, . . . , vd) is one-hot encoded at slot j if all components
of v are zero except the j-th component. For example, when d = 3, the vectors

(a, 0, 0), (0, a, 0), (0, 0, a)

are one-hot encoded.

342 CHAPTER 5. PROBABILITY

At the other extreme, a vector v = (v1, v2, . . . , vd) is strict if all components
are positive, vi > 0, i = 1, 2, . . . , d.

A useful alternative to M(t) above is to use one-hot encoding and to define
a vector-valued random variable Y = (Y1, Y2, . . . , Yd) by

Yi =

{
1, if X = i,

0, otherwise
i = 1, 2, . . . , d.

This is called one-hot encoding since all slots in Y are zero except for one
“hot” slot.

For example, suppose X has three values 1, 2, 3, say X is the class of a
random sample from the Iris dataset. Then Y is R3-valued, and we have

Y =


(1, 0, 0), if X = 1,

(0, 1, 0), if X = 2,

(0, 0, 1), if X = 3.

With this understood, set t = (t1, t2, t3). Then the moment-generating func-
tion of Y is

M(t) = E
(
et·Y

)
= et1p1 + et2p2 + et3p3.

More generally, let X have d values. Then with one-hot encoding, the
moment-generating function is

M(t) = et1p1 + et2p2 + · · ·+ etdpd,

and the cumulant-generating function is

Z(t) = log
(
et1p1 + et2p2 + · · ·+ etdpd

)
.

In particular, for a fair dice with d sides, the values are equally likely, so
the one-hot encoded cumulant-generating function is

Z(t) = log
(
et1 + et2 + · · ·+ etd

)
− log d. (5.6.1)

In this section, we define

Z(y) = log (ey1 + ey2 + · · ·+ eyd) , (5.6.2)

so we ignore the constant log d in (5.6.1). Then Z is a function of d variables
y = (y1, y2, . . . , yd). If we insert y = 0, we obtain Z(0) = log d.

Let
1 = (1, 1, . . . , 1).

5.6. MULTINOMIAL PROBABILITY 343

Then

p · 1 =

d∑
k=1

pk = 1.

Because

Z(y + a1) = Z(y1 + a, y2 + a, . . . , yd + a) = Z(y) + a,

Z is not bounded below and does not have a minimum.

The softmax function is the vector-valued function q = σ(y) with compo-
nents

qk = σk(y) =
eyk

ey1 + ey2 + · · ·+ eyd
=

eyk

eZ(y)
, k = 1, 2, . . . , d.

Thus
q = σ(y) = e−Z(y) (ey1 , ey2 , . . . , eyd) .

(q1, q2, . . . , qd)(y1, y2, . . . , yd) σ

Fig. 5.32 The softmax function takes vectors to probability vectors.

By the chain rule, the gradient of the cumulant-generating function is the
softmax function,

∇Z(y) = σ(y). (5.6.3)

When d = 2, the vector softmax function reduces to the scalar logistic
function (5.2.15), since

q1 =
ey1

ey1 + ey2
=

1

1 + e−(y1−y2)
= σ(y1 − y2),

q2 =
ey2

ey1 + ey2
=

1

1 + e−(y2−y1)
= σ(y2 − y1).

Because of this, the softmax function is the multinomial analog of the logistic
function, and we use the same symbol σ to denote both functions.

344 CHAPTER 5. PROBABILITY

from scipy.special import softmax

y = array([y1,y2,y3])

q = softmax(y)

In §4.5, we studied global minimizers of convex functions. As we saw above,
Z does not have a global minimizer over unrestricted z.

Since σ(y) = ∇Z(y), a critical point y∗ of Z must satisfy σ(y∗) = 0. For
Z, a critical point cannot be unique, because

σ(y1, y2, . . . , yd) = σ(y1 + a, y2 + a, . . . , yd + a),

or
σ(y) = σ(y + a1).

We say a vector y is centered if y is orthogonal to 1,

y · 1 = y1 + y2 + · · ·+ yd = 0.

To guarantee uniqueness of a global minimum of Z, we have to restrict at-
tention to centered vectors y.

Suppose y is centered. Since the exponential function is convex,

eZ

d
=

1

d

d∑
k=1

eyk ≥ exp

(
1

d

d∑
k=1

yk

)
= e0 = 1.

This establishes

Restricted Global Minimum of the Cumulant-generating
Function

If y is centered, then Z(y) ≥ Z(0) = log d.

The inverse of the softmax function is obtained by solving p = σ(y) for y,
obtaining

yk = Z + log pk, k = 1, 2, . . . , d. (5.6.4)

Define
log p = (log p1, log p2, . . . , log pd).

Then the inverse of p = σ(z) is

5.6. MULTINOMIAL PROBABILITY 345

y = Z1+ log p. (5.6.5)

The function

I(p) = p · log p =

d∑
k=1

pk log pk (5.6.6)

is the absolute information. Since 0 ≤ pk ≤ 1, log pk ≤ 0, hence I(p) ≤ 0.
Since log is concave,

d∑
k=1

pk log(e
yk) ≤ log

(
d∑

k=1

pke
yk

)
.

This implies

p · y =

d∑
k=1

pkyk =

d∑
k=1

pk log(e
yk)

≤ log

(
d∑

k=1

pke
yk

)
= log

(
d∑

k=1

eyk+log pk

)
= Z(y + log p).

Replacing y by y − log p, this establishes

I(p) ≥ p · y − Z(y). (5.6.7)

By (5.6.5), (5.6.7) is an equality when p = σ(y). We conclude

Information and Cumulant-Generating Function are Convex
Duals

For all probability vectors p,

I(p) = max
y

(p · y − Z(y)) .

For all vectors y,

Z(y) = max
p

(p · y − I(p)) .

The second equality follows by switching Z and I in (5.6.7), and repeating
the same logic used to derive the first equality.

346 CHAPTER 5. PROBABILITY

Inserting y = 0 in (5.6.7), we have

Absolute Information is Bounded

For all p = (p1, p2, . . . , pd),

0 ≥ I(p) ≥ − log(d). (5.6.8)

The absolute entropy, the analog of (4.2.1), is

H(p) = −I(p) = −
d∑

k=1

pk log(pk). (5.6.9)

Since

D2I(p) = diag

(
1

p1
,
1

p2
, . . . ,

1

pd

)
,

we see I(p) is strictly convex, and H(p) is strictly concave.
In Python, the entropy is

from scipy.stats import entropy

p = array([p1,p2,p3])

entropy(p)

Here is the multinomial analog of the relation between entropy and coin-
tossing (5.2.4). Suppose a dice has d faces.

Entropy and Dice-Rolling

Let p = (p1, p2, . . . , pd) be a probability vector. Roll a d-faced dice
n times, and let #n(p) be the number of outcomes where the face-
proportions are p. Then

#n(p) is approximately equal to enH(p) for n large.

In more detail, using Stirling’s approximation (A.1.7), here is the asymp-
totic equality,

#n(p) ≈
1

(2πn)(d−1)/2
· 1
√
p1p2 . . . pd

· enH(p), for n large.

5.6. MULTINOMIAL PROBABILITY 347

Asymptotic equality means the ratio of the two sides approaches 1 as n → ∞
(A.7).

Now
∂2Z

∂yj∂yk
=

∂σj

∂yk
=

{
σj − σjσk, if j = k,

−σjσk, if j ̸= k.

Hence we have

D2Z(y) = ∇σ(y) = diag(q)− q ⊗ q, q = σ(z). (5.6.10)

Let v̄ = v · q =
∑

qkvk. Since Q = D2Z(z) satisfies

v ·Qv =

d∑
k=1

qkv
2
k − (v · q)2 =

d∑
k=1

qk(vk − v̄)2,

which is nonnegative, Q is a variance matrix, and Z is convex.
In fact Z is strictly convex along centered directions v, the directions

satisfying v · 1 = 0. If v · Qv = 0, then, since qk > 0 for all k, v = v̄1. By
Exercise 5.6.1, if v is centered, this forces v = 0. This shows Z is strictly
convex along centered directions.

Moreover, Z is proper (4.3.7) on centered vectors. To see this, suppose
y · 1 = 0 and Z(y) ≤ c. Since yj ≤ Z(y), this implies

yj ≤ c, j = 1, 2, . . . , d.

Given 1 ≤ j ≤ d, add the inequalities yk ≤ c over all indices k ̸= j. Since
y · 1 = 0, −yj =

∑
k ̸=j yk. Hence

−yj =
∑
k ̸=j

yk ≤ (d− 1)c, j = 1, 2, . . . , d.

Combining the last two inequalities,

|yj | = max(yj ,−yj) ≤ (d− 1)c, j = 1, 2, . . . , d,

which implies

|y|2 =

d∑
k=1

y2k ≤ d(d− 1)2c2.

Setting C =
√
d(d− 1)c, we conclude

Z(y) ≤ c and y · 1 = 0 =⇒ |y| ≤ C. (5.6.11)

By (4.3.7), we have shown

348 CHAPTER 5. PROBABILITY

The Cumulant-generating Function is Proper and Strictly
Convex

On centered vectors, Z(y) is proper and strictly convex.

Let p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd) be probability vectors. The
relative information is

I(p, q) =

d∑
k=1

pk log(pk/qk). (5.6.12)

Let
log q = (log q1, log q2, . . . , log qd).

Then

p · log q =

d∑
k=1

pk log qk,

and
I(p, q) = I(p)− p · log q. (5.6.13)

Similarly, the relative entropy is

H(p, q) = −I(p, q). (5.6.14)

In Python, as of this writing, the code

from scipy.stats import entropy

p = array([p1,p2,p3])

q = array([q1,q2,q3])

entropy(p,q)

returns the relative information, not the relative entropy. Always check your
Python code’s conventions and assumptions. See below for more on this ter-
minology confusion.

Here is the multinomial analog of the relation between relative entropy
and coin-tossing (5.2.5). Suppose a dice has d faces, and suppose the prob-
ability of rolling the i-th face in a single roll is qi, i = 1, 2, . . . , d. Then

5.6. MULTINOMIAL PROBABILITY 349

q = (q1, q2, . . . , qd), the dice’s bias, is a probability vector, and we expect the
long-term proportions of faces in n rolls to approximately equal q.

Let p = (p1, p2, . . . , pd) be another probability vector. Roll a d-faced dice
n times, and let Pn(p, q) be the probability that the face-proportions are
p = (p1, p2, . . . , pd), given that the dice’s bias is q.

If p = q, one’s first guess is Pn(p, p) ≈ 1 for n large. However, this is
not correct, because Pn(p, p) is specifying a specific proportion p, predicting
specific behavior from the coin tosses. Because this is too specific, it turns
out Pn(p, p) ≈ 0, see Exercise 5.2.8.

On the other hand, if p ̸= q, we expect the proportion of faces to equal p
to be unlikely. In other words, we expect Pn(p, q) to be small for large n. In
fact, when p ̸= q, it turns out Pn(p, q) → 0 exponentially, as n → ∞. Using
(A.1.2), a straightforward calculation results in

Relative Entropy and Dice-Rolling

Assume a d-faced dice’s bias is q = (q1, q2, . . . , qd). Roll the dice n
times, and let Pn(p, q) be the probability of obtaining outcomes where
the face-proportions are p = (p1, p2, . . . , pd). Then

Pn(p, q) is approximately equal to enH(p,q) for n large.

More exactly, using Stirling’s approximation (A.1.7), here is the asymp-
totic equality,

Pn(p, q) ≈
1

(2πn)(d−1)/2
· 1
√
p1p2 . . . pd

· enH(p,q), for n large.

The relative cumulant-generating function is

Z(y, q) = log

(
d∑

k=1

eykqk

)
,

As we saw above, this is the one-hot encoded cumulant-generating function
of a d-sided dice with side-probabilities q = (q1, q2, . . . , qd).

If we insert qk = exp(log(qk)) in the definition of Z(y, q), one obtains

Z(y, q) = Z(y + log q).

From this, using the change of variable y′ = y + log q,

350 CHAPTER 5. PROBABILITY

max
y

(p · y − Z(y, q)) = max
y

(p · y − Z(y + log q))

= max
y′

(p · (y′ − log q)− Z(y′))

= max
y

(p · y − Z(y))− p · log q

= I(p)− p · log q
= I(p, q).

As before, this shows

Relative Information and Relative Cumulant-generating
Function are Convex Duals

For all p and q,

I(p, q) = max
y

(p · y − Z(y, q)) .

For all y and q,

Z(y, q) = max
p

(p · y − I(p, q)) .

In logistic regression (§7.6), the output is y, the computed target is q = σ(y),
the desired target is p, and the information error function is I(p, σ(y)). To
compute the information error, by (5.6.5),

q = σ(y) =⇒ log q = y − Z(y)1.

By (5.6.13), this yields

Information Error Identity

For all p and all y, if q = σ(y), then

I(p, q) = I(p)− p · y + Z(y). (5.6.15)

This identity is the direct analog of (4.5.21). The identity (4.5.21) is used
in linear regression. Similarly, (5.6.15) is used in logistic regression.

The cross-information is

5.6. MULTINOMIAL PROBABILITY 351

Icross(p, q) = −
d∑

k=1

pk log qk,

and the cross-entropy is

Hcross(p, q) = −Icross(p, q) =

d∑
k=1

pk log qk.

In the literature, the terminology is backward: the cross-information is usually
erroneously called “cross-entropy,” see the discussion at the end of the section.

Cross-information and relative information are related by

I(p, q) = I(p) + Icross(p, q).

A probability vector p = (p1, p2, . . . , pd) is one-hot encoded at slot j if
pj = 1. When p is one-hot encoded at slot j, then pk = 0 for k ̸= j.

When p is one-hot encoded, then I(p) = 0, so

I(p, q) = Icross(p, q), (5.6.16)

and, from (5.6.15),

Icross(p, σ(y)) = −p · y + Z(y).

From (5.6.3) and (5.6.15),

∇yI(p, σ(y)) = q − p, q = σ(y). (5.6.17)

Since I(p, σ(y)) and Icross(p, σ(y)) differ by the constant I(p), we also have

∇yIcross(p, σ(y)) = q − p, q = σ(y),

so it doesn’t matter whether I(p, q) or Icross(p, q) is used in gradient descent
(§7.3). Nevertheless, we stick with I(p, q), because I(p, q) arises naturally as
the convex dual of Z(y, q).

Let q = (q1, q2, . . . , qd) be a probability vector. The relative softmax func-
tion is

σ(y, q) = e−Z(y,q) (ey1q1, e
y2q2, . . . , e

ydqd) .

Then the relative version of (5.6.15) is

352 CHAPTER 5. PROBABILITY

I(p, σ(y, q)) = I(p, q)− p · y + Z(y, q).

This is easily checked using the definitions of I(p, q) and σ(y, q).

In the literature, in the industry, in Wikipedia, and in Python, the termi-
nology3 is confused: The relative information I(p, q) is almost always called
“relative entropy.”

Since the entropy H is the negative of the information I, this is looking at
things upside-down. In other settings, I(p, q) is called the “Kullback–Leibler
divergence,” which is not exactly intuitive terminology.

Also, in machine learning, Icross(p, q) is called the “cross-entropy,” not
cross-information, continuing the confusion.

Rubbing salt into the wound, in Python, entropy(p) is H(p), which is
correct, but entropy(p,q) is I(p, q), which is incorrect, or, at the very least,
inconsistent, even within Python.

How does one keep things straight? By remembering that it’s convex func-
tions that we like to minimize, not concave functions. In more vivid terms,
would you rather ski down a convex slope, or a concave slope?

In machine learning, loss functions are built to be minimized, and infor-
mation, in any form, is convex, while entropy, in any form, is concave. Table
5.33 summarizes the situation.

H = −I Information Entropy

Absolute I(p) H(p)

Cross Icross(p, q) Hcross(p, q)

Relative I(p, q) H(p, q)

Curvature Convex Concave

Error I(p, q) with q = σ(z)

Table 5.33 The third row is the sum of the first and second rows, and the H column is

the negative of the I column.

Exercises

Exercise 5.6.1 Let v be a centered vector, and suppose v is a multiple of 1.
Show v = 0.

3 The quantities used here are identical to those in the literature, it’s only the naming that
is confused.

5.6. MULTINOMIAL PROBABILITY 353

Exercise 5.6.2 Let p be a probability vector, and v be a vector. Then p+ tv
is a probability vector for all scalar t iff v is centered.

Exercise 5.6.3 Use strict convexity of − log x to show I(p, q) is positive if
p ̸= q, and I(p, p) = 0.

Exercise 5.6.4 Let p be a probability vector. Use (5.6.15) to show the in-
formation error I(p, σ(y)) is strictly convex on centered vectors y.

Exercise 5.6.5 Let p be a strict probability vector with ϵ = min pi > 0. Use
(5.6.15) to show

I(p, σ(q)) ≥ I(p) + ϵdZ(y)

for y centered. Conclude the information error I(p, σ(y)) is proper on centered
vectors y.

Exercise 5.6.6 Let A be a matrix satisfying At1 = 0, let b be a strict proba-
bility vector with Atb defined, and let f(x) = I(b, σ(Ax)). Use Exercise 4.3.6
and the two previous exercises to conclude f(x) is proper and strictly convex
on the row space of A. Compute ∇f(x) to show the minimizer x∗ in the row
space of A is the unique solution of

Atσ(Ax) = Atb.

This is the logistic analog of the regression equation.

Chapter 6

Statistics

6.1 Estimation

In statistics, like any science, we start with a guess or an assumption or hy-
pothesis, then we take a measurement, then we accept or modify our guess/as-
sumption based on the result of the measurement. This is common sense, and
applies to everything in life, not just statistics.

For example, suppose you see a sign on campus saying

There is a lecture in room B120.

How can you tell if this is true/correct or not? One approach is to go to room
B120 and look. Either there is a lecture or there isn’t. Problem solved.

But then someone might object, saying, wait, what if there is a lecture
in room B120 tomorrow? To address this, you go every day to room B120
and check, for 100 days. You find out that in 85 of the 100 days, there is a
lecture, and in 15 days, there is none. Based on this, you can say you are
85% confident there is a lecture there. Of course, you can never be sure, it
depends on which day you checked, you can only provide a confidence level.
Nevertheless, this kind of thinking allows us to quantify the probability that
our hypothesis is correct.

In general, the measurement is significant if it is unlikely. When we obtain
a significant measurement, then we are likely to reject our guess/assumption.
So

significance = 1− confidence.

In practice, our guess/assumption allows us to calculate a p-value, which is
the probability that the measurement is not consistent with our assumption.
In the above scenario, the p-value is .15, determined by repeatedly sampling
the room.

This is what statistics is about, summarized in Figure 6.1. The details may
be more or less complicated depending on the problem situation or setup, but
this is the central idea.

355

356 CHAPTER 6. STATISTICS

hypothesis
H

sample p-value

reject H

do not

reject H

p < α

p > α

Fig. 6.1 Statistics flowchart: p-value p and significance α.

Here is a geometric example. Grab two vectors in three dimensions at
random and measure the angle between them. Is there any pattern to the
answer? Doing so twenty times, we see the answer is no, the resulting angle
can be any angle. Now grab two vectors in 784 dimensions at random. Then,
as we shall see, there is a pattern.

The null hypothesis and the alternate hypothesis are

• H0: The angle between two randomly selected vectors in 784 dimensions
is approximately 90◦

• Ha: The angle between two randomly selected vectors in 784 dimensions
is approximately 60◦.

In §A.4, there is code (A.4) returning the angle Angle(u,v) between two
vectors. To test these hypotheses, we run the code

from numpy import *

from numpy.random import default_rng

samples = default_rng().normal

mu, sigma, d = 0,1, 784

for _ in range(20):

u = samples(mu,sigma,d)

v = samples(mu,sigma,d)

print(Angle(u,v))

6.1. ESTIMATION 357

to randomly select u, v twenty times. Here samples(mu,sigma,d) returns
a vector in Rd whose components are selected independently and randomly
according to a normal distribution with mean µ and standard deviation σ.
This code returns (since the selection is random, your numbers will differ)

86.27806537791886

87.91436653824776

93.00098725550777

92.73766421951748

90.005139015804

87.99643434444482

89.77813370637857

96.09801014394806

90.07032573539982

89.37679070400239

91.3405728939376

86.49851399221568

87.12755619082597

88.87980905998855

89.80377324818076

91.3006921339982

91.43977096117017

88.52516224405458

86.89606919838387

90.49100744167357

and we see strong evidence supporting H0.
On the other hand, run the code

from numpy import *

from numpy.random import default_rng

samples = default_rng().binomial

n, p, d = 1, .5, 784 # one coin toss

n, p, d = 3, .5, 784 # three coin tosses

for _ in range(20):

u = samples(n,p,d)

v = samples(n,p,d)

print(Angle(u,v))

to randomly select u, v twenty times. Here samples(n,p,d) returns a vector
in Rd whose components are selected independently and randomly according
to the number of heads in n tosses of a coin with bias p. This code returns

59.43464627897324

59.14345748418916

60.31453922165891

358 CHAPTER 6. STATISTICS

60.38024365702492

59.24709660805488

59.27165957992343

61.21424657806321

60.55756381536082

61.59468919876665

61.33296028237481

60.03925473033243

60.25732069941224

61.77018692842784

60.672901794058326

59.628519516164666

59.41272458020638

58.43172340007064

59.863796136907744

59.45156367988921

59.95835532791699

and we see strong evidence supporting H1.

The difference between the two scenarios is the distribution. In the first
scenario, the components are distributed according to a standard normal. In
the second scenario, the components are distributed according to one or three
fair coin tosses. To see how the distribution affects things, we bring in the
law of large numbers, which is discussed in §5.3.

Let X1, X2, . . . , Xd be a simple random sample from some population,
and let µ be the population mean. Recall this means X1, X2, . . . , Xd are
i.i.d. random variables, with µ = E(X). The sample mean is

X̄ =
X1 +X2 + · · ·+Xd

d
.

Law of Large Numbers

For large sample size d, the sample mean X̄ approximately equals the
population mean µ, X̄ ≈ µ.

We use the law of large numbers to explain the closeness of the vector
angles to specific values.

Assume u = (x1, x2, . . . , xd), and v = (y1, y2, . . . , yd) where all components
are selected independently of each other, and each is selected according to
the same distribution.

Let U = (X1, X2, . . . , Xd), V = (Y1, Y2, . . . , Yd), be the corresponding
random variables. Then X1, X2, . . . , Xd and Y1, Y2, . . . , Yd are independent
and identically distributed (i.i.d.), with population mean E(X1) = E(Y1).

6.1. ESTIMATION 359

From this, X1Y1, X2Y2, . . . , XdYd are i.i.d. random variables with popu-
lation mean E(X1Y1). By the law of large numbers,1

X1Y1 +X2Y2 + · · ·+XdYd

d
≈ E(X1Y1),

so
U · V = X1Y1 +X2Y2 + · · ·+XdYd ≈ dE(X1Y1).

Similarly, U · U ≈ dE(X2
1) and V · V ≈ dE(Y 2

1). Hence (check that the d’s
cancel)

cos(U, V) =
U · V√

(U · U)(V · V)
≈ E(X1Y1)√

E(X2
1)E(Y 2

1)
.

Since X1 and Y1 are independent with mean µ and variance σ2,

E(X1Y1) = E(X1)E(Y1) = µ2, E(X2
1) = µ2 + σ2, E(Y 2

1) = µ2 + σ2.

If θ is the angle between U and V , we conclude

cos(θ) =
U · V√

(U · U)(V · V)
≈ µ2

µ2 + σ2
.

When the distribution is standard normal, µ = 0, so the angle is approxi-
mately 90◦. When the distribution is Bernoulli with parameter p,

µ2

µ2 + σ2
=

p2

p2 + p(1− p)
= p.

For p = .5, this results in an angle of 60◦.
The general result is

Random Vectors in High Dimensions

Let U and V be two vectors selected randomly. Assume the compo-
nents of U and V are independent and identically distributed with
mean µ and variance σ2. Let θ be the angle between them. When the
vector dimension is high,

cos(θ) is approximately
µ2

µ2 + σ2
.

1 ≈ means the ratio of the two sides approaches 1 for large n, see §A.7.

360 CHAPTER 6. STATISTICS

6.2 Z-test

Suppose we want to estimate the proportion of American college students
who have a smart phone. Instead of asking every student, we take a sample
and make an estimate based on the sample.

The population proportion p is the actual proportion of students that in
fact have a smart phone. Then 0 < p < 1. Pick a student, and let

X =

{
1, if the student has a smartphone,

0, if not.

Then X is a Bernoulli random variable with mean p.
For example, suppose the population proportion of students that have a

smartphone is p = .7, and we sample n = 25 students, obtaining a sample
proportion X̄. If we repeat the sampling N = 1000 times, we will obtain 1000
values for X̄. Figure 6.2 displays the resulting histogram of X̄ values. Here
is the code

from numpy import *

from matplotlib.pyplot import *

from numpy.random import default_rng

samples = default_rng().binomial

n, p, N = 25, .7, 1000

v = samples(n,p,N)/n

hist(v,edgecolor ='Black')
show()

Fig. 6.2 Histogram of sampling n = 25 students, repeated N = 1000 times.

6.2. Z-TEST 361

Let X1, X2, . . . , Xn be a simple random sample of size n. This means
n students were selected randomly and independently and whether or not
they had smartphones was recorded in the variables X1, X2, . . . , Xn. Each
of these variables equals one or zero with probability p or 1− p.

The sample mean (§5.3) is

X̄ =
X1 +X2 + · · ·+Xn

n
=

1

n

n∑
k=1

Xk.

Because each Xk is 0 or 1, this is the sample proportion of the students in
the sample that have smartphones. Like p, X̄ is also between zero and one.

Because the samples vary, it is impossible to make absolute statements
about the population. Instead, as we see below, the best we can do is make
statements that come with a confidence level. Confidence levels are expressed
as percentages, such as a 95% confidence level, or as a proportion, such as a
.95 confidence level.

Often levels are expressed as significance levels. The significance level is
the corresponding tail probability, so

significance level = 1− confidence level.

A confidence level of zero indicates that we have no faith at all that se-
lecting another sample will give similar results, while a confidence level of 1
indicates that we have no doubt at all that selecting another sample will give
similar results.

When we say p is within X̄ ± ϵ, or

|p− X̄| < ϵ,

we call ϵ the margin of error.. The interval

(L,U) = (X̄ − ϵ, X̄ + ϵ)

is a confidence interval.
With the above setup, we have the population proportion p, and the four

sample characteristics

• sample size n
• sample proportion X̄,
• margin of error ϵ,
• confidence level α.

Suppose we do not know p, but we know n and X̄. We say the margin of
error is ϵ, at confidence level α, if

Prob(|p− X̄| < ϵ) = α.

Here are some natural questions:

362 CHAPTER 6. STATISTICS

1. Given a sample of size n = 20 and sample proportion X̄ = .7, what can
we say about the margin of error ϵ with confidence α = .95?

2. Given a sample proportion X̄ = .7, what sample size n should we take
to obtain a margin of error ϵ = .15 with confidence α = .95?

3. Given a sample proportion X̄ = .7, what sample size n should we take
to obtain a margin of error ϵ = .15 with confidence α = .99?

4. Given a sample of size n = 20 and sample proportion X̄ = .7, with what
confidence level α is the margin of error ϵ = .1?

The answers are at the end of the section.

Suppose each Xk in the sample X1, X2, . . . , Xn has mean µ and standard
deviation σ. From §5.3, we know the mean and standard deviation of X̄ are
µ and σ/

√
n. In particular, when X1, X2, . . . , Xn is a Bernoulli sample, the

mean and variance of the sample proportion X̄ are p and p(1− p)/n.
Therefore, the mean and variance of the standardized random variable

Z =
√
n

X̄ − p√
p(1− p)

are zero and one.
Returning to our smartphone question, how close is the sample mean X̄

to the population mean E(X) = p? Remember, both X̄ and p are between 0
and 1. More specifically, given a margin of error ϵ, we want to compute the
confidence level

Prob
(∣∣X̄ − p

∣∣ < ϵ
)
.

This corresponds to the confidence interval

L,U = X̄ − ϵ, X̄ + ϵ.

The key result is the central limit theorem (§5.3): Z is approximately
normal. How large should the sample size n be in order to apply the central
limit theorem? When we have success-failure condition

np ≥ 10, n(1− p) ≥ 10.

For example, p = .7 and n = 50 satisfies the success-failure condition.
Let α be the two-tail significance level, say α = .05. Assuming Z is exactly

normal, let z∗ be the z-score corresponding to significance α,

Prob(|Z| > z∗) = α.

Let σ/
√
n be the standard error. By the central limit theorem,

6.2. Z-TEST 363

α ≈ Prob

(
|X̄ − p|√
p(1− p)

>
z∗√
n

)
.

To compute the confidence interval (L,U), we solve

|X̄ − p|√
p(1− p)

=
z∗√
n

(6.2.1)

for p. But (6.2.1) may be rewritten as a quadratic equation in p, leading to
the approximate solution

L,U = X̄ ± ϵ = X̄ ± z∗√
n
·
√

X̄(1− X̄).

From here we obtain the margin of error

ϵ =
z∗√
n
·
√

X̄(1− X̄).

More generally, let z∗ be the z-score corresponding to significance level α,
so

zstar = Z.ppf(alpha) # lower-tail, zstar < 0

zstar = Z.ppf(1-alpha) # upper-tail, zstar > 0

zstar = Z.ppf(1-alpha/2) # two-tail, zstar > 0

Given a population with known standard deviation σ, sample size n, and
sample mean X̄, the margin of error is

ϵ = z∗ · σ√
n
,

and the intervals

(L,U) =


(X̄ − ϵ, X̄), lower-tail,

(X̄, X̄ + ϵ), upper-tail,

(X̄ − ϵ, X̄ + ϵ), two-tail,

are the confidence intervals at significance level α. When not specified, a
confidence interval is usually taken to be two-tail.

In the Python code below, instead of working with the standardized statis-
tic Z, we work directly with the X̄. When σ is not known, we have to replace
the normal distribution by the t distribution (§6.3).

364 CHAPTER 6. STATISTICS

##########################

Confidence Interval - Z

##########################

from numpy import *

from scipy.stats import norm as Z

significance level alpha

def confidence_interval(xbar,sdev,n,alpha,type):

Xbar = Z(xbar,sdev/sqrt(n))

if type == "two-tail":

U = Xbar.ppf(1-alpha/2)

L = Xbar.ppf(alpha/2)

elif type == "upper-tail":

U = Xbar.ppf(1-alpha)

L = xbar

elif type == "lower-tail":

L = Xbar.ppf(alpha)

U = xbar

else: print("what's the test type?"); return

return L, U

when X is not Bernoulli 0,1,

Z-test assumes sdev is known!!!

when X is Bernoulli, sdev = sqrt(xbar*(1-xbar))

alpha = .02

sdev = 228

n = 35

xbar = 95

L, U = confidence_interval(xbar,sdev,n,alpha,type)

print("type: ", type)

print("significance, sdev, n, xbar: ", alpha,sdev,n,xbar)

print("lower, upper: ",L, U)

Now we can answer the questions posed at the start of the section. Here
are the answers.

1. When n = 20, α = .95, and X̄ = .7, we have [L,U] = [.5, .9], so ϵ = .2.
2. When X̄ = .7, α = .95, and ϵ = .15, we run confidence_interval for

15 ≤ n ≤ 40, and select the least n for which ϵ < .15. We obtain n = 36.
3. When X̄ = .7, α = .99, and ϵ = .15, we run confidence_interval for

1 ≤ n ≤ 100, and select the least n for which ϵ < .15. We obtain n = 62.
4. When X̄ = .7, n = 20, and ϵ = .1, we have

z∗ =
ϵ
√
n

σ
= .976.

6.2. Z-TEST 365

Since Prob(Z > z∗) = .165, the confidence level is 1 − 2 ∗ .165 = .68 or
68%.

The speed limit on a highway is µ0 = 120. Ten automatic speed cam-
eras are installed along a stretch of the highway to measure passing vehicles
speeds. Because the cameras aren’t perfect, the average speed X̄ measured
by the cameras may not equal a vehicle’s true speed µ. As a consequence,
some drivers who were driving at the speed limit may be fined. These drivers
are false positives.

Suppose the distribution of a vehicle’s measured speed is normal with
standard deviation 2. What measured speed cutoff µ∗ should the authorities
use to keep false positives below 1%? Here we are asked for the upper-tail
confidence interval (L,U) = (µ0, µ

∗) at significance level .01. A driver will be
fined if their average measured speed X̄ is higher than µ∗.

Using the above code, the cutoff µ∗ equals 121.47.

One use of confidence intervals is hypothesis testing. Here we have two
hypotheses, a null hypothesis and an alternate hypothesis. In the above set-
ting where we are estimating a population parameter µ, the null hypothesis
is that µ equals a certain value µ0, and the alternate hypothesis is that µ
is not equal to µ0. Hypothesis testing is of three types, depending on the
alternate hypothesis: µ ̸= µ0, µ > µ), µ < µ0. These are two-tail, lower-tail,
and upper-tail hypotheses.

• H0: µ = µ0

• Ha: µ ̸= µ0 or µ < µ0 or µ > µ0.

For example, going back to our smartphone setup, if we sample n = 20
students, obtaining a mean x̄ = .7, then σ =

√
x̄(1− x̄) = .46, and the two-

tail 5% confidence interval is then [.5, .9]. If µ0 lies outside the confidence
interval, we reject H0 and accept Ha, at the 5% level. Otherwise, if µ0 lies
within the interval, we do not reject H0.

Suppose 35 people are randomly selected and the accuracy of their wrist-
watches is checked, with positive errors representing watches that are ahead
of the correct time and negative errors representing watches that are behind
the correct time. The sample has a mean of 95 seconds and a population
standard deviation of 228 seconds. At the 2% significance, can we claim the
population mean is µ0 = 0?

Here

• H0: µ = 0

366 CHAPTER 6. STATISTICS

• Ha: µ ̸= 0.

Here the significance level is α = .02 and µ0 = 0. To decide whether to
reject H0 or not, compute the standardized test statistic

z =
√
n · x̄− µ0

σ
= 2.465.

Since z is a sample from an approximately normal distribution Z, the p-value

p = Prob(|Z| > z) = .0137.

On the other hand, the z-score corresponding to the requested significance
level is z∗ = 2.326, since

Prob(|Z| > 2.326) = .02.

Since p is less than α, or equivalently, since |z| > z∗, we reject H0. In other
words, when the p-value is smaller than the significance level, it is more
significant, and we reject H0.

Equivalently, the 98% confidence interval is

(x̄− ϵ, x̄+ ϵ) = (5.3, 184.6) .

Since µ0 = 0 is outside this interval, we reject H0.

Hypothesis Testing

There are three types of alternative hypotheses Ha:

µ < µ0, µ > µ0, µ ̸= µ0.

These are lower-tail, upper-tail, and two-tail tests. In every case, we
have a sample of size n, a statistic x̄, a standard deviation σ, a stan-
dardized statistic

z =
√
n · x̄− µ0

σ
,

a significance level α, the p-value

p = Prob(Z < z), p = Prob(Z > z), p = Prob(|Z| > z),

and the critical cutoff z∗,

Prob(Z < z∗) = α, Prob(Z > z∗) = α, Prob(|Z| > z∗) = α.

6.2. Z-TEST 367

Then we reject H0 whenever z is more significant than z∗, which is
the same as saying whenever the p-value p is less than the significance
level α.

In the Python code below, instead of working with the standardized statis-
tic Z, we work directly with X̄, which is normally distributed with mean µ0

and standard deviation σ/
√
n.

###################

Hypothesis Z-test

###################

from numpy import *

from scipy.stats import norm as Z

significance level alpha

def ztest(mu0, sdev, n, xbar,type):

Xbar = Z(mu0,sdev/sqrt(n))

print("mu0, sdev, n, xbar: ", mu0,sdev,n,xbar)

if type == "lower-tail": p = Xbar.cdf(xbar)

elif type == "upper-tail": p = 1 - Xbar.cdf(xbar)

elif type == "two-tail": p = 2 * (1 - Xbar.cdf(abs(xbar)))

print("type: ",type)

print("pvalue: ",p)

if p < alpha: print("reject H0")

else: print("do not reject H0")

xbar = 122

n = 10

type = "upper-tail"

mu0 = 120

sdev = 2

alpha = .01

ztest(mu0, sdev, n, xbar,type)

Going back to the driving speed example, the hypothesis test is

• H0: µ = µ0

• Ha: µ > µ0

If a driver’s measured average speed is X̄ = 122, the above code rejects H0.
This is consistent with the confidence interval cutoff we found above.

368 CHAPTER 6. STATISTICS

There are two types of possible errors we can make. a Type I error is when
H0 is true, but we reject it, and a Type 2 error is when H0 is not true but
we fail to reject it.

H0 is true H0 is false

do not reject H0 1− α Type II error: β

reject H0 Type I error: α Power: 1− β

Table 6.3 The error matrix.

We reject H0 when the p-value of Z is less than the significance level α,
which happens when z < z∗ or z > z∗ or |z| > z∗. In all cases, the chance of
this happening is by definition α. In other words,

Prob(Type I error) = Prob(p-value < α | H0) = α.

Thus the probability of a type I error is the significance level α.
We make a Type II error when we do not reject H0, but H0 is false. To

compute the probability of a Type II error, suppose the true value of µ is µ1.
Then we do not reject H0 if |z| < |z∗|, which is when µ0 lies in the confidence
interval x̄± z∗σ/

√
n, or when x̄ lies in the interval

µ0 −
z∗σ√
n

< x̄ < µ0 +
z∗σ√
n
.

But when µ = µ1, X̄ is N(µ1, σ), so the probability of this event can be
computed.

Standardize X̄ by subtracting µ1 and dividing by the standard error. Then
we have a Type II error when

√
n
(µ0 − µ1)

σ
− z∗ < z <

√
n
(µ0 − µ1)

σ
+ z∗.

If we set δ to equal the standardized difference in the means,

δ =
√
n
(µ0 − µ1)

σ
,

then we have a Type II error when

δ − z∗ < Z < δ + z∗,

or when |Z − δ| < z∗. Hence

Prob(Type II error) = Prob (|Z − δ| < z∗) .

6.2. Z-TEST 369

This calculation was for a two-tail test. When the test is upper-tail or
lower-tail, a similar calculation leads to the code

############################

Type1 and Type2 errors - Z

############################

from numpy import *

from scipy.stats import norm as Z

def type2_error(type,mu0,mu1,sdev,n,alpha):

print("significance,mu0,mu1, sdev, n: ", alpha,mu0,mu1,sdev,n)

print("prob of type1 error: ", alpha)

delta = sqrt(n) * (mu0 - mu1) / sdev

if type == "lower-tail":

zstar = Z.ppf(alpha)

type2 = 1 - Z.cdf(delta + zstar)

elif type == "upper-tail":

zstar = Z.ppf(1-alpha)

type2 = Z.cdf(delta + zstar)

elif type == "two-tail":

zstar = Z.ppf(1 - alpha/2)

type2 = Z.cdf(delta + zstar) - Z.cdf(delta - zstar)

else: print("what's the test type?"); return

print("test type: ",type)

print("zstar: ", zstar)

print("delta: ", delta)

print("prob of type2 error: ", type2)

print("power: ", 1 - type2)

mu0 = 120

mu1 = 122

sdev = 2

n = 10

alpha = .01

type = "upper-tail"

type2_error(type,mu0,mu1,sdev,n,alpha)

A type II error is when we do not reject the null hypothesis and yet it’s
false. The power of a test is the probability of rejecting the null hypothesis
when it’s false (Figure 6.3). If the probability of a type II error is β, then the
power is 1− β.

Going back to the driving speed example, what is the chance that someone
driving at µ1 = 122 is not caught? This is a type II error; using the above
code, the probability is

β = Prob(X̄ = 120 | µ = 122) = 20%.

370 CHAPTER 6. STATISTICS

Therefore this test has power 80% to detect such a driver.

6.3 T -test

LetX1,X2, . . . ,Xn be a simple random sample from a population. We repeat
the previous section when we know neither the population mean µ, nor the
population variance σ2. We only know the sample mean

X̄ =
X1 +X2 + · · ·+Xn

n

and the sample variance

S2 =
1

n− 1

n∑
k=1

(Xk − X̄)2.

For example, assume X1, X2, . . . , Xn are Bernoulli random variables with
values 0, 1. Then as we’ve seen before,

(n− 1)S2 =

n∑
k=1

(Xk − X̄)2 = nX̄(1− X̄).

From §5.5, when the population is standard normal,

• (n− 1)S2 is chi-squared of degree n− 1, and
• X̄ and S2 are independent.

A Student2 random variable is a continuous random variable T with prob-
ability density function

p(t) = C ·
(
1 +

t2

d

)−(d+1)/2

, a < t < b. (6.3.1)

Here C is a constant to make the total area under the graph equal to one
(Figure 6.4).

The distribution of a Student random variable T is the Student distribu-
tion with degree d, also called the t-distribution with degree d. The Student
distribution has pdf (6.3.1), and the probability that T lies in a small interval
[a, b] is

2 This terminology is due to the statistician R. A. Fisher.

6.3. T -TEST 371

Prob(a < T < b)

b− a
≈ p(t), a < t < b,

When the interval [a, b] is not small, this is not correct. The exact formula
for Prob(a < T < b) is the area under the graph (Figure 6.4). This is obtained
by integration,

Prob(a < T < b) =

∫ b

a

p(t) dt. (6.3.2)

Under this interpretation, this probability corresponds to the area under the
graph between the vertical lines at a and at b, and the total area under the
graph corresponds to a = −∞ and b = ∞.

More generally, means of f(T) are computed by integration,

E(f(T)) =

∫ ∞

−∞
f(t)p(t) dt,

with the integral computed via the fundamental theorem of calculus (A.6.2)
or Python.

Fig. 6.4 Student distribution, against normal (dashed).

The Student pdf (6.3.1) approaches the standard normal pdf (5.4.1) as
d → ∞ (Exercise 6.3.1).

372 CHAPTER 6. STATISTICS

from numpy import *

from scipy.stats import t as T, norm as Z

from matplotlib.pyplot import *

for d in [3,4,7]:

t = arange(-3,3,.01)

plot(t,T(d).pdf(t),label="d = "+str(d))

plot(t,Z.pdf(t),"--",label=r"d = ∞")
grid()

legend()

show()

The main result of this section, derived using calculus, is

Relation Between Z, U , and T

Suppose Z and U are independent, where Z is standard normal, and
U is chi-squared with degree d. Then

T =
Z√
U/d

is Student with degree d.

In the previous section, we normalized a sample mean by subtracting the
mean µ and dividing by the standard error σ/

√
n. Since now we don’t know

σ, it is reasonable to divide by the sample standard error, obtaining

√
n · X̄ − µ

S
=

√
n · X̄ − µ√√√√ 1

n− 1

n∑
k=1

(Xk − X̄)2

.

If we standardize each variable by

Xk = µ+ σZk,

then we can verify

X̄ = µ+ σZ̄, Z̄ =
Z1 + Z2 + · · ·+ Zn

n
,

and

6.3. T -TEST 373

S2 = σ2 1

n− 1

n∑
k=1

(Zk − Z̄)2.

From this, we have

√
n · X̄ − µ

S
=

√
n · Z̄√√√√ 1

n− 1

n∑
k=1

(Zk − Z̄)2

=
√
n · Z̄√

U/(n− 1)
.

Using the main result with d = n− 1, we arrive at

Samples and Student Distributions

Let X1, X2, . . . , Xn be independent normal random variables with
mean µ. Let X̄ be the sample mean, let S2 be the sample variance,
and let

T =
√
n · X̄ − µ

S
.

Then T is a Student random variable with degree (n− 1).

The takeaway here is we do not need to know the population standard
deviations σ of X1, X2, . . . , Xn to compute T .

The t-score t∗ corresponding3 to significance α is

tstar = T(d).ppf(alpha) # lower-tail, tstar < 0

tstar = T(d).ppf(1-alpha) # upper-tail, tstar > 0

tstar = T(d).ppf(1-alpha/2) # two-tail, tstar > 0

Here d is the degree of T . Then we have

##########################

Confidence Interval - T

##########################

from numpy import *

from scipy.stats import t as T

def confidence_interval(xbar,s,n,alpha,type):

d = n-1

if type == "two-tail":

3 Geometrically, the p-value Prob(T > 1) is the probability that a normally distributed

point in (d+ 1)-dimensional spacetime is inside the light cone.

374 CHAPTER 6. STATISTICS

tstar = T(d).ppf(1-alpha/2)

L = xbar - tstar * s / sqrt(n)

U = xbar + tstar * s / sqrt(n)

elif type == "upper-tail":

tstar = T(d).ppf(1-alpha)

L = xbar

U = xbar + tstar* s / sqrt(n)

elif type == "lower-tail":

tstar = T(d).ppf(alpha)

L = xbar + tstar* s / sqrt(n)

U = xbar

else: print("what's the test type?"); return

print("type: ",type)

return L, U

n = 10

xbar = 120

s = 2

alpha = .01

type = "upper-tail"

print("significance, s, n, xbar: ", alpha,s,n,xbar)

L,U = confidence_interval(xbar,s,n,alpha,type)

print("lower, upper: ", L,U)

Going back to the driving speed example from §6.2, instead of assuming
the population standard deviation is σ = 2, we compute the sample standard
deviation and find it’s S = 2. Recomputing with T (9), instead of Z, we
see (L,U) = (120, 121.78), so the cutoff now is µ∗ = 121.78, as opposed to
µ∗ = 121.47 there.

We turn now to hypothesis testing. As before, we have two hypotheses, a
null hypothesis and an alternate hypothesis. In the above setting where we
are estimating a population parameter, the null hypothesis is that µ equals a
certain value µ0, and the alternate hypothesis is that µ is not equal to µ0.

• H0: µ = µ0

• Ha: µ ̸= µ0.

Here is the code:

###################

Hypothesis T-test

###################

from numpy import *

from scipy.stats import t as T

6.3. T -TEST 375

def ttest(mu0, s, n, xbar,type):

d = n-1

print("mu0, s, n, xbar: ", mu0,s,n,xbar)

t = sqrt(n) * (xbar - mu0) / s

print("t: ",t)

if type == "lower-tail": p = T(d).cdf(t)

elif type == "upper-tail": p = 1 - T(d).cdf(t)

elif type == "two-tail": p = 2 * (1 - T(d).cdf(abs(t)))

print("pvalue: ",p)

if p < alpha: print("reject H0")

else: print("do not reject H0")

xbar = 122

n = 10

type = "upper-tail"

mu0 = 120

s = 2

alpha = .01

ttest(mu0, s, n, xbar,type)

Going back to the driving speed example, the hypothesis test is

• H0: µ = µ0

• Ha: µ > µ0

If a driver’s measured average speed is X̄ = 122, the above code rejects
H0. This is consistent with the confidence interval cutoff we found above.
However, the p-value obtained here is greater than the corresponding p-value
in §6.2.

For Type I and Type II errors, the code is

########################

Type1 and Type2 errors

########################

from numpy import *

from scipy.stats import t as T

def type2_error(type,mu0,mu1,n,alpha):

d = n-1

print("significance,mu0,mu1,n: ", alpha,mu0,mu1,n)

print("prob of type1 error: ", alpha)

delta = sqrt(n) * (mu0 - mu1) / sdev

if type == "lower-tail":

tstar = T(d).ppf(alpha)

type2 = 1 - T(d).cdf(delta + tstar)

376 CHAPTER 6. STATISTICS

elif type == "upper-tail":

tstar = T(d).ppf(1-alpha)

type2 = T(d).cdf(delta + tstar)

elif type == "two-tail":

tstar = T(d).ppf(1 - alpha/2)

type2 = T(d).cdf(delta + tstar) - T(d).cdf(delta - tstar)

else: print("what's the test type?"); return

print("test type: ",type)

print("tstar: ", tstar)

print("delta: ", delta)

print("prob of type2 error: ", type2)

print("power: ", 1 - type2)

type2_error(type,mu0,mu1,n,alpha)

Going back to the driving speed example, if a driver’s measured average
speed is X̄ = 122, what is the chance they will not be fined? From the code,
the probability of this Type II error is 37%, and the power to detect such a
driver is 63%.

Exercises

Exercise 6.3.1 Use the compound-interest formula (A.3.9) to show the Stu-
dent pdf (6.3.1) equals the standard normal pdf (5.4.1) when d = ∞. Since
the formula for the constant C is not given, ignore C in your calculation.

6.4 Chi-Squared Tests

Let X1, X2, . . . , Xn be i.i.d. random variables, where each Xk is categorical.
This means each Xk is a discrete random variable (§5.3), taking values in one
of d categories. For simplicity, assume the categories are

i = 1, 2, . . . , d.

When d = 2, this reduces to the Bernoulli case.
When d = 2 and Xk = 0, 1, the sample mean X̄ is a proportion p̂, the

population mean is p = Prob(Xk = 1), the population standard deviation is√
p(1− p), and the sample standard deviation is

√
X̄(1− X̄) =

√
p̂(1− p̂).

By the central limit theorem, the test statistic

6.4. CHI-SQUARED TESTS 377

Z =
√
n · p̂− p√

p(1− p)
(6.4.1)

is approximately standard normal for large enough sample size, and con-
sequently U = Z2 is approximately chi-squared with degree one. The chi-
squared test generalizes this from d = 2 categories to d > 2 categories.

Given a category i, let #i denote the number of times Xk = i, 1 ≤ k ≤ n,
in a sample of size n. Then #i is the count that Xk = i, and p̂i = #i/n is the
observed frequency, in a sample of size n. Let pi be the expected frequency,

pi = Prob(Xk = i).

Then p = (p1, p2, . . . , pd) is the probability vector associated to X. Since Xk

are identically distributed, this does not depend on k.
By the central limit theorem,

√
n(p̂i − pi) =

√
n

(
#i

n
− pi

)
,

are approximately normal for large n. Based on this, we have the

Goodness-Of-Fit Test

Let p̂ = (p̂1, p̂2, . . . , p̂d) be the observed frequencies corresponding to
samples X1, X2, . . . , Xn, and let p = (p1, p2, . . . , pd) be the expected
frequencies. Then, for large sample size n, the statistic

n

d∑
i=1

(p̂i − pi)
2

pi
(6.4.2)

is approximately chi-squared with degree d− 1.

By clearing denominators, (6.4.2) may be rewritten in terms of counts as
follows,

d∑
i=1

(#i − npi)
2

npi
=

d∑
i=1

(observedi − expectedi)
2

expectedi
.

When d = 2, this statistic reduces to Z2, where Z is given by (6.4.1). Here
is the code.

from numpy import *

from scipy.stats import chi2 as U

def goodness_of_fit(observed,expected):

assume len(observed) == len(expected)

d = len(observed)

378 CHAPTER 6. STATISTICS

u = sum([(observed[i] - expected[i])**2/expected[i] for i in

↪→ range(d)])

pvalue = 1 - U(d-1).cdf(u)

return pvalue

Suppose a dice is rolled n = 120 times, and the observed counts are

O1 = 17, O2 = 12, O3 = 14, O4 = 20, O5 = 29, O6 = 28.

Notice
O1 +O2 +O3 +O4 +O5 +O6 = 120.

If the dice is fair, the expected counts are

E1 = 20, E2 = 20, E3 = 20, E4 = 20, E5 = 20, E6 = 20.

Based on the observed counts, at 5% significance, what can we conclude about
the dice?

Here there are d = 6 categories, α = .05, and the statistic (6.4.2) equals

u = 12.7.

The dice is fair if u is not large and the dice is unfair if u is large. At
significance level α, the large/not-large cutoff u∗ is

from scipy.stats import chi2 as U

d = 6

ustar = U(d-1).ppf(1-alpha)

Since this returns u∗ = 11.07 and u > u∗, we can conclude the dice is not
fair.

To derive the goodness-of-fit test, let X be a discrete random variable,
taking values in 1, 2, . . . , d, with distribution p = (p1, p2, . . . , pd). We vec-
torize (§1.3) X by defining the one-hot encoded (§2.4) vector-valued random
variable V = (V1, V2, . . . , Vd) as follows,

Vi =


1

√
pi

if X = i,

0 if X ̸= i.
(6.4.3)

6.4. CHI-SQUARED TESTS 379

For future reference, we denote V = vectp (X).
Then

E(Vi) =
1

√
pi

Prob(X = i) =
pi√
pi

=
√
pi,

and

E(ViVj) =

{
1 if i = j,

0 if i ̸= j,

for i, j = 1, 2, . . . , d. If

µ = (
√
p1,

√
p2, . . . ,

√
pd) ,

we conclude
E(V) = µ, E(V ⊗ V) = I.

From this,
E(V) = µ, V ar(V) = I − µ⊗ µ. (6.4.4)

Now define
Vk = vectp (Xk) , k = 1, 2, . . . , n.

SinceX1,X2, . . . ,Xn are i.i.d, V1, V2, . . . , Vn are i.i.d. By (5.5.5), we conclude
the random vector

Z =
√
n

(
1

n

n∑
k=1

Vk − µ

)
has mean zero and variance I − µ⊗ µ.

Since V1, V2, . . . , Vn are i.i.d, by the central limit theorem, we also conclude
Z is approximately normal for large n.

Since

|µ|2 = (
√
p1)

2 + (
√
p2)

2 + · · ·+ (
√
pd)

2 = p1 + p2 + · · ·+ pd = 1,

µ is a unit vector. By the singular chi-squared result in §5.5, |Z|2 is approxi-
mately chi-squared with degree d− 1. Since

Zi =
√
n

(
p̂i√
pi

−√
pi

)
, (6.4.5)

we write |Z|2 out,

|Z|2 =

d∑
i=1

Z2
i = n

d∑
i=1

(
p̂i√
pi

−√
pi

)2

= n

d∑
i=1

(p̂i − pi)
2

pi
,

obtaining (6.4.2).

380 CHAPTER 6. STATISTICS

Suppose X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are samples measuring two
possibly related effects. Suppose the X variables take on d categories, i =
1, 2, . . . , d, and the Y variables take on N categories, j = 1, 2, . . . , N . Let

pi = Prob(Xk = i), qj = Prob(Yk = j),

and set p = (p1, p2, . . . , pd), q = (q1, q2, . . . , qN). The goal is test whether the
two effects are independent or not.

Let
rij = Prob(Xk = i and Yk = j).

Then r is a d×N matrix. The effects are independent when

rij = piqj ,

or r = p⊗ q.
For example, suppose 300 people are polled and the results are collected

in a contingency table (Figure 6.5).

Democrat Republican Independent Total

Women 68 56 32 156

Men 52 72 20 144

Total 120 128 52 300

Table 6.5 2× 3 = d×N contingency table [30].

Is a person’s gender correlated with their party affiliation, or are the two
variables independent? To answer this, let p̂ and q̂ be the observed frequencies

p̂i =
#{k : Xk = i}

n
, q̂j =

#{k : Yk = j}
n

,

and let r̂ be the joint observed frequencies

r̂ij =
#{k : Xk = i and Yk = j}

n
.

Then r̂ is also a d×N matrix.
When the effects are independent, r = p ⊗ q, so, by the law of large

numbers, we should have
r̂ ≈ p̂⊗ q̂

for large sample size. The chi-squared independence test quantifies the dif-
ference of the two matrices r and r̂.

6.4. CHI-SQUARED TESTS 381

Chi-squared Independence Test

If X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are independent, then, for large
sample size n, the statistic

n

d,N∑
i,j=1

(r̂ij − p̂iq̂j)
2

p̂iq̂j
(6.4.6)

is approximately chi-squared with degree (d− 1)(N − 1).

Only sample data is used to compute the statistic (6.4.6), knowledge of p
and q is not needed. Conversely, the test says nothing about p and q, and
only queries independence.

By clearing denominators, (6.4.6) may be rewritten in terms of counts as
follows,

d,N∑
i,j=1

(
n#XY

ij −#X
i #Y

j

)2
n#X

i #Y
j

= −n+ n

d,N∑
i,j=1

(
#XY

ij

)2
#X

i #Y
j

= −n+ n

d,N∑
i,j=1

(observed)2

expected
.

The code

from numpy import *

from scipy.stats import chi2 as U

table is dxN numpy array

def chi2_independence(table):

n = sum(table) # total sample size

d = len(table)

N = len(table.T)

rowsum = array([sum(table[i,:]) for i in range(d)])

colsum = array([sum(table[:,j]) for j in range(e)])

expected = outer(rowsum,colsum) # tensor product

u = -n + n*sum([[table[i,j]**2/expected[i,j] for j in range(N)]

↪→ for i in range(d)])

deg = (d-1)*(N-1)

pvalue = 1 - U(deg).cdf(u)

return pvalue

table = array([[68,56,32],[52,72,20]])

382 CHAPTER 6. STATISTICS

chi2_independence(table)

returns a p-value of 0.0401, so, at the 5% significance level, the effects are
not independent.

The derivation of the independence test is similar to the goodness-of-fit
test. There are two differences. First, because there are two indices Xk = i,
Yk = j, we work with matrices, not vectors. Second, we appeal to the law of
large numbers to replace pi by p̂i and qj by q̂j for large n.

Let Z be the d×N matrix

Zij =
√
n

(
r̂ij − p̂iq̂j√

p̂i
√

q̂j

)
. (6.4.7)

Then (see (2.2.16))

∥Z∥2 = trace(ZtZ) =

d,N∑
i,j=1

Z2
ij

equals (6.4.6).
Let u1, u2, . . . , ud and v1, v2, . . . , vN be orthonormal bases for Rd and

RN respectively. By (2.9.8),

∥Z∥2 = trace(ZtZ) =

d,N∑
i,j=1

(ui · Zvj)
2. (6.4.8)

We will show ∥Z∥2 is asymptotically chi-squared of degree (d − 1)(N − 1).
To achieve this, we show Z is asymptotically normal.

Let X and Y be discrete random variables with probability vectors
p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qN), and assume X and Y are in-
dependent.

Let

µ = (
√
p1,

√
p2, . . . ,

√
pd) , ν = (

√
q1,

√
q2, . . . ,

√
qN) .

Then µ and ν are unit vectors. Following (6.4.3), define

M = (vectp (X)− µ)⊗ (vectq (Y)− ν). (6.4.9)

Then M is a d×N matrix-valued random variable, and

u ·Mv = (vectp (X) · u− µ · u)(vectq (Y) · v − ν · v).

6.4. CHI-SQUARED TESTS 383

If u and v are unit vectors in Rd and RN respectively, by (6.4.4),

E(vectp (X) · u) = µ · u, V ar(vectp (X) · u) = 1− (µ · u)2,

and

E(vectq (Y) · v) = ν · v, V ar(vectq (Y) · v) = 1− (ν · v)2.

By independence of X and Y , the mean of u ·Mv is zero, and

V ar(u ·Mv) =
(
1− (µ · u)2

) (
1− (ν · v)2

)
.

In particular, when the unit vectors u or v are orthogonal to µ and ν respec-
tively, u ·Mv is a standard random variable, i.e. has mean zero and variance
one. This also shows u ·Mν = 0, µ ·Mv = 0 for any u and v.

More generally (Exercise 6.4.3) u ·Mv and u′ ·Mv′ are uncorrelated when
u ⊥ u′ and v ⊥ v′.

Our goal is to show for large n, Z has the same mean and variance as that
of M . If we also show u · Zv and u′ · Zv′ are independent for large n when
u ⊥ u′ and v ⊥ v′, then (6.4.8) leads to the result. Now to the details.

Let W = Wn be a random variable that depends on n. We write

W ≈ 0

if all probabilities of W converge to zero for n large. In this case, we say W
is asymptotically zero (see §A.7 for more information).

Let W ′ be another random variable depending on n. We write W ≈ W ′,
and we say W is asymptotically equal to W ′, if all probabilities of W and W ′

agree asymptotically for n large. In particular, when W ≈ W ′,

E(W) ≈ E(W ′), V ar(W) ≈ V ar(W ′).

If W ≈ W ′ and W ′ is a normal random variable not depending on n, we
write W ≈ normal, and we say W is asymptotically normal. If W ≈ W ′ and
W ′ ≈ normal, then W ≈ normal.

Let Mk correspond to Xk and Yk, k = 1, 2, . . . , n, and let

ZCLT =
√
n

(
1

n

n∑
k=1

Mk − E(Mk)

)
=

1√
n

n∑
k=1

Mk.

Then, by independence, and the central limit theorem,

• the mean and variance of ZCLT are the same as those of M ,
• u · ZCLT ν = 0, µ · ZCLT v = 0 for any u and v, and,
• ZCLT ≈ normal.

Although Z and ZCLT are not equal, we will show Z ≈ ZCLT . To this
end, multiplying out the expression (6.4.9) for each M = Mk, and summing

384 CHAPTER 6. STATISTICS

over k = 1, 2, . . . , n, we see

ZCLT
ij =

√
n

(
r̂ij√
pi
√
qj

−
p̂i
√
qj

√
pi

−
q̂j
√
pi

√
qj

+
√
piqj

)
. (6.4.10)

By the law of large numbers, p̂i ≈ pi and q̂j ≈ qj so

q̂j − qj√
p̂i
√

q̂j
≈ 0.

As we saw before (6.4.5), by the central limit theorem,

√
n (p̂i − pi) ≈ normal.

Hence4 the product
√
n · (pi − p̂i)(q̂j − qj)√

p̂i
√
q̂j

≈ 0. (6.4.11)

Similarly, p̂i ≈ pi and q̂j ≈ qj , so

ZCLT
ij

(√
pi
√
qj√

p̂i
√
q̂j

− 1

)
≈ 0. (6.4.12)

Adding (6.4.10), (6.4.11), and (6.4.12), we obtain (6.4.7), hence

Z ≈ ZCLT .

We conclude

• the mean and variance of Z are asymptotically the same as those of M ,
• u · Zν ≈ 0, µ · Zv ≈ 0 for any u and v, and,
• Z ≈ normal.

In particular, since u·Zv and u′ ·Zv′ are asymptotically uncorrelated when
u ⊥ u′ and v ⊥ v′, and Z is asymptotically normal, we conclude u · Zv and
u′ · Zv′ are asymptotically independent when u ⊥ u′ and v ⊥ v′.

Now choose the orthonormal bases with u1 and v1 equal to µ and ν re-
spectively. Then

ui · Zvj , i = 1, 2, 3, . . . , d, j = 1, 2, 3, . . . , N

are independent normal random variables with mean zero, asymptotically for
large n, and variances according to the listing

4 The theoretical basis for this intuitively obvious result is Slutsky’s theorem [8].

6.4. CHI-SQUARED TESTS 385

µ · Zν µ · Zv2 µ · ZvN−1 µ · ZvN

u2 · Zν u2 · Zv2 u2 · ZvN−1 u2 · ZvN

.

ud−1 · Zν ud−1 · Zv2 ud−1 · ZvN−1 ud−1 · ZvN

ud · Zν ud · Zv2 ud · ZvN−1 ud · ZvN

≈

0 0 0 0

0 1 1 1

.

0 1 1 1

0 1 1 1

.

From this, only (d− 1)(N − 1) terms are nonzero in (6.4.8), hence ∥Z∥2 is
chi-squared with degree (d− 1)(N − 1), completing the proof.

Exercises

Exercise 6.4.1 Let V be the vectorization (6.4.3) of the discrete random
variable X, and let µ be the mean of V . Then V · µ = 1.

Exercise 6.4.2 Verify (6.4.10).

Exercise 6.4.3 Let M be as in (6.4.9). Then u ·Mv and u′ ·Mv′ are uncor-
related when u ⊥ u′ and v ⊥ v′.

Exercise 6.4.4 Verify the goodness-of-fit test statistic (6.4.2) is the square
of (6.4.1) when d = 2.

Exercise 6.4.5 [30] Among 100 vacuum tubes tested, 41 had lifetimes of less
than 30 hours, 31 had lifetimes between 30 and 60 hours, 13 had lifetimes
between 60 and 90 hours, and 15 had lifetimes of greater than 90 hours.
Are these data consistent with the hypothesis that a vacuum tube’s lifetime
is exponentially distributed (Exercise 5.3.23) with a mean of 50 hours? At
what significance? Here p = (p1, p2, p3, p4).

Exercise 6.4.6 [30] A study was instigated to see if southern California
earthquakes of at least moderate size are more likely to occur on certain
days of the week than on others. The catalogs yielded the data in Figure 6.6.
Test, at the 5 percent level, the hypothesis that an earthquake is equally
likely to occur on any of the 7 days of the week.

Day Sun Mon Tues Wed Thurs Fri Sat Total

Number of Earthquakes 156 144 170 158 172 148 152 1100

Table 6.6 Earthquake counts.

Exercise 6.4.7 [30] In a famous article (S. Russell, “A red sky at night. . . ”
Metropolitan Magazine London, 61, p. 15, 1926) the following dataset of

386 CHAPTER 6. STATISTICS

frequencies of sunset colors and whether each was followed by rain was pre-
sented. Test the hypothesis that whether it rains tomorrow is independent of
the color of today’s sunset.

Sky Color Number of Observations Number Followed by Rain

Red 61 26

Mainly red 194 52

Yellow 159 81

Mainly yellow 188 86

Red and yellow 194 52

Gray 302 167

Table 6.7 Sunset and rain counts.

Exercise 6.4.8 [30] A sample of 300 cars having mobile phones and one of
400 cars without phones were tracked for 1 year. The following table gives the
number of these cars involved in accidents over that year. Use the above to
test the hypothesis that having a mobile phone in your car and being involved
in an accident are independent. Use the 5 percent level of significance.

Accident No Accident

Mobile phone 22 278

No phone 26 374

Table 6.8 Phone and accident counts.

Chapter 7

Machine Learning

In this chapter, we go over the structure of neural networks, in enough detail
to write weight gradient code. Here the neural networks need not be layered,
they are allowed any topology. Then we study gradient descent methods,
and use them to train neural networks. We also analyze stochastic gradient
descent, and gradient descent with momentum.

The aim here is to consider only model cases where the analysis flows
smoothly. There are many variations, both theoretical and implementation
issues, that improve real-life performance, see [3] and [37]. Here we avoid
these variations in order to highlight the main ideas.

7.1 Overview

This first section is an overview of neural network training. Here is a summary
of the structure of neural networks.

• A graph consists of nodes and edges (§3.3).
• If each edge has a direction, the graph is directed.
• If each edge has a weight, the graph is weighed.
• A directed graph has input nodes, output nodes, and hidden nodes.
• A node with an activation function f is a neuron (§4.4).
• Each neuron has inputs and an output. The output is the result of in-
serting the inputs into f .

• A network is a weighed directed graph where all hidden nodes are neurons.
• A neural network is a network where each activation function is a function
of the weighed sum of the inputs (§7.2).

The goal is to train a neural network. To train a neural network means to
find weights W so that the input-output behavior of the network is as close
as possible to a given dataset of source-target sample pairs (x, y) = (xk, yk),
k = 1, 2, . . . , N .

387

388 CHAPTER 7. MACHINE LEARNING

To do this, we must have an error measure J between outputs and targets.
Since outputs depend on sources and weights, so does J = J(x, y,W). Here
is a summary of how neural networks are trained (§7.4).

1. Start with a source-target pair (x, y) and a weight matrix W .
2. Inject source x at the input nodes.
3. Compute the output x at all nodes (forward propagation).
4. Inject the derivative δ of J at the output nodes.
5. Compute the derivative δ of J at all nodes (back propagation).
6. Compute the error J between output and target.
7. Compute the weight gradient is ∇WJ = x⊗ δ.
8. Update W using gradient descent (§7.3), W+ = W − t∇WJ (§7.4).
9. Repeat steps 1-8 over all sample pairs (xk, yk), k = 1, 2, . . . , N (§7.4).
10. Repeat step 9 until convergence.

Steps 1-8 is an iteration, and step 9 is an epoch. An iteration uses a single
sample (more generally a batch of samples), and an epoch uses the entire
dataset. The mean loss or mean error over the dataset is

J(W) =
1

N

N∑
k=1

J(xk, yk,W).

With the dataset given, the mean loss is a function of the weights.
A weight matrix W ∗ is optimal if it is a minimizer of the mean error,

J(W ∗) ≤ J(W), for all W.

Convergence means W is close to W ∗.
Throughout the chapter, numpy is implicitly imported in all code.

7.2 Neural Networks

In §4.4, we saw two versions of forward and back propagation. In this section
we see a third version. We begin by reviewing the definition of graph and
network as given in §3.3 and §4.4.

A graph consists of nodes and edges. Nodes are also called vertices, and an
edge is an ordered pair (i, j) of nodes. Because the ordered pair (i, j) is not
the same as the ordered pair (j, i), our graphs are directed.

The edge (i, j) is incoming to node j and outgoing from node i. If a node j
has no outgoing edges, then j is an output node. If a node i has no incoming
edges, then i is an input node. If a node is neither an input nor an output, it
is a hidden node.

7.2. NEURAL NETWORKS 389

We assume our graphs have no cycles: every forward path terminates at an
output node in a finite number of steps, and every backward path terminates
at an input node in a finite number of steps.

A graph is weighed if a scalar weight wij is attached to each edge (i, j). If
(i, j) is not an edge, we set wij = 0.

If a graph has d nodes, the nodes are labeled 0, 1, 2, . . . , d − 1, and the
edges are completely specified by the d× d weight matrix W = (wij).

A node with an attached activation function fj is a neuron. A network
is a directed weighed graph where nodes are input nodes, output nodes, or
neurons. In the next paragraph, we define a special kind of network, a neural
network.

We attach to each node j an outgoing signal recursively as follows.

• At each input node j, the outgoing signal xj is obtained from a dataset
sample.

• At each neuron j, the outgoing signal xj is obtained by evaluating the
activation function fj on the outgoing signals of all nodes.

• At each output node j, there is no outgoing signal, and xj = None.

Explicitly, at each neuron j, the incoming list is

x−
j = (w0jx0, w1jx1, . . . , w(d−1)jxd−1).

Because wij = 0 if (i, j) is not an edge, the nonzero entries in the incoming
list to node j correspond to the edges incoming to node j. Then

xj = fj(x
−
j).

This is the setup for networks generally. Now we specialize to neural networks.

A neural network is a network where every activation function is the sum
of the entries of the incoming list,

xj = fj

∑
i→j

wijxi

 .

Here the sum is over all edges (i, j) incoming to node j. All the networks
in this section are neural networks, but the network in Figure 4.16 is not a
neural network.

In a neural network, if j is not an input node, we set

x−
j =

∑
i→j

wijxi. (7.2.1)

390 CHAPTER 7. MACHINE LEARNING

Then x−
j is the incoming signal to node j. For general networks, as in the

previous paragraph or as in §4.4, x−
j was a vector. In this chapter, x−

j is the
scalar given by (7.2.1).

The outgoing signal from node j is

xj = fj(x
−
j). (7.2.2)

When j is an input node, x−
j = None. When j is an output node, xj = None.

If the network has d nodes, the outgoing vector is

x = (x0, x1, . . . , xd−1),

and the incoming vector is

x− = (x−
0 , x

−
1 , . . . , x

−
d−1).

Let W be the weight matrix. If the network has d nodes, the activation
vector is

f = (f0, f1, . . . , fd−1).

where fj is the source on input nodes, and fj=None on output nodes. Then
a neural network may be written in vector-matrix form

x = f(W tx).

However, this representation is more useful when the network has structure,
for example in a dense shallow layer (7.2.13).

f

w0

w1

w2

1
f

y−

y−

y−

f

x0

x1

x2

y

Fig. 7.1 A perceptron: weights, incoming signals, and outgoing signals.

A perceptron is a network of the form

y = f(w0x0 + w1x1 + · · ·+ wd−1xd−1) = f(w · x)

(Figure 7.1). This is the simplest neural network.

7.2. NEURAL NETWORKS 391

If we set y− = w · x, then y− is the incoming signal, and y = f(y−) is the
outgoing signal.

Thus a perceptron is a linear function followed by an activation function.
By our definition of neural network,

Neural Network

Every neural network is a combination of perceptrons.

When one of the inputs x0 is fixed to equal 1, x0 = 1, the corresponding
weight w0 is called a bias, and the perceptron is

y = f(w0 + w1x1 + w2x2 + · · ·+ wdxd) = f(w · x+ w0).

The role of the bias is to shift the threshold in the activation function.

f

w0

w1

w2

w3

f

1

x1

x2

x3

y

Fig. 7.2 A perceptron with bias: weights and outgoing signals.

If x1, x2, . . . , xN is a dataset, then (x1, 1), (x2, 1), . . . , (xN , 1) is the aug-
mented dataset. If the original dataset is in Rd, then the augmented dataset
is in Rd+1. In this regard, Exercise 7.2.2 is relevant.

By passing to the augmented dataset, a neural network with bias and d
input features can be thought of as a neural network without bias and d+ 1
input features.

In (5.2.19), Bayes theorem is used to express a conditional probability in
terms of a perceptron,

Prob(H | x) = σ(w · x+ w0).

This is a basic example of how a perceptron computes probabilities.

392 CHAPTER 7. MACHINE LEARNING

Perceptrons gained wide exposure after Minsky and Papert’s famous 1969
book [22], from which Figure 7.3 is taken.

Fig. 7.3 Perceptrons in parallel (R in the figure is the retina) [22].

Here is a listing of common activation functions.

• The identity function,
id(z) = z

and its derivative id′ = 1.
• The binary output,

bin(z) =

{
1 if z > 0,

0 if z < 0,

and its derivative bin′ = 0, z ̸= 0, and bin′(0) undefined.
• The logistic or sigmoid function (Figure 5.10)

σ(z) =
1

1 + e−z

and its derivative σ′ = σ(1− σ).
• The hyperbolic tangent function

tanh(z) =
ez − e−z

ez + e−z

and its derivative tanh′ = 1− tanh2.

7.2. NEURAL NETWORKS 393

• The rectified linear unit relu,

relu(z) =

{
z if z ≥ 0,

0 if z < 0,

and its derivative relu′ = bin.

Here is the code

activation functions

def relu(z): return 0 if z < 0 else z

def bin(z): return 0 if z < 0 else 1

def sigmoid(z): return 1/(1+exp(-z))

def id(z): return z

tanh already part of numpy

def one(z): return 1

def zero(z): return 0

derivative of relu is bin

derivative of bin is zero

derivative of s=sigmoid is s*(1-s)

derivative of id is one

derivative of tanh is 1-tanh**2

def D_relu(z): return bin(z)

def D_bin(z): return 0

def D_sigmoid(z): return sigmoid(z)*(1-sigmoid(z))

def D_id(z): return 1

def D_relu(z): return bin(z)

def D_tanh(z): return 1 - tanh(z)**2

der_dict = { relu:D_relu, id:D_id, bin:D_bin, sigmoid:D_sigmoid,

↪→ tanh: D_tanh}

f2

f3

f4

f5

w46

w57

w02

w13

w03

w12

w24

w35

w25

w34

Fig. 7.4 Neural network: weights.

394 CHAPTER 7. MACHINE LEARNING

The neural network in Figure 7.4 has nodes 0, 1, 2, 3, 4, 5, 6, 7 and
activation functions f2, f3, f4, f5. Here 0 and 1 are input nodes, 2, 3, 4, 5 are
neurons, and 6, 7 are output nodes. Figures 7.5 and 7.6 show the incoming
and outgoing signals.

f2

f3

f4

f5

x−
6

x−
7

x−
2

x−
3

x−
3

x−
2

x−
4

x−
5

x−
5

x−
4

Fig. 7.5 Neural network: incoming signals.

This network has incoming and outgoing signals

x− = (None, None, x−
2 , x

−
3 , x

−
4 , x

−
5 , x

−
6 , x

−
7),

x = (x0, x1, x2, x3, x4, x5, None, None).

f2

f3

f4

f5

x4

x5

x0

x1

x0

x1

x2

x3

x2

x3

Fig. 7.6 Neural network: outgoing signals.

In Exercise 7.2.4, this network is modified to include biases.

In a neural network, we insert the activation functions along the diagonal
of the weight matrix. We also indicate the bias input node i by setting the
diagonal entry wii = "b". The resulting matrix is the network weight matrix.

When the nonzero weights are all equal to 1, the matrix is the network
adjacency matrix. We have seen four types of graph matrices:

• adjacency matrix,

7.2. NEURAL NETWORKS 395

• weight matrix,
• network weight matrix,
• network adjacency matrix.

A neural network is completely characterized by its network adjacency
matrix. Here are the network weight matrix and network adjacency matrix
for the network in Figure 7.4.



0 0 w02 w03 0 0 0 0
0 0 w12 w13 0 0 0 0
0 0 f2 0 w24 w25 0 0
0 0 0 f3 w24 w35 0 0
0 0 0 0 f4 0 w46 0
0 0 0 0 0 f5 0 w57

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,



0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 f2 0 1 1 0 0
0 0 0 f3 1 1 0 0
0 0 0 0 f4 0 1 0
0 0 0 0 0 f5 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (7.2.3)

In the current section, we run code with the specific network weight matrix

W =



0 0 .1 2.0 0 0 0 0
0 0 .1 2.0 0 0 0 0
0 0 relu 0 −.3 −.3 0 0
0 0 0 id .22 .22 0 0
0 0 0 0 σ 0 1 0
0 0 0 0 0 tanh 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (7.2.4)

The code for the network adjacency matrix in Figure 7.4 is

dtype = "object" because entries

are floats, functions, and strings

network adjacency matrix

w = zeros((8,8),dtype="object")

w[0][2] = w[1][2] = w[0][3] = w[1][3] = w[2][4] = 1

w[2][5] = w[3][4] = w[3][5] = w[4][6] = w[5][7] = 1

w[2][2] = relu

w[3][3] = id

w[4][4] = sigmoid

w[5][5] = tanh

If input node 0 were a bias, we would indicate this by adding

396 CHAPTER 7. MACHINE LEARNING

w[0][0] = "b"

Here are the incoming and outgoing signals in Figures 7.5 and 7.4.

Node Incoming Outgoing

0 x−
0 = None x0

1 x−
1 = None x1

f2 x−
2 = w02x0 + w12x1 x2 = f2(x

−
2)

f3 x−
3 = w03x0 + w13x1 x3 = f3(x

−
3)

f4 x−
4 = w24x2 + w34x3 x4 = f4(x

−
4)

f5 x−
5 = w25x2 + w35x3 x5 = f5(x

−
5)

6 x−
6 = w46x4 + w56x5 x6 = None

7 x−
7 = w47x4 + w57x5 x7 = None

Table 7.7 Incoming and Outgoing signals.

The nodes may be labeled in any order. Network structure is recovered
from the network adjacency matrix or network weight matrix using the code

def edges(w):

W = full(w.shape,False)

W[w != 0] = True

fill_diagonal(W,False)

return W

def outputs(w):

return invert(bool(sum(edges(w),axis=1)))

these are the non-bias inputs

def inputs(w):

vector = invert(bool(sum(edges(w),axis=0)))

return where(diagonal(w) == "b", False, vector)

bias inputs are here

7.2. NEURAL NETWORKS 397

def biases(w):

vector = full(len(w),False)

return where(diagonal(w) == "b", True, vector)

def neurons(w):

vector = full(len(w),True)

vector = where(diagonal(w) == 0, False, vector)

return where(diagonal(w) == "b", False, vector)

Then

print(inputs(w))

print(outputs(w))

print(biases(w))

print(neurons(w))

returns

[True True False False False False False False]

[False False False False False False True True]

[False False False False False False False False]

[False False True True True True False False]

In the code that follows we add and multiply weights and outgoing signals
only over edges. The function edges(w) above encapsulates this condition.

Related functions num_edges, num_inputs, num_outputs, num_biases,
num_neurons are in Exercise 7.2.1.

In §7.4, we train a neural network using gradient descent: We repeatedly
modify the network weight matrix W until we obtain an optimal network
weight matrix W ∗.

Since we do not know the optimal weightW ∗, we may as well start network
training with any W . In practice, to avoid effects resulting from specific
choices, one starts with a random W , as follows

from numpy.random import default_rng

samples = default_rng().random

w is a network weight matrix

def initial_weights(w,random = "no"):

W = w.copy()

if random == "yes":

W[edges(w)] = samples(w.shape)[edges(w)]

398 CHAPTER 7. MACHINE LEARNING

return W

W = initial_weights(w,random = "yes")

This code returns a random W . The default is random = "no"; this returns
a copy of the input weight matrix.

The following code injects an input source at the input nodes,

insert source values at input nodes

also insert 1 at bias nodes

def inject_source(source,w):

x = full(len(w),None)

xminus = full(len(w),None)

x[inputs(w)] = source

x[biases(w)] = 1

return xminus, x

source = array([1.5,2.5])

xminus, x = inject_source(source,w)

This returns

x− = (None, None, None, None, None, None, None, None),

x = (1.5, 2.5, None, None, None, None, None, None).

By (7.2.1) and (7.2.2), the code for incoming and outgoing signals is

def incoming(xminus,x,w,j):

if inputs(w)[j] or biases(w)[j]: return None

elif xminus[j] != None: return xminus[j]

else: return sum([outgoing(xminus,x,w,i) * w[i][j] for i in

↪→ range(len(w)) if edges(w)[i][j]])

def outgoing(xminus,x,w,j):

if outputs(w)[j]: return None

elif x[j] != None: return x[j]

else: return w[j][j](incoming(xminus,x,w,j))

Then forward propagation is coded as follows. The code doesn’t depend
on the node ordering. To see this, uncomment rng.shuffle(nodes) below.

7.2. NEURAL NETWORKS 399

from numpy.random import default_rng

rng = default_rng()

def forward_prop(xminus,x,w):

nodes = arange(len(w))

rng.shuffle(nodes)

for j in nodes:

xminus[j] = incoming(xminus,x,w,j)

x[j] = outgoing(xminus,x,w,j)

return xminus, x

After injecting the sample at the input nodes, we propagate x to all nodes,

xminus, x = inject_source(source,w)

xminus, x = forward_prop(xminus,x,w)

print(xminus)

print(x)

This returns the incoming and outgoing signals

x− = (None, None, 0.4,−8.0,−1.88,−1.88, 0.132,−0.954),

x = (1.5, 2.5, 0.4,−8.0, 0.132,−0.954, None, None).
(7.2.5)

Let J(x−, t) be a function of x− and the target t, measuring the error
between the target outputs t and the actual outputs x−. We consider two
error functions.

The first case is mean square error or mean square loss. For Figure 7.4,
mean square error is

J(x−, t) =
1

2
(x−

6 − t0)
2 +

1

2
(x−

7 − t1)
2, (7.2.6)

The code for mean square error is

mean square loss

def J(xminus,target,w):

return sum((xminus[outputs(w)] - target)**2) / 2

target = array([.427,-.288])

J(xminus,target,w)

400 CHAPTER 7. MACHINE LEARNING

With sources, targets, and weights as above, J(x−, t) = 0.266. This code
works for any configuration of output nodes.

The second case is mean logistic error or mean logistic loss. Logistic error
assumes the targets are probability vectors p. For Figure 7.4, mean logistic
error is

σ(a, b) =

(
ea

ea + eb
,

eb

ea + eb

)
,

(q0, q1) = σ(x−
6 , x

−
7), (p0, p1) = (t0, t1),

J(x−, t) = I(p, q) = p0 log

(
p0
q0

)
+ p1 log

(
p1
q1

)
.

(7.2.7)

Here σ and I(p, q) are the softmax function and the relative information
(§5.6). First σ squashes the output signal x− into a probability vector q,
then I(p, q) compares q with the target probability vector p.

The code for mean logistic loss is

from scipy.special import softmax as sigma

from scipy.stats import entropy as I

mean logistic loss

def J(xminus,target,w):

qminus = xminus[outputs(w)].astype("float")

q = sigma(qminus)

p = target

return I(p,q)

This code works for any configuration of output nodes. Note the target pmust
be a probability vector, since I(p, q) is only defined for probability vectors.

To match the actual outputs with the targets as closely as possible, in
both cases, we seek weights that minimize J . When there is no error, J = 0.
For mean square error, J = 0 implies the target t equals the output x− at
the output nodes. For mean logistic error, J = 0 implies the target p equals
the squashed output σ(x−) at the output nodes.

The rest of the section deals only with mean square error. A network using
mean logistic error is in Exercise 7.2.6. Mean square error is the basis for
linear regression, §7.5. Mean logistic error is the basis for logistic regression
§7.6.

For Figure 7.4, since x−
6 = w46x4 and x−

7 = w57x5, we have

7.2. NEURAL NETWORKS 401

J =
1

2
(w46x4 − t0)

2 +
1

2
(w57x5 − t1)

2,

x5 = f5(x
−
5) = f5(w25x2 + w35x3),

x4 = f4(x
−
4) = f4(w24x2 + w34x3),

x3 = f3(x
−
3) = f3(w03x0 + w13x1),

x2 = f2(x
−
2) = f2(w02x0 + w12x1).

Therefore J is a function of the weights w46, w57, w25, w35, w24, w34, w03,
w13, w02, w12. For gradient descent, we will need the derivatives of J with
respect to these weights. Let

δ3 =
∂J

∂x−
3

, δ4 =
∂J

∂x−
4

, δ5 =
∂J

∂x−
5

,

and let

loc3 =
∂x3

∂x−
3

= f ′
3(x

−
3), loc5 =

∂x5

∂x−
5

= f ′
5(x

−
5).

Since w13 appears in x−
3 , by the chain rule,

∂J

∂w13
=

∂J

∂x−
3

· ∂x−
3

∂w13
= x1 · δ3.

Since x3 appears in x−
4 and x−

5 , by the chain rule,

δ3 =
∂J

∂x−
3

=
∂J

∂x−
4

∂x−
4

∂x3

∂x3

∂x−
3

+
∂J

∂x−
5

∂x−
5

∂x3

∂x3

∂x−
3

.

Since x−
4 = w34x3 + w24x2 and x−

5 = w35x3 + w25x2, we obtain

δ3 = δ4w34loc3 + δ5w35loc3 = (δ4w34 + δ5w35) · loc3.

Similarly
∂J

∂w25
= x2 · δ5,

and
δ5 = δ7w57 · loc5.

The goal is to code these formulas in general, see (7.2.11) and (7.2.12), to be
used in gradient descent network training.

We already know how to compute the outgoing signals x using forward
propagation. To code the derivatives δ, we use back propagation.

402 CHAPTER 7. MACHINE LEARNING

f ′
i

fi

∂J

∂x−
i

∂J

∂xi

Fig. 7.8 Downstream, local, and upstream derivatives at node i.

Since J is a function of all nodes, at each node j, we have the derivatives

∂J

∂x−
j

, f ′
j(x

−
j),

∂J

∂xj
. (7.2.8)

These are the downstream derivative, local derivative, and upstream derivative
at node j. The terminology reflects the fact that derivatives are computed
backward.

From (7.2.2),
∂xj

∂x−
j

= f ′
j(x

−
j). (7.2.9)

By the chain rule and (7.2.9), the key relation between these derivatives is

∂J

∂x−
i

=
∂J

∂xi
· f ′

i(x
−
i), (7.2.10)

or
downstream = upstream× local.

def local(xminus,x,w,i):

if neurons(w)[i]: return der_dict(w[i][i])(incoming(xminus,x,w,i))

else: return None

For x, x−, and W as above, the local derivatives are

(None, None, 1, 1, 0.115, 0.089, None, None).

Let

δi =
∂J

∂x−
i

, i = 0, 1, . . . , d− 1.

If i is an input node, δi is None. Then we have the downstream gradient
vector δ = (δ0, δ1, . . . , δd−1). Strictly speaking, we should write δ−i for the
downstream derivatives. However, in §7.4, we don’t need upstream deriva-
tives. Because of this, we will write δi.

7.2. NEURAL NETWORKS 403

f2

f3

f4

f5

δ6

δ7

δ2

δ3

δ3

δ2

δ4

δ5

δ5

δ4

Fig. 7.9 Neural network: downstream derivatives.

Once we have the incoming vector x− and outgoing vector x, we can
differentiate J and compute the downstream derivatives with respect to each
output node. For example, in Figure 7.4, there are two output nodes 6, 7,
and we compute

δ6 =
∂J

∂x−
6

, δ7 =
∂J

∂x−
7

as follows. Using (7.2.5) and (7.2.6),

∂J

∂x−
6

= (x−
6 − t0) = −0.294.

Similarly,

δ7 =
∂J

∂x−
7

= (x−
7 − t1) = −0.666.

The code for this is

returns downstream derivatives of J at output nodes

mean square loss

def inject_target(xminus,target,w):

delta = full(len(w),None)

qminus = xminus[outputs(w)]

p = target

delta[outputs(w)] = qminus - p

return delta

This returns

δ = (δ0, δ1, δ2, δ3, δ4, δ5, δ6, δ7)

δ = (None, None, None, None, None, None,−0.294,−0.666),

404 CHAPTER 7. MACHINE LEARNING

The above code inject_target is for mean square error. For mean logistic
error, based on (5.6.17), or Exercise 7.2.5, the code is

from scipy.special import softmax as sigma

returns downstream derivatives of J at output nodes

mean logistic loss

def inject_target(xminus,target,w):

delta = full(len(w),None)

qminus = xminus[outputs(w)].astype("float")

q = sigma(qminus)

p = target

delta[outputs(w)] = q - p

return delta

We compute δ recursively via back propagation as in §4.4. From (7.2.1)
and (7.2.9),

∂J

∂x−
i

=
∑
i→j

∂J

∂x−
j

·
∂x−

j

∂xi
· ∂xi

∂x−
i

=

∑
i→j

∂J

∂x−
j

· wij

 · f ′
i(x

−
i).

This yields the downstream derivative at node i,

δi =

∑
i→j

δj · wij

 · f ′
i(x

−
i). (7.2.11)

The code is

def downstream(xminus,x,delta,w,i):

if inputs(w)[i] or biases(w)[i]: delta[i] = None

elif delta[i] != None: return delta[i]

else:

upstream = sum([downstream(xminus,x,delta,w,j) * w[i][j] for j

↪→ in range(len(w)) if edges(w)[i][j]])

return upstream * local(xminus,x,w,i)

Using this, we have the third version of back propagation,

def backward_prop(xminus,x,delta,w):

nodes = arange(len(w))

for i in nodes:

delta[i] = downstream(xminus,x,delta,w,i)

7.2. NEURAL NETWORKS 405

return delta

With W , sources and targets as above, the code

delta = inject_target(xminus,target,w)

delta = backward_prop(xminus,x,delta, w)

print(delta)

returns

δ = (None, None, 0.0279,−0.020,−0.033,−0.059,−0.294,−0.666).

Note x must be computed prior to δ: first forward then backward propa-
gation.

Above we computed the upstream, downstream, and local derivatives of
J at a given node (7.2.8). Since the incoming signals x−

j depend also on the
weights wij , J also depends on wij . By (7.2.1),

∂x−
j

∂wij
= xi,

see also Table 7.7. From this,

∂J

∂wij
=

∂J

∂x−
j

·
∂x−

j

∂wij
= δj · xi.

We have shown

Weight Gradient of Output

If (i, j) is an edge, then

∂J

∂wij
= xi · δj . (7.2.12)

This result is key for neural network training (§7.4).

Perceptrons can be assembled in parallel (Figure 7.3). If a network has
only one layer of neurons, the network is shallow (Figure 7.10).

406 CHAPTER 7. MACHINE LEARNING

A shallow network is dense if all input nodes point to all neurons. A shallow
network can always be assumed dense by inserting zero weights at missing
edges.

Neural networks can also be assembled in series, with each component
a layer (Figure 7.11). Usually each layer is a dense shallow network. For
example, Figure 7.4 consists of two dense shallow networks in layers. We say
a network is deep if there are two or more neuron layers.

x0

x1

x2

x3

f0

f1

f2

z0

z1

z2

Fig. 7.10 A shallow dense layer with a bias input.

The weight matrix W (7.2.3) is 8 × 8, while the weight matrices W1, W2

of each of the two dense shallow network layers in Figure 7.4 are 2× 2.
In Figure 7.10, there are 4 input nodes, 3 neurons, 3 output nodes, and a

bias input. If x and z are the layer’s incoming and outgoing signal vectors,
then x and z are in R4 and R3 respectively. It is assumed weights are only on
edges incoming to the neurons, and the weights on outgoing edges are fixed
equal to 1.

LetW = (wij) be the weight matrix along the edges joining the four inputs
to the three neurons, and let b = (b1, b2, b3) be the weights along the edges
joining the bias input to the three neurons. Then W is a 4× 3 matrix and b,
the bias vector, is in R3.

Our convention is wij denotes the weight on the edge from node i to node
j. With this convention, the formulas (7.2.1), (7.2.2) reduce to the matrix
multiplication formulas

z− = W tx+ b, z = f(W tx+ b). (7.2.13)

7.2. NEURAL NETWORKS 407

From this point of view, a dense shallow network is a vector-valued percep-
tron, and the layered network in Figure 7.11 is a composition of vector-valued
perceptrons in series.

Fig. 7.11 Layered neural network [11].

Exercises

Exercise 7.2.1 Write code num_inputs(w) returning the number of inputs.
Similarly write num_edges(w), num_outputs(w), num_biases(w), num_neurons(w).

Exercise 7.2.2 Show that a dataset x1, x2, . . . , xN lies in a hyperplane
(4.5.6) in Rd iff the augmented dataset (x1, 1), (x2, 1), . . . , (xN , 1) does not
span Rd+1 (see §2.7).

Exercise 7.2.3 With the nodes in Figure 7.4 re-ordered from 0, 1, 2, 3, 4, 5,
6, 7 to 4, 0, 3, 7, 1, 6, 5, 2, rebuild the network matrix.

f2

f3

f4

f5

Fig. 7.12 Neural network with biases

408 CHAPTER 7. MACHINE LEARNING

Exercise 7.2.4 Compute the incoming signals x−, outgoing signals x, and
downstream derivatives δ for the network in Figure 7.12, using sources, tar-
gets, weights, and activations as in the text. Here J is mean square loss
(7.2.6).

f

f

f

f

f

f

Fig. 7.13 A network with six neurons, two outputs, and one input.

Exercise 7.2.5 Suppose we have a neuron followed by an output node as in
Figure 7.14. Fix a target probability 0 ≤ p ≤ 1, and let J be the relative
information I(p, q) (4.2.9). If σ is the logistic function (5.2.15), show the
upstream, local, and downstream derivatives at the neuron are

∂J

∂q
=

q − p

q(1− q)
, σ′ = σ(1− σ), δ =

∂J

∂q−
= q − p.

σ
q− q

Fig. 7.14 Downstream, local, and upstream derivatives at termination.

Exercise 7.2.6 In Figure 7.13, f(x) = tanh(x), the source is 1.0, the tar-
get is (.427, .573), and all weights are +1. Assume J is mean logistic loss
(7.2.7). Compute the incoming signals x−, outgoing signals x, and down-
stream derivatives δ.

7.3 Gradient Descent

Let f(w) be a scalar function of a vector w = (w1, w2, . . . , wd) in Rd. A basic
problem is to minimize f(w), that is, to find or compute a w∗ satisfying

7.3. GRADIENT DESCENT 409

f(w) ≥ f(w∗), for every w.

Such a w is a minimizer.
This goal is so general, that any insight one provides towards this goal is

widely useful in many settings. The setting we have in mind is f = J , where
J is the mean error from §7.1.

Usually f(w) is a measure of cost or lack of compatibility. Because of this,
f(w) is called the loss function or error function.

A neural network is a black box with inputs x and outputs y, depending on
unknown weights w. To train the network is to select weights w in response
to training data (x, y). The optimal weights w∗ are selected as minimizers
of a loss function f(w) measuring the error between predicted outputs and
actual outputs, corresponding to given training inputs.

For neural network training, the most common loss functions are the mean
square loss (7.5.3) and the mean logistic loss (7.6.3).

From §4.3, if the loss function f(w) is continuous and proper, there is
a global minimizer w∗. If f(w) is in addition strictly convex, w∗ is unique
(§4.5). When this happens, if the gradient of the loss function is g = ∇f(w),
then w∗ is the unique point satisfying g∗ = ∇f(w∗) = 0.

Let g(w) be any function of a scalar variable w. From the definition of
derivative (4.1.3), if b is close to a, we have the approximation

g(b)− g(a)

b− a
≈ g′(a).

Inserting a = w and b = w+,

g(w+) ≈ g(w) + g′(w)(w+ − w).

Assume w∗ is a root of g(w) = 0, so g(w∗) = 0. If w+ is close to w∗, then
g(w+) is close to zero, so

0 ≈ g(w) + g′(w)(w+ − w).

Solving for w+,

w+ ≈ w − g(w)

g′(w)
.

Since the global minimizer w∗ satisfies f ′(w∗) = 0, we insert g(w) = f ′(w)
in the above approximation,

w+ ≈ w − f ′(w)

f ′′(w)
.

410 CHAPTER 7. MACHINE LEARNING

This leads to Newton’s method of computing approximations w0, w1, w2, . . .
of w∗ using the recursion

wn+1 = wn − f ′(wn)

f ′′(wn)
, n = 1, 2, . . .

Because calculating f ′′(w) is computationally expensive, first-order de-
scent methods replace the second derivative terms f ′′(wn) by constants,
known as learning rates.

In the multi-variable case, Newton’s method becomes

wn+1 = wn −D2f(wn)
−1∇f(wn), n = 1, 2, . . . ,

and the second-derivative term is even more expensive to compute.
These first-order methods, collectively known as gradient descent, are the

subject of this chapter.

Here is code for Newton’s method.

from numpy import *

def newton(loss,grad,curv,w,num_iter):

g = grad(w)

c = curv(w)

trajectory = array([[w],[loss(w)]])

for _ in range(num_iter):

w -= g/c

trajectory = column_stack([trajectory,[w,loss(w)]])

g = grad(w)

c = curv(w)

if allclose(g,0): break

return trajectory

When applied to the function

f(w) = w4 − 6w2 + 2w,

the code returns trajectory

def loss(w): return w**4 - 6*w**2 + 2*w # f(w)

def grad(w): return 4*w**3 - 12*w + 2 # f'(w)
def curv(w): return 12*w**2 - 12 # f''(w)

u0 = -2.72204813

w0 = 2.45269774

num_iter = 20

7.3. GRADIENT DESCENT 411

trajectory = newton(loss,grad,curv,w0,num_iter)

which can be plotted using the code

from matplotlib.pyplot import *

def plot_descent(a,b,loss,curv,delta,trajectory):

w = arange(a,b,delta)

plot(w,loss(w),color='red',linewidth=1)
plot(w,curv(w),"--",color='blue',linewidth=1)
plot(*trajectory,color='green',linewidth=1)
scatter(*trajectory,s=10)

title("num_iter= " + str(len(trajectory.T)))

grid()

show()

Fig. 7.15 Double well newton descent.

Then

ylim(-15,10)

delta = .01

plot_descent(u0,w0,loss,curv,delta,trajectory)

returns Figure 7.15.

412 CHAPTER 7. MACHINE LEARNING

A descent sequence is a sequence w0, w1, w2, . . . where the loss function
decreases

f(w0) ≥ f(w1) ≥ f(w2) ≥

In a descent sequence, the point after the current point w = wn is the succes-
sive point w+ = wn+1, and the point before the current point is the previous
point w− = wn−1. Then (w−)+ = w = (w+)−.

Recall (§4.3) the gradient ∇f(w) at a given point w is the direction of
greatest increase of the function, starting from w. Because of this, it is natural
to construct a descent sequence by moving, at any given w, in the direction
−∇f(w) opposite to the gradient.

A gradient descent sequence is a descent sequence w0, w1, w2, . . . where
each successive point w+ is obtained from the previous point w by moving
in the direction opposite to the gradient ∇f(w) at w,

Basic Gradient Descent Step (GD)

w+ = w − t∇f(w). (7.3.1)

The step size t, which determines how far to go in the direction opposite to
the gradient, is the learning rate or time step. Starting with an initial weight
w0, this generates a descent sequence as follows,

w1 = (w0)
+ = w0 − t1∇f(w0),

w2 = (w1)
+ = w1 − t2∇f(w1),

w3 = (w2)
+ = w2 − t3∇f(w2),

. . . = . . .

(7.3.2)

The learning rate may vary with the steps, t1, t2, . . . , or the learning rate
may be a fixed number t. Under reasonable assumptions, a gradient descent
sequence with a constant learning rate t converges to a minimizer. However,
for stochastic gradient descent, to obtain convergence to w∗, the learning rate
must vary, see below.

Let us unpack (7.3.1), so we understand how it applies to weights in net-
works (§4.4). In a neural network, weights w1, w2, . . . are attached to edges,
and the final outputs are combined into a loss function. As a result, the loss
function is a function of the weights,

f(w) = f(w1, w2, . . .).

In (7.3.1), w = (w1, w2, . . .) is the weight vector, consisting all of weights
combined into a single vector. By the gradient formula (4.3.2), (7.3.1) is

7.3. GRADIENT DESCENT 413

equivalent to

w+
1 = w1 − t

∂f

∂w1
,

w+
2 = w2 − t

∂f

∂w2
,

. . . =

In other words,

Each Weight is Updated Separately

To update a weight in a specific edge using gradient descent, one needs
only the derivative of the loss function relative to the weight on that
specific edge.

In practice, the learning rate is selected by trial and error. Which learning
rate does the theory recommend?

Given an initial point w0, the sublevel set at w0 (see §4.5) consists of all
points w where f(w) ≤ f(w0). Only the part of the sublevel set that is
connected to w0 counts.

In Figure 7.16, the sublevel set at w0 is the interval [u0, w0]. The sublevel
set at w1 is the interval [b, w1]. Notice we do not include any points to the
left of b in the sublevel set at w1, because points to the left of b are separated
from w1 by the gap at the point b.

Suppose the second derivative D2f(w) is never greater than a constant L
on the sublevel set. This means

D2f(w) ≤ L, on f(w) ≤ f(w0), (7.3.3)

in the sense the eigenvalues of D2f(w) are never greater than L.
For example, if f(w) = w · Qw/2, then we can take L equal to the top

eigenvalue λ of Q. By choosing Q = AtA, for f(w) = |Aw|2/2, we can take
L equal to the square σ2 of the top singular value σ of A.

Because the second derivative is the derivative of the first derivative,
D2f(w) measures how fast the gradient ∇f(w) changes from point to point.
From this point of view, D2f(w) is a measure of the curvature of the function
f(w), and (7.3.3) says the rate of change of the gradient is never greater than
L.

Given such a bound L on the curvature, If the learning rate t is no larger
than 1/L, we say we are doing short step gradient descent. Then we have

414 CHAPTER 7. MACHINE LEARNING

Short Step Gradient Descent

Let L be as above and w+ as in (7.3.1). If t ≤ 1/L, then

f(w+) ≤ f(w)− t

2
|∇f(w)|2. (7.3.4)

a b c
w0

w1
u0

Fig. 7.16 Double well function and sublevel sets at w0 and at w1.

To see this, fix w and let S be the sublevel set {w′ : f(w′) ≤ f(w)}. Since
the gradient pushes f down, for t > 0 small, w+ stays in S. Insert x = w+

and a = w into the right half of (4.5.14) and simplify. This leads to

f(w+) ≤ f(w)− t|∇f(w)|2 + t2L

2
|∇f(w)|2.

Since tL ≤ 1 when 0 ≤ t ≤ 1/L, we have t2L ≤ t. This derives (7.3.4).
The curvature of the loss function and the learning rate are inversely pro-

portional. Where the curvature of the graph of f(w) is large, the learning
rate 1/L is small, and gradient descent proceeds in small time steps.

When the sublevel set is bounded, there is a bound L satisfying (7.3.3).
From §4.3, the sublevel set is bounded when f(w) is proper: Large |w| implies
high cost f(w). The graphs in Figures 4.3, 4.4, 7.16, are proper.

In practice, when the loss function is not proper, it is modified by an extra
term that forces properness. This is called regularization. If the extra term
is proportional to |w|2, it is ridge regularization, and if the extra term is
proportional to |w|, it is LASSO regularization.

7.3. GRADIENT DESCENT 415

Now let w0 w1, w2 . . . be a short step gradient descent sequence, with
short step learning rates tn all equal to 1/L. By (7.3.4), wn remains in the
sublevel set f(w) ≤ f(w0). If this sublevel set is bounded, wn subconverges
to a limit w∗ (§A.8). Inserting w+ = wn, t = tn, w = wn−1 in (7.3.4),

f(wn) ≤ f(wn−1)−
tn
2
|∇f(wn−1)|2.

Since f(wn) and f(wn+1) both converge to f(w∗) and ∇f(wn) converges to
∇f(w∗),

f(w∗) ≤ f(w∗)− 1

2L
|∇f(w∗)|2.

Since this implies ∇f(w∗) = 0, we have derived the following.

Gradient Descent Converges to a Critical Point

Fix any initial weight w0 and let L be as above. If the short step
gradient descent sequence starting from w0, with constant learning
rate t = 1/L, converges to some point w∗, then w∗ is a critical point
of the loss function. In particular, if the loss function is proper, the
short step gradient descent sequence starting from w0 converges to a
critical point of the loss function.

For example, let f(w) = w4 − 6w2 + 2w (Figures 7.15, 7.16, 7.17). Then

f ′(w) = 4w3 − 12w + 2, f ′′(w) = 12w2 − 12.

Thus the inflection points (where f ′′(w) = 0) are ±1 and, in Figure 7.16, the
critical points are a, b, c.

Let u0 and w0 be the points satisfying f(w) = 5 as in Figure 7.17.
Then u0 = −2.72204813 and w0 = 2.45269774, so f ′′(u0) = 76.914552 and
f ′′(w0) = 60.188. Thus we may choose L = 76.914552. With this L, the short
step gradient descent starting at w0 is guaranteed to converge to one of the
three critical points. In fact, the sequence converges to the right-most critical
point c (Figure 7.17).

This exposes a flaw in basic gradient descent. Gradient descent may con-
verge to a local minimizer, and miss the global minimizer. In §7.9, modified
gradient descent will address some of these shortcomings.

The code for gradient descent is

from numpy import *

from matplotlib.pyplot import *

def gd(loss,grad,w,learning_rate,num_iter):

g = grad(w)

trajectory = array([[w],[loss(w)]])

416 CHAPTER 7. MACHINE LEARNING

for _ in range(num_iter):

w -= learning_rate * g

trajectory = column_stack([trajectory,[w,loss(w)]])

g = grad(w)

if allclose(g,0): break

return trajectory

Fig. 7.17 Double well gradient descent.

When applied to the double well function f(w),

u0 = -2.72204813

w0 = 2.45269774

L = 76.914552

learning_rate = 1/L

num_iter = 100

trajectory = gd(loss,grad,w0,learning_rate,num_iter)

ylim(-15,10)

delta = .01

plot_descent(u0,w0,loss,curv,delta,trajectory)

the code returns Figure 7.17.

We now turn to an important modification of gradient descent, stochastic
gradient descent (SGD). Here the loss function depends not only on a weight

7.3. GRADIENT DESCENT 417

w, but also on a source-target sample vector v. In this setting, given a dataset
v1, v2, . . . , vN , the goal is, following §7.1, to minimize the mean loss

f(w) =
1

N

N∑
k=1

F (w, vk). (7.3.5)

The mean loss f(w) is an average of sampled loss functions F (w, vk).
To apply gradient descent to (7.3.5), we must compute the gradient

∇f(w) =
1

N

N∑
k=1

∇F (w, vk). (7.3.6)

However, in practice, the computational cost of evaluating the sums (7.3.5)
and (7.3.6) is high. For example, for the MNIST dataset, N = 60, 000. When
training neural networks, these sums must be evaluated repeatedly, at each
weight updating, resulting in prohibitive cost.

Because of this, a more feasible approach is to avoid evaluating these sums,
select samples v1, v2, . . . randomly from the dataset, and generate a descent
sequence according to

wn = wn−1 − tn∇F (wn−1, vn), n = 1, 2, (7.3.7)

It turns out that with the correct tuning of learning rates, this modified
descent sequence does converge to a minimizer of the mean loss (7.3.5).

This is a reflection of the robustness of gradient descent: Even if an ap-
proximate or noisy gradient is used to compute a descent sequence, under
appropriate assumptions, there is convergence to a minimizer.

However, because the gradient in (7.3.7) is only an approximation to the
true gradient ∇f(w), the convergence here is slower.

The theoretical basis for this convergence was established in the 1951 paper
of Robbins-Monroe [29]. Their result is a type of law of large numbers for
randomly sampled minimization problems.

To view this with the proper perspective, by the discussion (5.3.2), the
mean loss (7.3.5) is an expectation of a random variable: If V is a random
variable with equally likely values v1, v2, . . . , vN , then the mean loss is an
expectation

f(w) = E(F (w, V)).

Let V1, V2, . . . be an i.i.d. sequence of samples of V , fix an initial weight
w0, and generate a descent sequence by

Wn = Wn−1 − tn∇F (Wn−1, Vn), W0 = w0. (7.3.8)

Because Vn are random variables, so are Wn.
Here we take the simplest possible example, that of minimizing a parabola.

In §7.8, we derive SGD for strongly convex mean loss functions.

418 CHAPTER 7. MACHINE LEARNING

Fix a scalar w∗. We assume the samples v are scalars, and the sampled
loss

F (w, v) =
1

2
(w − w∗ − v)2. (7.3.9)

is a scalar parabola minimized at w∗ + v. Then

f(w) = E(F (w, V)) =
1

2
(w − w∗)2 − (w − w∗)E(V) +

1

2
E(V 2).

If V has mean zero and variance one, then f(w) = (w − w∗)2/2 + 1/2, and
f(w) is minimized at w∗. Here is the SGD result.

Stochastic Gradient Descent (SGD) for Parabolas

Assume V is a standard scalar random variable. If V1, V2, . . . is an
i.i.d. sequence of samples of V , let W1, W2, . . . be given by (7.3.8),
where F (w, v) is given by (7.3.9). If the learning rates satisfy

t1 + t2 + · · · = ∞, and t21 + t22 + · · · < ∞, (7.3.10)

then
E
(
|Wn − w∗|2

)
→ 0, n → ∞. (7.3.11)

Again, the point of SGD is to converge to the minimizer without evaluating
the expectation in the mean loss.

The standard learning rates for SGD are the harmonic learning rates

t1 =
α

1 + β
, t2 =

α

2 + β
, t3 =

α

3 + β
, . . . , (7.3.12)

where α and β are constants. Using standard manipulations, these learning
rates satisfy (7.3.10), see Exercises A.7.4 and A.7.6.

To derive the SGD convergence result for parabolas, start by computing
the gradient

∇F (w, v) = F ′(w, v) = w − w∗ − v.

Then (7.3.8) becomes

Wn = Wn−1 − tn(Wn−1 − w∗ − Vn),

which simplifies to a convex combination

Wn − w∗ = (1− tn)(Wn−1 − w∗) + tnVn. (7.3.13)

Taking expectations, since E(Vn) = 0,

E(Wn)− w∗ = (1− tn) (E(Wn−1)− w∗) .

7.3. GRADIENT DESCENT 419

Iterating this equality leads to

E(Wn)− w∗ = pn · (w0 − w∗), n = 1, 2, . . . ,

with pn the product

pn =

n∏
k=1

(1− tk) = (1− t1)(1− t2) . . . (1− tn). (7.3.14)

By Exercise A.7.7 with m = 1/2 and L = 0, pn converges to zero, hence the
means E(Wn) converge to w∗ as n → ∞.

Since Wn−1 depends only on V1, V2, . . . , Vn−1, the random variables Wn−1

and Vn are independent. Taking variances in (7.3.13), and using V ar(Wn) =
V ar(Wn − w∗),

V ar(Wn) = (1− tn)
2 V ar(Wn−1) + t2n V ar(Vn).

Assume1 tn ≤ 1. Since V ar(Vn) = 1,

V ar(Wn) ≤ (1− tn)V ar(Wn−1) + t2n.

Since V ar(W0) = V ar(w0) = 0, iterating this inequality leads to

V ar(Wn) ≤ sn, n = 1, 2, . . . ,

with sn the sum

sn =

n∑
k=1

t2k · pn
pk

.

To show sn → 0, use the second condition in (7.3.10), as follows. Since

∞∑
k=1

t2k = lim
N→∞

N∑
k=1

t2k

is finite, the limit of the error

eN =

∞∑
k=N+1

t2k =

∞∑
k=1

t2k −
N∑

k=1

t2k,

as N → ∞, is zero. Now fix a cut-off N and break sn into two parts, n ≤ N
and n > N ,

sn =

N∑
k=1

t2k · pn
pk

+

n∑
k=N+1

t2k · pn
pk

.

1 By (7.3.10), tn → 0, so this holds for n large.

420 CHAPTER 7. MACHINE LEARNING

Since pn ≤ pk when n ≥ k,

sn ≤

(
N∑

k=1

t2k
pk

)
pn +

n∑
k=N+1

t2k ≤

(
N∑

k=1

t2k
pk

)
pn + eN .

With N fixed, let n → ∞. Since pn → 0,

0 ≤ s∞ = lim
n→∞

sn ≤ eN .

By choosing N large enough, we can make eN arbitrarily small. Hence s∞ =
0, and V ar(Wn) → 0.

Using the triangle inequality, combine E(Wn) → w∗ and V ar(Wn) → 0 to
complete the proof of (7.3.11).

In §7.8, we examine GD and SGD in the context of strongly convex loss
functions.

Exercises

Exercise 7.3.1 Let A be a matrix and b a vector with the residual

f(w) = |Aw − b|2

well-defined. Starting with w0 in the row space of A, show gradient descent,
with constant short step learning rate, converges to a unique w∗ in the row
space of A. (Exercise 4.3.4)

Exercise 7.3.2 Continuing the previous exercise, starting with any w0, show
gradient descent converges to a unique w∗ with w∗ − w0 in the row space of
A.

Exercise 7.3.3 Let f(w) = 1
2aw

2+bw+c, a > 0, be a convex parabola. Then
f ′(w) = aw+ b, and the minimizer w∗ satisfies f ′(w∗) = 0, so aw∗+ b = 0. If
w0 is any starting weight, and t > 0 is the learning rate, the gradient descent
sequence (7.3.1) is

wn+1 = wn − tf ′(wn), n = 0, 1, 2,

Show by direct calculation

wn+1 − w∗ = (1− at)(wn − w∗), n = 0, 1, 2, . . . ,

so
wn − w∗ = (1− at)n(w0 − w∗), n = 1, 2,

If the learning rate t is small enough so that at ≤ 1, this shows wn converges
to w∗ as n → ∞.

7.4. NETWORK TRAINING 421

7.4 Network Training

A neural network with network matrix W defines an input-output map

source → target.

Here the inputs are the sources at the input nodes, and the outputs are the
targets at the output nodes.

Given sources x and targets y, we seek to modify W so that the output
propagated through the network starting from x equals y. This is network
training.

The weights are modified using gradient descent (§7.3). If J measures the
error between the network outputs and the targets, W is updated to W+

using (7.3.1),

Weight Gradient Descent

If t is the learning rate, the updating equation is

W+ = W − t∇WJ. (7.4.1)

How do we compute ∇WJ? From (7.2.12),

The Weight Gradient is a Tensor Product

The weight derivative is

∂J

∂wij
= xiδj ,

or
∇WJ = x⊗ δ. (7.4.2)

f2

f3

f4

f5

x4δ6

x5δ7

x0δ2

x1δ3

x0δ3

x1δ2

x2δ4

x3δ5

x2δ5

x3δ4

Fig. 7.18 Neural network: weight gradients.

422 CHAPTER 7. MACHINE LEARNING

For the network in Figure 7.4, the weight gradients are as in Figure 7.18.
To write the code for the weight gradient, first we code the tensor product

def tensor(x,delta):

x[x == None] = 0

delta[delta == None] = 0

return outer(x,delta)

then we combine the input source and output target into a single vector

vector = hstack([source, target])

We do this to handle datasets with multiple samples below. The weight gra-
dient code is

def single_weight_gradient(vector,w):

num_in = num_inputs(w)

num_out = num_outputs(w)

source, target = vector[:num_in], vector[-num_out:]

xminus, x = inject_source(source,w)

xminus, x = forward_prop(xminus,x,w)

delta = inject_target(xminus,target,w)

delta = backward_prop(xminus,x,delta,w)

loss = J(xminus,target)

gradJ has same shape as w

gradJ = tensor(x,delta)

cast loss to array same shape as w

loss = full(w.shape,loss)

return array([loss, gradJ])

In this code, for convenience below, the scalar loss is cast to an array with
shape w.shape: If the shape of w is (d, d), then the shape of gradJ is (d, d)
and the shape of single_weight_gradient(vector,w) is (2, d, d).

After this, weights are updated as in (7.4.1),

update only weights on edges

def update_weights(w,gradJ,learning_rate):

w[edges(w)] -= learning_rate * gradJ[edges(w)]

return w

To save space, below lr is the learning rate, and bs is the batch size. Below
random = "no" determines whether or not to randomize the initial W (see
§7.2 for initial_weights).

7.4. NETWORK TRAINING 423

def single_sample_training(vector,w,lr,iters,random = "no"):

W = initial_weights(w,random = random)

trajectory = []

for iter in range(iters):

loss, gradJ = single_weight_gradient(vector,W)

W = update_weights(W,gradJ,lr)

recover scalar loss

loss = loss[0,0]

trajectory.append(loss)

if isclose(0,loss): break

return W, trajectory

Here iters is the maximum number of iterations, and the iterations termi-
nate if the loss J is close to zero.

Fig. 7.19 Loss decay as learning rate varies: single sample training.

Starting with the network weight matrix (7.2.4), the code

source = array([1.5, 2.5])

target = array([0.427, -0.288])

vector = hstack([source, target])

lr = .045

iters = 100

wstar, trajectory = single_sample_training(vector,w,lr,iters)

stops after len(trajectory)= 45 iterations, and returns an optimal weight
matrix W ∗.

424 CHAPTER 7. MACHINE LEARNING

Forward propagation using W ∗ results in outputs

x−
6 = 0.4269028859959264, x−

7 = −0.28799475228709476,

in close agreement with target = array([0.427,-0.288]). Since you may
be starting your network training with a different W , your results may be
different.

The loss trajectory can be plotted using the code

from matplotlib.pyplot import *

for lr in [.025,.035, .045,.047]:

wstar, trajectory = single_sample_training(vector,w,lr,iters)

n = len(trajectory)

label = str(n) + ", " + str(lr)

plot(range(n),trajectory,label=label)

title("single sample loss function decay")

grid()

legend()

show()

resulting in Figure 7.19.

The convergence here is surprisingly easy to attain. However, this is a
mirage. It is a reflection of overfitting, in the sense that we trained the weights
to obtain the input-output map corresponding to a single sample: There is no
reason the trained weights reproduce the input-output map for other samples.

To make this point explicit, focus on the output node at top right in
Figure 7.18, and let

x4 = x, w46 = w, y6 = y.

Then

x−
6 = wx, δ6 =

∂J

∂x−
6

= wx− y,
∂J

∂w46
= x(wx− y).

Starting with weight w and learning rate t, the updated weight is

w+ = w − tx(wx− y) = w(1− tx2) + txy.

Since f4 = σ, x is close to 1 as soon as there is a substantial incoming
x−
4 . If we start the training with the network adjacency matrix, then all

weights equal 1 and x−
4 = 8, leading to x4 close to 1. Taking t = 1 yields

w+ = y, which implies we have convergence in two iterations. Only the weight

7.4. NETWORK TRAINING 425

w played a substantial role, the weights at the other edges were minimally
involved.

When we train against several samples, we must match several equations,
and all weights must contribute. Only after we train the weights repeatedly
against all samples in a training dataset, can we hope to achieve training
with some predictive power.

We repeat weight gradient descent when the loss function is the sum J of
loss functions J(x−

k , yk) over all samples x1, x2, . . . , xN in a dataset, with
corresponding targets y1, y2, . . . , yN . To this end, we set

J =
1

N

N∑
k=1

J(x−
k , yk).

By (7.3.6), the weight gradient ∇WJ equals the average of the weight gradi-
ents ∇WJ(x−

k , yk).
As with single sample training, we assume dataset consists of sample-

target vectors. We use map to parallelize the computation.

def batch_weight_gradient(dataset,w):

gradient_map = lambda vector: single_weight_gradient(vector,w)

weight_gradients = array(list(map(gradient_map, dataset)))

return mean(weight_gradients, axis = 0)

Here the shape of weight_gradients is (N, 2, d, d), with N the number of
samples in the dataset, and the shape of batch_weight_gradient(dataset,w)
is (2, d, d), as before.

If the dataset consists of a single sample array([vector]), then

batch_weight_gradient(dataset,w)

is identical to

single_weight_gradient(vector,w).

An iteration is the updating of the weight matrix against a single sample.
An epoch is the updating of the weight matrix against all samples in the
dataset. The distinction will become clearer below.

def batch_sample_training(dataset,w,lr,epochs,random="no"):

W = initial_weights(w,random=random)

trajectory = []

for epoch in range(epochs):

loss, gradJ = batch_weight_gradient(dataset,W)

W = update_weights(W,gradJ,lr)

426 CHAPTER 7. MACHINE LEARNING

recover scalar loss

loss = loss[0,0]

trajectory.append(loss)

if isclose(0,loss): break

return W, trajectory

Fig. 7.20 Loss decay as learning rate varies: batch sample training.

The code for Figure 7.20 is

sources = array([[1.5, 2.5], [1.2,3.1], [7.1,8.2]])

targets = array([[0.427, -0.288], [1.1,-.4], [1.2,3.4]])

dataset = hstack([sources, targets])

epochs = 60

from matplotlib.pyplot import *

for lr in [.05,.06,.07,.08]:

wstar, trajectory = batch_sample_training(dataset,w,lr,epochs)

n = len(trajectory)

label = str(n) + ", " + str(lr)

plot(range(n),trajectory,label=label)

title("batch sample loss function decay")

grid()

legend()

show()

7.4. NETWORK TRAINING 427

In batch sample training, we updated the weight gradients only after eval-
uating the gradients against all samples in the dataset. An alternate approach
is to use stochastic gradient descent (§7.3) and update the weights with each
sample. To prevent cycles, this is coupled with a random shuffling of the
dataset at the start of each epoch. This leads to the code

from numpy.random import default_rng

rng = default_rng()

def stochastic_sample_training(dataset,w,lr,epochs,random="no"):

W = initial_weights(w,random = random)

trajectory = []

for n,epoch in enumerate(range(epochs),start=1):

losses = []

rng.shuffle(dataset)

for vector in dataset:

loss, gradJ = single_weight_gradient(vector,W)

W = update_weights(W,gradJ,lr/n)

append scalar loss

losses.append(loss[0,0])

loss = mean(losses)

trajectory.append(loss)

if isclose(0,loss): break

return W, trajectory

The above two dataset training approaches, batch sample and stochastic
sample, are two extremes. A third approach, intermediate between the two,
is to divide the dataset into minibatches, each with minibatch size s, and do
batch sample training on each minibatch. This is minibatch sample training.
Here is the code.

from numpy.random import default_rng

rng = default_rng()

def minibatch_sample_training(dataset,w,lr,s,epochs,random="no"):

W = initial_weights(w,random=random)

trajectory = []

N = len(dataset)

for n,epoch in enumerate(range(epochs),start=1):

losses = []

rng.shuffle(dataset)

minibatches = arange(0,N,bs)

for start in minibatches:

end = start + s

minibatch = dataset[start:end]

loss, gradJ = batch_weight_gradient(minibatch,W)

W = update_weights(W,gradJ,lr/n)

428 CHAPTER 7. MACHINE LEARNING

append scalar loss

losses.append(loss[0,0])

loss = mean(losses)

trajectory.append(loss)

if isclose(0,loss): break

return W, trajectory

Note the code records the loss function once each epoch.

In batch sample training, the weights are updated once each pass over
the dataset, so 1 iteration equals 1 epoch. In stochastic sample training, the
weights are updated with each sample, so 1 epoch equals N iterations, where
N is the number of samples in the dataset. In minibatch sample training, the
weights are updated with each batch, so 1 epoch equals N/s iterations.

When s = 1, minibatch sample training is stochastic sample training,
and when s = N , minibatch sample training is batch sample training. As of
the current writing of this text, minibatch sample training is the standard
training algorithm for neural networks.

When generalized to the general gradient descent setting of §7.3, stochastic
sample training is stochastic gradient descent.

For stochastic gradient descent, as explained in §7.3, the learning rates tn
must vary according to something close to tn = t/n. This is reflected in the
stochastic sample training and minibatch sample training codes.

Exercises

Exercise 7.4.1 Train the network in Figure 7.18, starting with the network
adjacency matrix. Do this with mean square loss and for a single sample,
then for three samples. Find the learning rates leading to the fewest number
of iterations.

Exercise 7.4.2 With the nodes in Figure 7.4 re-ordered as in Exercise 7.2.3,
verify the training code returns the same results.

Exercise 7.4.3 Train the network in Figure 7.12 using mean square loss and
the three samples and three targets above. Start with a random W .

Exercise 7.4.4 Train the network in Figure 7.13 against the dataset

dataset = array([

[0.99335999, 1. , 0.],

[-0.8943543 , 0. , 1.],

7.5. LINEAR REGRESSION 429

[0.87709524, 1. , 0.],

[-0.61427175, 0. , 1.],

[0.53202877, 1. , 0.],

[1.10156379, 1. , 0.],

[0.51760267, 1. , 0.],

[-1.30845517, 0. , 1.],

[0.47808674, 1. , 0.],

[-1.13024748, 0. , 1.]])

This dataset consists of normally distributed scalar sources with mean +1 or
−1 according to whether the one-hot encoded targets are (1, 0) or (0, 1). The
code for dataset is

from numpy.random import default_rng

rng = default_rng()

mu, N = 0, 50

sdev = 0.5, 1.0, 2.0, 10.0

sdev = 0.5

n, p = 1, 0.5

targets = rng.binomial(n,p,N)

source mean equals pm1 according to target=1 or 0

sources = rng.normal(mu,sdev,N) + (2*targets - 1)

one-hot encoded targets

targets = array([targets,1-targets]).T

dataset = column_stack([sources, targets])

Here J is mean logistic loss (7.2.7). Start with the network adjacency matrix
W and do batch sample training with 100 epochs and learning rate 0.2.
Using the resulting optimal weightW ∗, compare predicted targets with actual
targets, for sdev = 0.5, 1.0, 2.0, 10.0. What is your percentage success
rate as sdev varies?

7.5 Linear Regression

Let x1, x2, . . . , xN be a dataset, with corresponding labels or targets y1, y2,
. . . , yN . As in §7.1, the loss function is

J(W) =
1

N

N∑
k=1

J(xk, yk,W). (7.5.1)

In this section, we focus on a single-layer perceptron (Figure 7.21),

J(x, y,W) = J(z, y), z = W tx.

430 CHAPTER 7. MACHINE LEARNING

Here x is the input, W is the weight matrix, z is the network computed
output, and y is the desired output or target.

The loss function (7.5.1) has no bias inputs. When there are bias inputs
b, the loss function is

J(W, b) =
1

N

N∑
k=1

J(xk, yk,W, b), (7.5.2)

and we focus on a single-layer perceptron

J(x, y,W, b) = J(z, y), z = W tx+ b.

Here b is the bias vector.

A basic attribute of a neural network is its trainability. Can a given network
be trained to achieve desired input-output behavior? As stated, this question
is imprecise and not clearly defined. In fact, for deep networks, it is not at
all clear how to turn this vague idea into an actionable definition.

In the case of a single-layer perceptron, the situation is straightforward
enough to be able to both make the question precise, and to provide action-
able criteria that guarantee trainability. This we do in the two cases

• linear regression, and
• logistic regression.

With any loss function J , the goal is to minimize J . With this in mind,
from §4.5, we recall

Ideal Loss Function

If a loss function J(W) is strictly convex and proper, then J has a
unique optimal weight W ∗,

J(W ∗) ≤ J(W),

characterized as the unique weight W ∗ satisfying ∇WJ(W ∗) = 0.

Often, in machine learning, J is neither convex nor proper. Nevertheless,
this result is an important benchmark to start with. Lack of properness is
often addressed by regularization, which is the modification of J by a proper
forcing term. Lack of convexity is addressed by using some type of accelerated
gradient descent.

It is natural to say a loss function is trainable if it is proper (§4.3), because
this guarantees the existence of optimal weights. In the case of a single-layer

7.5. LINEAR REGRESSION 431

perceptron, strict convexity is easy to pin down, leading to the uniqueness of
optimal weights.

Because of this, for a single-layer perceptron, we say the regression is
trainable if the loss function (7.5.1) (without bias) or the loss function (7.5.2)
(with bias) is proper and strictly convex. In this and the next section, we
determine conditions on the dataset that guarantee trainability in the above
two cases. We do this when there are no bias inputs, and when there are bias
inputs, so there are four cases in all.

x1

x2

x3

x4

+

+

+

(−)2

y

z = W tx+ b

J = |z − y|2/2

z1

z2

z3

J

Fig. 7.21 Linear regression neural network with bias.

For linear regression without bias, the loss function is (7.5.1) with

J(x, y,W) =
1

2
|y − z|2, z = W tx. (7.5.3)

For linear regression with bias, the loss function is (7.5.2) with

J(x, y,W) =
1

2
|y − z|2, z = W tx+ b. (7.5.4)

Then (7.5.1) and (7.5.2) are the mean square error or mean square loss,
and the problem of minimizing (7.5.1) and (7.5.2) is linear regression (Figure
7.21).

We use the identities (2.2.10) and (2.2.15) to compute the gradient of
J(x, y,W).

432 CHAPTER 7. MACHINE LEARNING

Let V be a weight matrix, and let v = V tx, z = W tx. Then (W +sV)tx =
z + sv, and the directional derivative is

d

ds
J(x, y,W + sV) =

d

ds

1

2
|z + sv − y|2

= v · (z + sv − y) = (V tx) · (z + sv − y)

= trace
(
(V tx)⊗ (z + sv − y)

)
= trace

(
V t(x⊗ (z + sv − y))

)
.

(7.5.5)

By (4.3.6), inserting s = 0, (7.5.5) implies the weight gradient for mean
square loss is

G = ∇WJ(x, y,W) = x⊗ (z − y), z = W tx. (7.5.6)

Note this result is a special case of (7.4.2).
Differentiating (7.5.5) with respect to s and inserting s = 0,

d2

ds2

∣∣∣∣
s=0

J(x, y,W + sV) = |v|2 = |V tx|2. (7.5.7)

Since this is nonnegative, by (4.5.10), J(x, y,W) is a convex function of W .
Since J(W) is the average of J(x, y,W) over all samples, J(W) is convex.

To check strict convexity of J(W), suppose

d2

ds2

∣∣∣∣
s=0

J(W + sV) = 0.

Then (7.5.7) vanishes for all samples x = xk, y = yk, which implies

V txk = 0, k = 1, 2, . . . , N. (7.5.8)

Recall the sample space is the vector space of all inputs x, and (§2.9) a
dataset is full-rank if the span of the dataset is the entire sample space. When
this happens, (7.5.8) implies V = 0. By (4.5.11), J(W) is strictly convex.

To check properness of J(W), by definition (4.3.7), given a level c, we show
there is a bound C with

J(W) ≤ c =⇒ ∥W∥ ≤ C.

Here ∥W∥ is the norm of the matrix W (2.2.16).
Let w1, w2, . . . , wd be the rows of W . Equivalently to the above definition,

given a level c, we show there is a bound C with

J(W) ≤ c =⇒ |wi| ≤ C, i = 1, 2, . . . , d. (7.5.9)

7.5. LINEAR REGRESSION 433

Indeed, if the former is valid with bound C, then the latter is valid with
bound C. Conversely, if the latter is valid with bound C, then, by definition
of ∥W∥, the former is valid with bound C

√
d. The exact formula for the

bound C, which is not important for our purposes, depends on the level c
and the dataset.

Assume J(W) ≤ c. By (7.5.1), (7.5.3), and the triangle inequality,

|W txk| ≤
√
2cN + |yk|, k = 1, 2, . . . , N.

If x is in the span of the dataset, then x is a linear combination of samples
xk. Hence there is a bound C(x), depending on x but not on W , such that

|W tx| ≤ C(x). (7.5.10)

Let e1, e2, . . . , ed be the one-hot encoded basis in Rd. Then the rows of
W are W tei, i = 1, 2, . . . , d. If the dataset is full-rank, then e1, e2, . . . , ed
are in the span of the dataset. Let C be the largest of C(e1), C(e2), . . . ,
C(ed). Inserting x = ei in (7.5.10), we obtain |wi| = |W tei| ≤ C. Since this
establishes (7.5.9), we have

Trainability: Linear Regression Without Bias

Suppose the dataset x1, x2, . . . , xN is full-rank. Then linear regression
without bias is trainable on weights W .

For linear regression with bias, we augment the dataset x1, x2, . . . , xN to
(x1, 1), (x2, 1), . . . , (xN , 1). Then linear regression with bias for the dataset
x1, x2, . . . , xN is equivalent to linear regression without bias for the dataset
(x1, 1), (x2, 1), . . . , (xN , 1). For the augmented dataset, the weight matrix is(

W
bt

)
.

Appealing to Exercise 7.2.2, we obtain

Trainability: Linear Regression With Bias

Suppose the dataset x1, x2, . . . , xN does not lie in a hyperplane. Then
linear regression with bias is trainable on weights (W, b).

These are simple, clear geometric criteria for convergence of gradient de-
scent to the global minimum of J , valid for linear regression with or without
bias inputs.

434 CHAPTER 7. MACHINE LEARNING

7.6 Logistic Regression

A dataset is a two-class dataset if it is composed of two disjoint classes. More
generally, a dataset is a multi-class dataset if it is composed of d ≥ 2 disjoint
classes. Separability of two-class datasets was first discussed in §4.5.

Recall (§5.3) a vector p = (p1, p2, . . . , pd) is a probability vector if each
component p1, p2, . . . , pd is nonnegative (positive or zero), and the compo-
nents sum to one, p1 + p2 + · · ·+ pd = 1.

A probability vector p is strict if the components are all positive (none are
zero). A probability vector p is one-hot encoded if one of the components is
one. When this is the i-th component, we say p is one-hot encoded at slot i.
When this happens, all other components are zero.

Let x1, x2, . . . , xN be a dataset with corresponding labels or targets p1, p2,
. . . , pN . In logistic regression, we assume the targets are probability vectors.
Such a dataset is a soft-class dataset.

In a multi-class dataset, we can assign targets to classes as follows. If a
sample xk lies in class i, the target pk assigned to xk is the probability vector
that is one-hot encoded at slot i.

For example, if there are three classes, as in the Iris dataset, the probability
vector pk is one of

(1, 0, 0), (0, 1, 0), (0, 0, 1),

according to the class of the sample xk.
On the other hand, in a soft-class dataset, we can assign classes to targets:

Given a probability vector p = (p1, p2, . . . , pd), let

max p = max(p1, p2, . . . , pd).

Then the i-th class may be defined as the samples with targets satisfying
pi = max p. Alternatively, the i-th class may be defined as the samples with
targets satisfying pi > 0.

When classes are assigned to targets, they need not be disjoint. Because
of this, they are called soft classes. Summarizing, a soft-class dataset is a
dataset x1, x2, . . . , xN with targets p1, p2, . . . , pN consisting of probability
vectors.

Let x1, x2, . . . , xN be a dataset, with corresponding labels or targets p1,
p2, . . . , pN consisting of probability vectors. The loss function is

J(W) =
1

N

N∑
k=1

J(xk, pk,W), (7.6.1)

7.6. LOGISTIC REGRESSION 435

in the case without bias inputs, and

J(W) =
1

N

N∑
k=1

J(xk, pk,W, b), (7.6.2)

in the case with bias inputs.

x1

x2

x3

x4

+

+

+

σ I

p
y1

y2

y3

q1

q2

q3

J

y = W tx+ b

q = σ(y)
J = I(p, q)

Fig. 7.22 Logistic regression neural network with bias.

In this section, we focus on a single-layer perceptron

J(x, p,W) = I(p, q), q = σ(y), y = W tx, (7.6.3)

and

J(x, p,W, b) = I(p, q), q = σ(y), y = W tx+ b. (7.6.4)

Here x is the input, W , b are the weights, y is the network computed output,
and p is the desired target. Also, q = σ(y) is the softmax function (§5.6),
squashing the network’s output y into the probability q, and I(p, q) is the
relative information.

Then (7.6.1) and (7.6.2) are the mean logistic error or mean logistic loss,
and the problem of minimizing (7.6.1) and (7.6.2) is logistic regression (Figure
7.22).

In §5.6, I(p, σ(y)) is called the information error (5.6.15).

We start with logistic regression without bias inputs. When p is one-hot
encoded, by (5.6.16),

J(x, p,W) = Icross(p, σ(W
tx)).

436 CHAPTER 7. MACHINE LEARNING

Because of this, in the literature, in the one-hot encoded case, (7.6.2) is called
the “cross-entropy loss” (not cross-information, see remarks at end of §5.6).

Since we will be considering both strict and one-hot encoded probabilities,
we work with I(p, q) rather than Icross(p, q). Table 5.33 is a useful summary
of the various information and entropy concepts.

In §5.6, we defined 1 = (1, 1, . . . , 1), and a vector v was centered if v ·1 = 0.
Here we define a matrix W as centered if all rows of W are centered. Then
W is centered iff W1 = 0. Also, if W is centered, and y = W tx, then y is
centered.

We compute the gradient ∇WJ(x, p,W). By (5.6.3) and (5.6.15),

∇yI(p, σ(y)) = ∇yZ(y)− p = q − p, q = σ(y), (7.6.5)

and, by (5.6.10),

D2
yI(p, σ(y)) = D2Z(y) = diag(q)− q ⊗ q, q = σ(y). (7.6.6)

Let V be a centered weight matrix, and let v = V tx, y = W tx. Then
(W + sV)tx = y + sv, and, by (7.6.5), the directional derivative is

d

ds

∣∣∣∣
s=0

J(x, y,W + sV) =
d

ds

∣∣∣∣
s=0

I(p, σ(y + sv))

= v · (q − p) = (V tx) · (q − p)

= trace
(
(V tx)⊗ (q − p)

)
= trace

(
V t(x⊗ (q − p))

)
.

By (4.3.6), this shows the gradient for log loss is

G = ∇WJ(x, p,W) = x⊗ (q − p), q = σ(W tx). (7.6.7)

As before, this result is a special case of (7.4.2). Since q and p are probability
vectors, p · 1 = 1 = q · 1, hence the gradient G is centered.

Recall (§5.6) we have strict convexity of Z(y) along centered vectors y.
Since y = W tx, y · 1 = x · W1. Hence, to force y · 1 = 0, it is natural to
assume W is centered.

If we initiate gradient descent with a centered weight matrix W , since the
gradient G is also centered, all successive weight matrices will be centered.

Turning to convexity, we establish

7.6. LOGISTIC REGRESSION 437

Strict Convexity: Logistic Regression Without Bias

Suppose the dataset x1, x2, . . . , xN is full-rank. Then the logistic loss
J(W) without bias is strictly convex on centered weights W .

To see this, given a vector v and probability vector q, set v̄ =
∑d

j=1 vjqj .
Then

d∑
j=1

v2j qj −

 d∑
j=1

vjqj

2

=

d∑
j=1

(vj − v̄)2qj .

If either side is zero, and q is strict, then v = v̄1, so v is a multiple of 1.
From this identity, and by (4.5.10) and (7.6.6), the second derivative of

I(p, σ(y)) in the direction of a vector v is

d2

ds2

∣∣∣∣
s=0

I(p, σ(y + sv)) =

d∑
j=1

(vj − v̄)2qj , q = σ(y).

Let V be a centered weight matrix and let v = V tx. Then v ·1 = x·V 1 = 0,
so v is centered, and

(W + sV)tx = y + sv.

If y = W tx, it follows the second derivative of J(x, p,W) in the direction of
V is

d2

ds2

∣∣∣∣
t=0

J(x, p,W + sV) =

d∑
j=1

(vj − v̄)2qj , v = V tx. (7.6.8)

This shows the second derivative of J(x, p,W) is nonnegative, establishing
the convexity of J(x, p,W). Since J(W) is the sum of J(x, p,W) over all
samples, we conclude J(W) is convex.

Moreover, if (7.6.8) vanishes, then, by the previous paragraph, since q =
σ(y) is strict, v is a multiple of 1. Since v is centered, it follows v = 0
(Exercise 5.6.1). Since v = V tx, the vanishing of (7.6.8) implies V tx = 0.

If

d2

ds2

∣∣∣∣
s=0

J(W + sV) =
1

N

N∑
k=1

d2

ds2

∣∣∣∣
s=0

J(xk, pk,W + sV)

vanishes, then, since the summands are nonnegative, (7.6.8) vanishes, for
every sample x = xk, p = pk, hence

V txk = 0, k = 1, 2, . . . , N.

When the dataset is full-rank, this implies V = 0. This establishes strict
convexity of J(W) on centered weights.

438 CHAPTER 7. MACHINE LEARNING

Now we turn to properness of J(W). Here is the result.

Properness: Logistic Regression Without Bias

Let x1, x2, . . . , xN be a dataset with corresponding targets p1, p2, . . . ,
pN . For each class i, let Ki be the convex hull of the samples x whose
corresponding targets p = (p1, p2, . . . , pd) satisfy pi > 0. If the span of
the intersection Ki ∩Kj is full-rank for every class i and class j, then
the logistic loss J(W) without bias is proper on centered weights W .

The convex hull is discussed in §4.5, see Figures 4.25 and 4.26. If Ki were
just the samples x whose corresponding targets p satisfy pi > 0 (with no
convex hull), then the intersection Ki ∩Kj may be empty.

For example, if p were one-hot encoded, then x belongs to at most one Ki.
Thus taking the convex hull in the definition of Ki is crucial. This is clearly
seen in Figure 7.34: The samples never intersect, but the convex hulls may
do so.

Let w1, w2, . . . be the rows of W . To establish properness of J(W), as
we did for linear regression, we show for each level c, there is a bound C
satisfying

W1 = 0 and J(W) ≤ c =⇒ |wk| ≤ C, k = 1, 2,
(7.6.9)

The exact formula for the bound C, which is not important for our purposes,
depends on the level c and the dataset.

For notational simplicity, assume the level is c/N . Suppose J(W) ≤ c/N ,
with W1 = 0 and let q = σ(y). Then I(p, q) = J(x, p,W) ≤ c for every
sample x and corresponding target p.

Let x be a sample, let y = W tx, and suppose the corresponding target p
satisfies pi ≥ ϵ, for some class i, and some ϵ > 0. If j ̸= i, then

ϵ(yj − yi) ≤ ϵ(Z(y)− yi) ≤ pi(Z(y)− yi) ≤
d∑

k=1

pk(Z(y)− yk) = Z(y)− p · y.

By (5.6.15),
Z(y)− p · y = I(p, σ(y))− I(p) ≤ c+ log d.

Combining the last two inequalities,

ϵ(yj − yi) ≤ c+ log d.

By definition of Ki, pi > 0 for all targets p corresponding to samples x
in Ki. Therefore there is a positive ϵi such that pi ≥ ϵi for all targets p
corresponding to samples x in Ki. Let ϵ be the least of ϵ1, ϵ2, . . . , ϵd. Then

7.6. LOGISTIC REGRESSION 439

ϵ(yj − yi) ≤ c+ log d, j ̸= i, for samples x in Ki.

By taking convex combinations of samples x in Ki, the last inequality
remains valid for all x in Ki, so

ϵ(yj − yi) ≤ c+ log d, j ̸= i, for all x in Ki.

Repeating the same argument for x in Kj ,

ϵ(yi − yj) ≤ c+ log d, j ̸= i, for all x in Kj .

Combining the last two inequalities,

ϵ|yi − yj | ≤ c+ log d, j ̸= i, for all x in Ki ∩Kj . (7.6.10)

Now suppose x is in span(Ki ∩Kj) for all i and j, and let y = W tx. By
(7.6.10), there is a constant C(x) such that

|yi − yj | ≤ C(x), for all j ̸= i. (7.6.11)

Since y · 1 = 0, yi = −
∑

j ̸=i yj . Summing (7.6.11) over j ̸= i,

d|yi| = ϵ|(d− 1)yi + yi| =

∣∣∣∣∣∣
∑
j ̸=i

(yi − yj)

∣∣∣∣∣∣ ≤ (d− 1)C(x),

hence
|yi| ≤ C(x), i = 1, 2, . . . , d.

Summing over classes i = 1, 2, . . . , d,

|W tx| ≤ dC(x). (7.6.12)

Let e1, e2, . . . be the one-hot encoded basis in Rd. Since span(Ki ∩Kj) is
full-rank for all i and j, inserting x = ek in (7.6.12) yields |wk| = |W tek| ≤
dC(ek), for k = 1, 2, If we let C be the largest of dC(e1), dC(e2), . . . ,
this establishes (7.6.9), hence establishes properness of J .

When p is a strict probability vector, one can directly show I(p, σ(y)) is
proper and strictly convex on centered vectors y (Exercise 5.6.5).

If the span of Ki ∩ Kj is full-rank, then the span of the dataset itself is
full-rank. Putting the last two results together, we conclude

440 CHAPTER 7. MACHINE LEARNING

Trainability: Logistic Regression Without Bias

Let x1, x2, . . . , xN be a dataset with corresponding targets p1, p2, . . . ,
pN . For each class i, let Ki be the convex hull of the samples x whose
corresponding targets p = (p1, p2, . . . , pd) satisfy pi > 0. If the span of
the intersection Ki ∩Kj is full-rank for every class i and class j, then
logistic regression without bias is trainable on centered weights W .

By the definition of Ki here, the union of Ki over classes i = 1, 2, . . . , d
contains the whole dataset. This is not necessarily the case in the results
below.

As a special case, let K be the samples whose corresponding targets are
strict. Then K ⊂ Ki for all classes i. If the span of K is full-rank, then
span(Ki ∩Kj) is full-rank. This derives the first consequence,

Trainability: Strict Logistic Regression Without Bias

Let x1, x2, . . . , xN be a dataset, with corresponding targets p1, p2,
. . . , pN . Let K be the convex hull of the samples whose corresponding
targets are strict. If the span of K is full-rank, then logistic regression
without bias is trainable on centered weights W .

If a target p is one-hot encoded at slot i, then pi = 1 > 0. This derives the
second consequence,

Trainability: One-hot Encoded Logistic Regression Without
Bias

Let x1, x2, . . . , xN be a dataset with corresponding targets p1, p2,
. . . , pN . For each class i, let Ki be the convex hull of the samples
whose corresponding targets are one-hot encoded at slot i. If the span
of the intersection Ki ∩Kj is full-rank for every i and j, then logistic
regression without bias is trainable on centered weights W .

Here not all samples need be one-hot encoded: The requirement is that
there is sufficient overlap between the targets that are one-hot encoded.

For logistic regression with bias, the loss function is given by (7.6.3) and
(7.6.4). In keeping with our prior convention, we call the weight (W, b) cen-
tered if W is centered and b is centered. Then y is centered.

If the columns of W are (w1, w2, . . . , wd), and b = (b1, b2, . . . , bd), then
y = W tx+ b is equivalent to levels corresponding to d hyperplanes (§4.5)

7.6. LOGISTIC REGRESSION 441

y1 = w1 · x+ b1,

y2 = w2 · x+ b2,

. . . = . . .

yd = wd · x+ bd.

(7.6.13)

The scalars y1, y2, . . . , yd are the outputs corresponding to the sample x and
weight (W, b).

Let x1, x2, . . . , xN be a dataset, and suppose (W, b) is a weight with
vanishing outputs yk = 0, k = 1, 2, . . . , N . If W ̸= 0, then at least one of the
columns wj is nonzero, hence the dataset lies in the hyperplane wj ·x+bj = 0.
On the other hand, if the dataset lies in a hyperplane, then there is a weight
(W, b) with W ̸= 0 such that the outputs vanish (Exercise 7.6.1). Because of
this, we call a weight (W, b) satisfying W ̸= 0 a hyperplane weight.

Let x1, x2, . . . , xN be a soft-class dataset with associated target probability
vectors p1, p2, . . . , pN . Suppose there are d possibly overlapping classes, and
suppose for each sample x in class i, the corresponding target p satisfies
pi > 0. This assumption covers the two cases, strict and one-hot encoded,
discussed above.

We leave strict convexity of the loss function to Exercise 7.6.6, and we
focus on properness of the loss function.

In §4.5, we defined separating hyperplanes and separable two-class datasets.
There are at least two generalizations of separability to soft-class datasets.
They are strong separability (“all-against-all”), and weak separability (“some-
against-some”). Let y1, y2, . . . , yd be the outputs (7.6.13).

A dataset is strongly separable if there is a hyperplane separating class i
from the rest of the dataset, for every i = 1, 2, . . . , d. By Exercise 7.6.3, this
is the same as saying there is a weight (W, b) such that

yi ≥ 0, for x in class i,

yi ≤ 0, for x in class j,
for every i = 1, 2, . . . , d and every j ̸= i.

(7.6.14)

Here again the hyperplanes are decision boundaries.
On the other hand, a dataset is weakly separable if there is a hyperplane

separating some class i and some class j ̸= i. By Exercise 7.6.2, this is the
same as saying there is a weight (W, b) such that

yi ≥ 0, for x in class i,

yi ≤ 0, for x in class j,
for some i = 1, 2, . . . , d and some j ̸= i.

(7.6.15)

Clearly strong separability implies weak separability. In a two-class dataset,
strong separability equals weak separability and both equal separability as
defined in (4.5.5).

442 CHAPTER 7. MACHINE LEARNING

If a dataset lies in a hyperplane (4.5.6), the dataset is separable, in both
strong and weak senses. Thus the question of separability is only interesting
when the dataset does not lie in a hyperplane.

Recall (§4.5) a set K has interior if there is a ball B in K. For each
i = 1, 2, . . . , d, let Ki be the convex hull of the samples in class i. Then Ki

has interior iff class i does not lie in a hyperplane (Exercise 4.5.15).
By hyperplane separation II (4.5.7) with Ki and Kj replacing K0 and K1,

we have

Weak Separability and Interiors

Assume none of the classes of a soft-class dataset lie in a hyperplane,
and let Ki be the convex hull of class i. Then the dataset is weakly
separable iff Ki∩Kj has no interior for some i and some j ̸= i. Equiv-
alently, the dataset is not weakly separable iff Ki∩Kj has interior for
every i and every j ̸= i.

We use this to derive the main result

Trainability: Logistic Regression With Bias

If the soft-class dataset is strongly separable, logistic regression with
bias is not trainable. If none of the classes lie in a hyperplane and the
soft-class dataset is not weakly separable, logistic regression with bias
is trainable on centered weights (W, b).

As special cases, there are corresponding results for strict targets and one-
hot encoded targets.

To begin the proof, suppose (W, b) satisfies (7.6.14). Then (Exercise 7.6.4)

yi ≥ 0, for x in Ki,

yj ≤ 0, for x in Ki and every j ̸= i,
for every i = 1, 2, . . . , d,

(7.6.16)

From this, one obtains I(p, σ(y)) ≤ log d for every sample x and q = σ(y)
(Exercise 7.6.5), which implies J(W, b) ≤ log d.

Since (W, b) satisfies (7.6.14) implies (tW, tb) satisfies (7.6.14) for all t > 0,
this establishes J(tW, tb) ≤ log d for all t > 0, which shows the loss function
is not proper, hence not trainable.

For the other direction, for trainability, by Exercise 7.6.6, it is enough to
check properness. To establish properness of the loss function, suppose none
of the classes lie in a hyperplane and the dataset is not weakly separable.

7.6. LOGISTIC REGRESSION 443

Then Ki ∩ Kj has interior for all i and all j ̸= i. Let x∗
ij be the centers of

balls in Ki ∩Kj for each i ̸= j. By making the balls small enough, we may
assume the radii of the balls equal the same r > 0.

Let ϵi > 0 be the minimum of pi over all probability vectors p correspond-
ing to samples x in class i. Let ϵ be the least of ϵ1, ϵ2, . . . , ϵd. Then ϵ is
positive.

Suppose J(W, b) ≤ c/N for some level c, with W = (w1, w2, . . . , wd),
b = (b1, b2, . . . , bd) centered. We establish properness of the loss function by
showing

|wi|+ |bi| ≤
c+ log d

rϵ

1 + r +
1

d− 1

∑
j ̸=i

|x∗
ij |

 , i = 1, 2, . . . , d.

(7.6.17)
The exact form of the right side of (7.6.17) doesn’t matter. What matters is
the right side is a constant depending only on the dataset, the targets, the
number of categories d, and the level c.

If J(W, b) ≤ c/N , then I(p, q) ≤ c for each sample x. As before, this leads
to (7.6.10).

Let v be a unit vector, and let

x± = x∗
ij ± rv, y±i = wi · x± + bi, y±j = wj · x± + bj .

Since x± are in Ki ∩Kj , by (7.6.10),

2rϵ|(wi − wj) · v| = ϵ|(y+i − y+j)− (y−i − y−j)| ≤ 2(c+ log d).

Optimizing over all v, or choosing v = (wi − wj)/|wi − wj |, we obtain

rϵ|wi − wj | ≤ c+ log d.

Let
yi = wi · x∗

ij + bi, yj = wj · x∗
ij + bj .

Since x∗
ij is in Ki ∩Kj , by (7.6.10),

rϵ|bi − bj | ≤ rϵ|yi − yj |+ rϵ|(wi − wj) · x∗
ij |

≤ r(c+ log d) + rϵ|wi − wj | |x∗
ij | ≤ (c+ log d)

(
r + |x∗

ij |
)
.

Hence

rϵ|wi − wj |+ rϵ|bi − bj | ≤ (c+ log d) · (1 + r + |x∗
ij |). (7.6.18)

Since W is centered,

dwi = (d− 1)wi + wi = (d− 1)wi −
∑
j ̸=i

wj =
∑
j ̸=i

(wi − wj).

444 CHAPTER 7. MACHINE LEARNING

Similarly, since b is centered,

dbi =
∑
j ̸=i

(bi − bj).

Hence

|wi|+ |bi| ≤
1

d

∑
j ̸=i

|wi − wj |+ |bi − bj |.

Combining this with (7.6.18) results in (7.6.17), and establishes properness
of the loss function. This completes the proof of the main result.

A very special case is a two-class dataset. In this case, the result is com-
pelling:

Trainability: Two-Class Logistic Regression With Bias

Assume neither class lies in a hyperplane. Then logistic regression
with bias is trainable iff the two-class dataset is not separable.

To highlight this result, a two-class dataset is either separable or it is not.
If it is separable, then a support vector machine [17] computes an optimal
decision boundary. If it is not separable, then (assuming neither class lies
in a hyperplane) logistic regression with bias computes an optimal decision
boundary. Such a decision boundary is an LR hyperplane.

We end the section by comparing the three regressions: linear, strict logis-
tic, and one-hot encoded logistic.

In classification problems, it is one-hot encoded logistic regression that is
relevant. Because of this, in the literature, logistic regression often defaults
to the one-hot encoded case.

In linear regression, not only do J(W) and J(W, b) have minima, but so
does J(z, y). Properness ultimately depends on properness of a quadratic |z|2.

In strict logistic regression, by (7.6.5), the critical point equation

∇yJ(y, p) = 0

can always be solved, so there is at least one minimum for each J(y, p). Here
properness ultimately depends on properness of Z(y).

In one-hot encoded regression, J(y, p) = I(p, σ(y)) and ∇yJ(y, p) = 0 can
never be solved, because q = σ(y) is always strict and p is one-hot encoded,

7.7. REGRESSION EXAMPLES 445

see (7.6.7). Nevertheless, trainability of J(W) and J(W, b) is achievable if
there is sufficient overlap between the sample categories.

In linear regression, the minimizer is expressible in terms of the regression
equation, and thus can be solved in principle using the pseudo-inverse. In
practice, when the dimensions are high, gradient descent may be the only
option for linear regression.

In logistic regression, the minimizer cannot be found in closed form, so we
have no choice but to apply gradient descent, even for low dimensions.

Exercises

Exercise 7.6.1 Show a dataset x1, x2, . . . , xN lies in a hyperplane iff there
is a weight (W, b) with W ̸= 0 such that the outputs y1, y2, . . . , yN are all
zero.

Exercise 7.6.2 Show a dataset x1, x2, . . . , xN is weakly separable iff (7.6.15)
holds.

Exercise 7.6.3 Show a dataset x1, x2, . . . , xN is strongly separable iff
(7.6.14) holds.

Exercise 7.6.4 Show a dataset x1, x2, . . . , xN is strongly separable iff
(7.6.16) holds.

Exercise 7.6.5 Let (W, b) be strongly separating, and let y = W tx+b. Using
(5.6.15) and (7.6.16), show I(p, σ(y)) ≤ log d for every sample x and q = σ(y).

Exercise 7.6.6 Let J(W, b) be the logistic loss function with bias inputs.
Then J(W, b) is convex. If the dataset does not lie in a hyperplane, then
J(W, b) is strictly convex.

Exercise 7.6.7 Suppose the multi-class dataset does not lie in a hyperplane.
Then the means of the classes agree iff there is an optimal weight (W, b) with
W = 0. (Do two-class first.)

7.7 Regression Examples

Let (xk, yk), k = 1, 2, . . . , N , be a dataset in the plane. The simplest regres-
sion problem is to determine the line y = mx+ b minimizing the residual

J(m, b) =
1

N

N∑
k=1

(yk −mxk − b)2. (7.7.1)

446 CHAPTER 7. MACHINE LEARNING

This line is the regression line. For the dataset in Figure 7.23, the regression
line is in Figure 7.24.

GNP.deflator GNP Unemployed Armed Forces Population Year Employed

83 234.289 235.6 159 107.608 1947 60.323

88.5 259.426 232.5 145.6 108.632 1948 61.122

88.2 258.054 368.2 161.6 109.773 1949 60.171

89.5 284.599 335.1 165 110.929 1950 61.187

96.2 328.975 209.9 309.9 112.075 1951 63.221

98.1 346.999 193.2 359.4 113.27 1952 63.639

99 365.385 187 354.7 115.094 1953 64.989

100 363.112 357.8 335 116.219 1954 63.761

101.2 397.469 290.4 304.8 117.388 1955 66.019

104.6 419.18 282.2 285.7 118.734 1956 67.857

108.4 442.769 293.6 279.8 120.445 1957 68.169

110.8 444.546 468.1 263.7 121.95 1958 66.513

112.6 482.704 381.3 255.2 123.366 1959 68.655

114.2 502.601 393.1 251.4 125.368 1960 69.564

115.7 518.173 480.6 257.2 127.852 1961 69.331

116.9 554.894 400.7 282.7 130.081 1962 70.551

Table 7.23 Longley Economic Data [20].

Fig. 7.24 Population versus employed: linear regression.

More generally, given a dataset x1, x2, . . . , xN in Rd, and scalar targets
y1, y2, . . . , yN , we want to minimize

7.7. REGRESSION EXAMPLES 447

J(w,w0) =
1

N

N∑
k=1

(yk − w · xk − w0)
2

over all weight vectors w in Rd and scalars w0.
Here we are fitting a regression hyperplane

0 = w0 + w · x = w0 + w1x1 + w2x2 + · · ·+ wdxd.

This corresponds to (7.5.1), where W is the d × 1 matrix W = w, and b is
the scalar w0.

For example, Figure 7.23 is a dataset and Figure 7.24 is a plot of population
versus employed, with the mean and the regression line shown.

Let X be the N × d matrix with rows x1, x2, . . . , xN , and let Y be the
vector (y1, y2, . . . , yN). Then we can rewrite the residual as

J(w) =
1

N
|Xw − Y |2. (7.7.2)

From §2.3, any weight w∗ minimizing (7.7.2) is a solution the regression
equation

XtXw∗ = XtY. (7.7.3)

Since the pseudo-inverse provides a solution of the regression equation, we
have

Linear Regression

The weight w∗ = X+Y minimizes the residual (7.7.2) and solves the
regression equation (7.7.3).

We work out the regression equation in the plane, when both features x
and y are scalar. In this case, w = (m, b) and

X =


x1 1
x2 1
.
xN 1

 , Y =


y1
y2
. . .
yN

 .

In the scalar case, the regression equation (7.7.3) is 2× 2. To simplify the
computation of XtX, let

x̄ =
1

N

N∑
k=1

xk, ȳ =
1

N

N∑
k=1

yk.

448 CHAPTER 7. MACHINE LEARNING

Then (x̄, ȳ) is the mean of the dataset. Also, let x and y denote the vectors
(x1, x2, . . . , xN) and (y1, y1, . . . , yN), and let, as in §1.4,

cov(x, y) =
1

N

N∑
k=1

(xk − x̄)(yk − ȳ) =
1

N
x · y − x̄ȳ.

Then cov(x, y) is the covariance between x and y,

XtX = N

(
x · x x̄
x̄ 1

)
, XtY = N

(
x · y
ȳ

)
.

With w = (m, b), the regression equation reduces to

(x · x)m+ x̄b = x · y,
mx̄+ b = ȳ.

The second equation says the regression line passes through the mean (x̄, ȳ).
Multiplying the second equation by x̄ and subtracting the result from the
first equation cancels the b and leads to

cov(x, x)m = (x · x− x̄2)m = (x · y − x̄ȳ) = cov(x, y).

This derives

Linear Regression in the Plane

The regression line in two dimensions passes through the mean (x̄, ȳ)
and has slope

m =
cov(x, y)

cov(x, x)
.

Now we use linear regression to do polynomial regression. Starting with
the dataset (xk, yk) in R2 (Figure 7.24), we can expand or “lift” the dataset
from R2 to R6 by working with the vectors (1, xk, x

2
k, x

3
k, x

4
k, yk) instead of

(xk, yk).
Assuming the data is given by Figure 7.23, we build the code for Figures

7.24 and 7.25. We begin by assuming the data is given as arrays,

from numpy import *

from pandas import read_csv

7.7. REGRESSION EXAMPLES 449

df - read_csv("longley.csv")

X = df["Population"].to_numpy()

Y = df["Employed"].to_numpy()

Fig. 7.25 Polynomial regression: Degrees 2, 4, 6, 8, 10, 12.

After this, we compute the optimal weight w∗ and construct the polyno-
mial. The regression equation is solved using the pseudo-inverse (§2.3).

Then we standardize the data

450 CHAPTER 7. MACHINE LEARNING

X = X - mean(X)

Y = Y - mean(Y)

varx = sum(X**2)/len(X)

vary = sum(Y**2)/len(Y)

X = X/sqrt(varx)

Y = Y/sqrt(vary)

from scipy.linalg import pinv

polynomial function - degree d-1

def poly(x,d):

A = column_stack([X**i for i in range(d)]) # Nxd

Aplus = pinv(A)

b = Y # Nx1

wstar = dot(Aplus,b)

return sum([x**i*wstar[i] for i in range(d)],axis=0)

Then we plot the data and the polynomial in six subplots.

from matplotlib.pyplot import *

xmin,ymin = amin(X), amin(Y)

xmax, ymax = amax(X), amax(Y)

figure(figsize=(12,12))

six subplots

rows, cols = 3,2

x interval

x = arange(xmin,xmax,.01)

for i in range(6):

d = 3 + 2*i # degree = d-1

subplot(rows, cols,i+1)

plot(X,Y,"o",markersize=2)

plot([0],[0],marker="o",color="red",markersize=4)

plot(x,poly(x,d),color="blue",linewidth=.5)

title("degree = " + str(d-1))

grid()

show()

Running this code with degree 1 returns Figure 7.24. Taking too high a
power can lead to overfitting, for example for degree 12.

7.7. REGRESSION EXAMPLES 451

x p x p x p x p x p

0.5 0 .75 0 1.0 0 1.25 0 1.5 0

1.75 0 1.75 1 2.0 0 2.25 1 2.5 0

2.75 1 3.0 0 3.25 1 3.5 0 4.0 1

4.25 1 4.5 1 4.75 1 5.0 1 5.5 1

Table 7.26 Hours studied and outcomes.

Here is an example of a simple logistic regression problem. A group of
students takes an exam. For each student, we know the amount of time x
they studied, and the outcome p, whether or not they passed the exam.

More generally, we may only know the amount of study time x, and the
probability p that the student passed, where now 0 ≤ p ≤ 1.

For example, the data may be as in Figure 7.26, where pk equals 1 or 0
according to whether they passed or not.

As stated, the samples of this dataset are scalars, and the dataset is one-
dimensional (Figure 7.27).

x

Fig. 7.27 Exam dataset: x.

Plotting the dataset on the (x, p) plane, the goal is to fit a curve

p = σ(m∗x+ b∗) (7.7.4)

as in Figure 7.28.
Since this is logistic regression with bias, we can apply the two-class result

from the previous section: The dataset is one-dimensional, so a hyperplane is
just a point, a threshold. Neither class lies in a hyperplane, and the dataset is
not separable (Figure 7.27). Hence logistic regression with bias is trainable,
and gradient descent is guaranteed to converge to an optimal weight (m∗, b∗).

Here is the descent code.

from numpy import *

from scipy.special import expit

X = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 1.75, 2.0, 2.25, 2.5, 2.75,

↪→ 3.0, 3.25, 3.5, 4.0, 4.25, 4.5, 4.75, 5.0, 5.5]

P = [0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1]

def gradient(m,b):

return sum([(expit(m*x+b) - p) * array([x,1]) for x,p in zip(X,P)

↪→],axis=0)

452 CHAPTER 7. MACHINE LEARNING

gradient descent

w = array([0,0]) # starting m,b

g = gradient(*w)

t = .01 # learning rate

while not allclose(g,0):

wplus = w - t * g

if allclose(w,wplus): break

else: w = wplus

g = gradient(*w)

print("descent result: ",w)

print("gradient: ",gradient(*w))

This code returns

m∗ = 1.49991537, b∗ = −4.06373862.

These values are used to graph the sigmoid in Figure 7.28.

x

p

(0, 1)

(0, 0)

Fig. 7.28 Exam dataset: (x, p) [35].

Even though we are done, we take the long way and apply logistic regres-
sion without bias by incorporating the bias, to better understand how things
work.

To this end, we incorporate the bias and write the augmented dataset

(x1, 1), (x2, 1), . . . , (xN , 1), N = 20,

resulting in Figure 7.29. Since these vectors are not parallel, the dataset is
full-rank in R2, hence J(m, b) is strictly convex. In Figure 7.29, the shaded

7.7. REGRESSION EXAMPLES 453

area is bounded by the vectors corresponding to the overlap between passing
and failing students’ hours.

x

x0

(0, 1)

(0, 0)

Fig. 7.29 Exam dataset: (x, x0).

Let σ(z) be the sigmoid function (5.2.15). Then, as in the previous section,
the goal is to minimize the loss function

J(m, b) =
1

N

N∑
k=1

I(pk, qk), qk = σ(mxk + b), (7.7.5)

Once we have the minimizer (m∗, b∗), we have the best-fit curve (7.7.4).
If the targets p are one-hot encoded, the dataset is as follows.

x p x p x p x p x p

0.5 (1,0) .75 (1,0) 1.0 (1,0) 1.25 (1,0) 1.5 (1,0)

1.75 (1,0) 1.75 (0,1) 2.0 (1,0) 2.25 (0,1) 2.5 (1,0)

2.75 (0,1) 3.0 (1,0) 3.25 (0,1) 3.5 (1,0) 4.0 (0,1)

4.25 (0,1) 4.5 (0,1) 4.75 (0,1) 5.0 (0,1) 5.5 (0,1)

Table 7.30 Hours studied and one-hot encoded outcomes.

Each sample (x, 1) in the dataset is in R2, and each target is one-hot
encoded as (p, 1− p). Since the weight matrix satisfies W1 = 0. we have

W =

(
b −b
m −m

)
.

Since z = W tx, the outputs must satisfy z1 = z and z2 = −z. This leads to
a neural network with two inputs and two outputs (Figure 7.31).

Since here d = 2, the networks in Figures 7.31 and 7.32 are equivalent.
In Figure 7.31, σ is the softmax function, I is given by (5.6.6), and p, q are
probability vectors. In Figure 7.32, σ is the sigmoid function, I is given by
(4.2.2), and p, q are probability scalars.

454 CHAPTER 7. MACHINE LEARNING

x

+

+

σ I

p

b

m

−b

−m

y

−y

q

1− q

J

Fig. 7.31 Neural network for student exam outcomes.

Figure 7.28 is a plot of x against p. However, the dataset, with the bias
input included, has two inputs x, 1 and one output p, and should be plotted
in three dimensions (x, 1, p). Then (Figure 7.33) samples lie on the line (x, 1)
in the horizontal plane, and p is on the vertical axis.

x

+ σ I

p

b

m

y q J

Fig. 7.32 Equivalent neural network for student exam outcomes.

0

2

4

0
0.5

1

0

0.5

1

Fig. 7.33 Exam dataset: (x, x0, p).

The horizontal plane in Figure 7.33, which is the plane in Figure 7.29, is
feature space. The convex hulls K0 and K1 are in feature space, so the convex

7.7. REGRESSION EXAMPLES 455

hull K0 of the samples corresponding to p = 0 is the line segment joining
(.5, 1, 0) and (3.5, 1, 0), and the convex hull K1 of the samples corresponding
to p = 1 is the line segment joining (1.75, 1, 0) and (5.5, 1, 0).

In Figure 7.33, K0 is the line segment joining the green points, and K1 is
the projection onto feature space of the line segment joining the red points.
Since K0 ∩K1 is the line segment joining (1.75, 1, 0) and (3.5, 1, 0), the span
of K0∩K1 is all of feature space. By the results of the previous section, J(w)
is proper.

Fig. 7.34 Convex hulls of Iris classes in R2.

The Iris dataset consists of 150 samples divided into three groups. leading
to three convex hulls K0, K1, K2 in R4. If the dataset is projected onto the
top two principal components, then the projections of these three hulls do
not pair-intersect (Figure 7.34). It follows we have no guarantee the mean
logistic loss is proper.

On the other hand, the MNIST dataset consists of 60,000 samples divided
into ten groups. If the MNIST dataset is projected onto the top two principal
components, the projections of the ten convex hulls K0, K1, . . . , K9 onto R2,
do intersect (Figure 7.35).

This does not guarantee that the ten convex hulls K0, K1, . . . , K9 in R784

intersect, but at least this is so for the 2d projection of the MNIST dataset.
Therefore the mean logistic loss of the 2d projection of the MNIST dataset
is proper.

456 CHAPTER 7. MACHINE LEARNING

Fig. 7.35 Convex hulls of MNIST classes in R2.

7.8 Strong Convexity

In this section, we work with loss functions that are strongly convex. While
this is not always the case, this assumption is a base case against which we
can test different optimization or training models.

By strongly convex, we mean there are positive constants m and L satis-
fying

m ≤ D2f(w) ≤ L, for every w. (7.8.1)

Recall this means the eigenvalues of the symmetric matrix D2f(w) are be-
tween L and m. In this situation, the condition number2 r = m/L is between
zero and one: 0 < r ≤ 1.

In §7.3, we saw that basic gradient descent converged to a critical point. If
f(w) is strongly convex, then f(w) is proper and there is exactly one critical
point, the global minimum w∗.

Let w0, w1, w2, . . . be a gradient descent sequence. Recall the learning
rates tn are short step if they satisfy tn ≤ 1/L. Then from §7.3 we have

Gradient Descent on a Strongly Convex Function

Every gradient descent sequence with constant short step learning rate
converges to the global minimum w∗.

The simplest example of a strongly convex loss function is the quadratic
case

2 In the literature, the condition number is often defined as L/m.

7.8. STRONG CONVEXITY 457

f(w) =
1

2
w ·Qw − b · w. (7.8.2)

Here Q is a symmetric matrix with positive eigenvalues, and m and L are
the least and greatest eigenvalues of Q.

By (4.3.5), the gradient for this example is Qw−b. Hence the minimizer is
the unique solution w∗ = Q−1b of the linear system Qw = b. Thus gradient
descent is a natural tool for solving linear systems and computing inverses,
at least for variance matrices Q.

Let f(w) be a loss function satisfying (7.8.1). By (4.5.17), f(w) lies between
two quadratics,

m

2
|w − w∗|2 ≤ f(w)− f(w∗) ≤ L

2
|w − w∗|2. (7.8.3)

How far we are from our goal w∗ can be measured by the error |w−w∗|2.
Another measure of error is f(w) − f(w∗). The goal is to drive the error
between w and w∗ to zero.

When f(w) is strongly convex, the estimate (7.8.3) shows these two error
measures are equivalent. We use both measures below.

Suppose the learning rate t satisfies tL ≤ 1. Inserting x = w and a = w∗

in the left half of (4.5.19) and using ∇f(w∗) = 0 implies

f(w) ≤ f(w∗) +
1

2m
|∇f(w)|2. (7.8.4)

Let f1(w) = f(w) − f(w∗). Combining this inequality with the short step
inequality (7.3.4) leads to

f1(w
+) ≤ (1−mt)f1(w). (7.8.5)

Now assume t = 1/L and set r = m/L. Iterating this implies

f1(w2) ≤ (1− r)f1(w1) ≤ (1− r)(1− r)f1(w0) = (1− r)2f1(w0).

Continuing in this manner leads to the basic gradient descent result GD-I.

Gradient Descent I (GD-I)

Let r = m/L and set f1(w) = f(w) − f(w∗). Then the descent se-
quence w0, w1, w2, . . . given by basic gradient descent (7.3.1) with
learning rate

t =
1

L

converges to w∗ at the rate

458 CHAPTER 7. MACHINE LEARNING

f1(wn) ≤ (1− r)
n
f1(w0), n = 1, 2, (7.8.6)

It turns out (7.8.6) extends naturally to the case of variable learning rates
t1, t2, For gradient descent, there is no need for this, since constant
short step learning rates provide adequate convergence (7.8.6). However, for
stochastic gradient descent below, learning rates must be tuned to converge
to zero with the time step.

Because of this, we generalize (7.8.6) to the setting of varying learning
rates t1, t2, . . . converging to zero. In this case, a natural condition on the
learning rates is

t1 + t2 + t3 + · · · = ∞. (7.8.7)

This condition enables the gradient descent sequence to reach a minimizer
w∗, no matter how far w∗ is from the initial weight w0.

As we saw in §7.3, the simplest learning rates converging to zero and
satisfying (7.8.7) are the harmonic learning rates (7.3.12).

Assume the learning rates tn are short step, tn ≤ 1/L, for n = 1, 2, . . . ,
and let pn be the product

pn =

n∏
k=1

(1−mtk) = (1−mt1)(1−mt2) . . . (1−mtn). (7.8.8)

Then pn ≥ (1− r)n, n = 1, 2,
By repeating the calculation leading to (7.8.6), we obtain

f1(wn) ≤ pn f1(w0), n = 1, 2, . . . (7.8.9)

From here, (7.8.7) implies wn converges to w∗, see Exercise 7.8.5.

Using coercivity of the gradient (4.5.16), we can obtain an improved result
GD-II. Let g = ∇f(w).

By basic gradient descent (7.3.1), w+ = w − tg, hence

|w+ − w∗|2 = |w − w∗|2 − 2tg · (w − w∗) + t2|g|2.

Inserting x = w and a = w∗ in (4.5.16) and using ∇f(w∗) = 0 implies

g · (w − w∗) ≥ mL

m+ L
|w − w∗|2 + 1

m+ L
|g|2.

Inserting this inequality in the last equation,

7.8. STRONG CONVEXITY 459

|w+ − w∗|2 ≤
(
1− 2t

mL

m+ L

)
|w − w∗|2 +

(
t2 − 2t

m+ L

)
|g|2.

Let r = m/L. Setting the learning rate at t = 2/(m+L), the rightmost term
vanishes, yielding

|w+ − w∗|2 ≤
(
1− 2t

mL

m+ L

)
|w − w∗|2 =

(
1− r

1 + r

)2

|w − w∗|2.

Iterating this, we obtain

Gradient Descent II (GD-II)

Let r = m/L. Then the descent sequence w0, w1, w2, . . . given by
basic gradient descent (7.3.1) with learning rate

t =
2

m+ L

converges to w∗ at the rate

|wn − w∗|2 ≤
(
1− r

1 + r

)2n

|w0 − w∗|2 n = 1, 2, (7.8.10)

GD-II improves GD-I in two ways: Since m < L, the learning rate is larger,

2

m+ L
>

1

L
,

and the convergence rate is smaller,(
1− r

1 + r

)2

< (1− r),

implying faster convergence.
For example, if L = 6 and m = 2, then r = 1/3, the learning rates are 1/6

versus 1/4, and the convergence rates are 2/3 versus 1/4. Even though GD-II
improves GD-I, the improvement is not substantial. In the next section, we
use momentum to derive better convergence rates.

When the loss function is quadratic, we can be more explicit. Let g =
∇f(w) be the gradient of the loss function at a point w. Then the line passing
through w in the direction of g is w− tg. When the loss function is quadratic
(7.8.2), f(w− tg) is a quadratic function of the scalar variable t. In this case,
the minimizer t along the line w − tg is explicitly computable as

460 CHAPTER 7. MACHINE LEARNING

t∗ =
g · g
g ·Qg

. (7.8.11)

This choice of learning rate leads to gradient descent with varying rates t1,
t2, As a consequence, in this case, one can show the error f1(w) =
f(w)− f(w∗) is lowered as follows,

f1(w
+) =

(
1− 1

(u ·Qu)(u ·Q−1u)

)
f1(w), u =

g

|g|
. (7.8.12)

To estimate the rate of descent, we use

Kantorovich’s Inequality [21]

If Q is a symmetric d× d matrix with positive top and bottom eigen-
values L and m, then

(u ·Qu)(u ·Q−1u) ≤ (m+ L)2

4mL

for every unit vector u.

Using this, one can show that here the convergence rate is also (7.8.10).
Thus, after all this work, there is no advantage here, it simpler to stick with
GD-II!

Nevertheless, the idea here, the line-search for a minimizer, is a sound
one, and is useful in some situations. Kantorovich’s inequality is derived in
Exercise 4.5.7.

We turn now to the analysis of the stochastic gradient descent (SGD)
algorithm. Here we have a sampled loss function F (w, v), depending on a
sample v, and the mean loss function is

f(w) = E(F (w, V)), (7.8.13)

for some random variable V . Motivation for this set-up is in §7.3. We assume
strong convexity of f(w).

Then, under reasonable conditions, by linearity of the expectation (5.3.6),
the mean of ∇F (w, V) is ∇f(w),

∇f(w) = E(∇F (w, V)), for every w. (7.8.14)

For example, this holds for (7.3.5) and (7.3.6).
In addition to (7.8.1), we assume the (total) variance of ∇F (w, V) is

bounded,

7.8. STRONG CONVEXITY 461

V ar(∇F (w, V)) ≤ σ2, for every w. (7.8.15)

Since the second moment equals the variance plus the mean squared, and by
(7.8.14) the mean is ∇f(w), (7.8.15) and strong convexity (4.5.20) imply

E(|∇F (w, V)|2) ≤ L2|w − w∗|2 + σ2, for every w. (7.8.16)

This holds for the parabola case in §7.3, and for (7.3.5) and (7.3.6).
Thus (7.8.14) and (7.8.16) hold for stochastic sample training and mini-

batch sample training, as explained in §7.4: For those settings, the only real
assumption we are making is strong convexity of the mean loss f(w).

The basic SGD descent step is

W+ = W − t∇F (W,V). (7.8.17)

Here V , W , and W+ are in uppercase because they are random variables.
At every step in (7.8.17), we assume W and V are independent, so we have

the conditional expectations3

E(∇F (W,V) | W = w) = E(∇F (w, V)) (7.8.18)

and
E
(
|∇F (W,V)|2 | W = w

)
= E

(
|∇F (w, V)|2

)
. (7.8.19)

We proceed as in the derivation of GD-II, and start with

|W+ − w∗|2 = |W − w∗|2 + 2(W+ −W) · (W − w∗) + |W+ −W |2.

Inserting (7.8.17) leads to

|W+ − w∗|2 = |W − w∗|2 − 2t∇F (W,V) · (W − w∗) + t2|∇F (W,V)|2.

Taking the expectation, conditional on W = w, and appealing to (7.8.16),
(7.8.18), and (7.8.19),

E
(
|W+ − w∗|2 | W = w

)
≤ |w−w∗|2(1+ t2L2)− 2t(w−w∗) ·∇f(w)+ t2σ2.

Since ∇f(w∗) = 0, by (4.5.15) with x = w and a = w∗,

E
(
|W+ − w∗|2 | W = w

)
≤ |w − w∗|2(1− 2mt+ t2L2) + t2σ2.

Inserting w = W and taking the expectation,

E
(
|W+ − w∗|2

)
≤ E

(
|W − w∗|2

)
(1− 2mt+ t2L2) + t2σ2. (7.8.20)

Let V1, V2, . . . be an i.i.d. sequence of samples of V , and let W1, W2, . . . ,
be the SGD sequence generated by

3 Properties of conditional expectations are in Exercises 5.3.26, 5.3.27, 5.3.28.

462 CHAPTER 7. MACHINE LEARNING

Wn = Wn−1 − tn∇F (Wn−1, Vn), W0 = w0. (7.8.21)

Then Wn depends only on V1, V2, . . . , Vn, so Wn−1 and Vn are independent.
Inserting w = Wn−1, W

+ = Wn, t = tn, in (7.8.20), we obtain

E
(
|Wn − w∗|2

)
≤ E

(
|Wn−1 − w∗|2

)
(1− 2mtn + t2nL

2) + t2nσ
2, (7.8.22)

for n = 1, 2,
Let pn and sn be the product and sum

pn =

n∏
k=1

(1− 2mtk + L2t2k), sn =

n∑
k=1

t2k · pn
pk

.

Under the assumptions

t1 + t2 + · · · = ∞ and t21 + t22 + · · · < ∞, (7.8.23)

we have pn → 0 (Exercise A.7.7). Repeating the argument at the end of
§7.3, pn → 0 implies sn → 0.

Assume4 the learning rates are small enough so that all factors in pn are
positive. Then we can iterate (7.8.22) for n = 1, 2, . . . , leading to

E
(
|Wn − w∗|2

)
≤ pn · |w0 − w∗|2 + σ2 · sn, n = 1, 2, (7.8.24)

Summarizing, we have

Stochastic Gradient Descent (SGD)

Assume the loss function f(w), given by (7.8.13) for some random
variable V , is strongly convex, and assume (7.8.14), and (7.8.16). Let
V1, V2, . . . be an i.i.d. sequence of samples of V , and let W1, W2, . . .
be generated by (7.8.21). If the learning rates satisfy (7.8.23), then

E
(
|Wn − w∗|2

)
→ 0 as n → ∞. (7.8.25)

Here w∗ is the global minimum of the loss function f(w).

The takeaway here is one only needs strong convexity for the mean loss
function f(w), no convexity assumptions are made on the individual sample
loss functions F (w, v). The sample loss functions can have bumps and kinks
in them, and need not be convex everywhere.

4 (7.8.23) guarantees tn → 0, which implies the n-th factor (1− 2mtn + L2t2n) is positive
for all sufficiently large n. For simplicity, we assume this is so for all n ≥ 1.

7.9. ACCELERATED GRADIENT DESCENT 463

Exercises

Exercise 7.8.1 With f(w) given by (7.8.2) and g = Qw − b, show f(w) −
f(w∗) = g ·Q−1g/2.

Exercise 7.8.2 With f(w) given by (7.8.2) and g = Qw− b, show f(w− tg)
is minimized at t∗ given by (7.8.11).

Exercise 7.8.3 Verify (7.8.12).

Exercise 7.8.4 Use Kantorovich’s inequality to show the error decrease
(7.8.12) is no greater than (1− r)2/(1 + r)2, which is the rate in (7.8.10).

Exercise 7.8.5 Suppose the short step learning rates t1, t2, . . . satisfy

t1 + t2 + t3 + · · · = ∞.

If w0, w1, w2, . . . follows basic gradient descent (7.3.1), use (7.8.9) and Ex-
ercise A.7.7 to show f(wn) → f(w∗). Conclude wn → w∗.

Exercise 7.8.6 Show (7.8.16) follows from (7.8.15).

7.9 Accelerated Gradient Descent

In this section, we modify the gradient descent method by adding a term
incorporating previous gradients, leading to gradient descent with momentum.

Recall in a descent sequence, the current point is w, the next point is w+,
and the previous point is w−.

In gradient descent with momentum, we add a momentum term to the
current point w, obtaining the lookahead point

w◦ = w + s(w − w−). (7.9.1)

Here s > 0 is the decay rate. The momentum term reflects the direction
induced by the previous step. Because this mimics the behavior of a ball
rolling downhill, gradient descent with momentum is also called heavy ball
descent.

Then the descent sequence w0, w1, w2, . . . is generated by

Momentum Gradient Descent Step

w+ = w − t∇f(w) + s(w − w−). (7.9.2)

Here we have two hyperparameters, the learning rate and the decay rate.

464 CHAPTER 7. MACHINE LEARNING

We establish convergence of momentum gradient descent in the above
form, due to Polyak [26], and in the modified form due to Nesterov [23].
The first result is valid for strongly convex quadratics, and the second for all
strongly convex functions.

Assume f(x) is quadratic (7.8.2). In this case, ∇f(w) = Qw − b, and the
sequence satisfies the recursion

wn+1 = wn − t(Qwn − b) + s(wn − wn−1), n = 0, 1, 2, (7.9.3)

To initialize the recursion, we set w−1 = w−
0 = w0. This implies w1 =

w0 − t(Qw0 − b).
We measure the convergence using the error E(w) = |w − w∗|2, and we

assume m < Q < L strictly, in the sense every eigenvalue λ of Q satisfies

m < λ < L. (7.9.4)

As before, we set r = m/L.
Let v be an eigenvector of Q with eigenvalue λ > 0. To solve (7.9.3), we

assume a solution of the form

wn = w∗ + ρnv, Qv = λv. (7.9.5)

Inserting this into (7.9.3) and using Qw∗ = b leads to the quadratic equation

ρ2 = (1− tλ+ s)ρ− s.

By the quadratic formula,

ρ = ρ± =
(1− λt+ s)±

√
(1− λt+ s)2 − 4s

2
.

Assume the discriminant (1−λt+ s)2 − 4s is negative. This happens exactly
when

(1−
√
s)2

λ
< t <

(1 +
√
s)2

λ
. (7.9.6)

If we assume
(1−

√
s)2

m
≤ t ≤ (1 +

√
s)2

L
, (7.9.7)

then (7.9.6) holds for every eigenvalue λ of Q.
Multiplying (7.9.7) by λ,

7.9. ACCELERATED GRADIENT DESCENT 465

4s− (1− λt+ s)2 = (2
√
s− 1 + λt− s)(2

√
s+ 1− λt+ s)

= (λt− (
√
s− 1)2)(−λt+ (

√
s+ 1)2)

≥ (1−
√
s)2(1 +

√
s)2
(

λ

m
− 1

)(
1− λ

L

)
= (1− s)2

(L− λ)(λ−m)

mL
.

(7.9.8)

When (7.9.6) holds, the roots are conjugate complex numbers ρ, ρ̄, where

ρ = x+ iy =
(1− λt+ s) + i

√
−(1− λt+ s)2 + 4s

2
. (7.9.9)

It follows the absolute value of ρ equals

|ρ| =
√
x2 + y2 =

√
s.

To obtain the fastest convergence, we choose s and t to minimize |ρ| =
√
s,

while still satisfying (7.9.7). This forces (7.9.7) to be an equality,

(1−
√
s)2

m
= t =

(1 +
√
s)2

L
.

These are two equations in two unknowns s, t. Solving, we obtain

√
s =

1−
√
r

1 +
√
r
, t =

1

L
· 4

(1 +
√
r)

2 .

Let w̃n = wn−w∗. Since Qwn−b = Qw̃n, (7.9.3) is a 2-step linear recursion
in the variables w̃n. Therefore the general solution depends on two constants
A, B.

Let λ1, λ2, . . . , λd be the eigenvalues of Q and let v1, v2, . . . , vd be the
corresponding orthonormal basis of eigenvectors.

Since (7.9.3) is a 2-step vector linear recursion, A and B are vectors, and
the general solution depends on 2d constants Ak, Bk, k = 1, 2, . . . , d.

If ρk, k = 1, 2, . . . , d, are the corresponding roots (7.9.9), then (7.9.5) is
a solution of (7.9.3) for each of 2d roots ρ = ρk, ρ = ρ̄k, k = 1, 2, . . . , d.
Therefore the linear combination

wn = w∗ +

d∑
k=1

(Akρ
n
k +Bkρ̄

n
k) vk, n = 0, 1, 2, . . . (7.9.10)

is the general solution of (7.9.3). Inserting n = 0 and n = 1 into (7.9.10), then
taking the dot product of the result with vk, we obtain two linear equations
for two unknowns Ak, Bk,

466 CHAPTER 7. MACHINE LEARNING

Ak +Bk = (w0 − w∗) · vk,
Akρk +Bkρ̄k = (w1 − w∗) · vk = (1− tλk)(w0 − w∗) · vk,

for each k = 1, 2, . . . , d. Solving for Ak, Bk yields

Ak =

(
1− tλk − ρ̄k

ρk − ρ̄k

)
(w0 − w∗) · vk, Bk = Āk.

Let

C = max
λ

(L−m)(L−m)

(L− λ)(λ−m)
. (7.9.11)

Using (7.9.8), one verifies the estimate

|Ak|2 = |Bk|2 ≤ C |(w0 − w∗) · vk|2.

Now use (2.9.5) twice, first with v = wn − w∗, then with v = w0 − w∗. By
(7.9.10) and the triangle inequality,

|wn − w∗|2 =

d∑
k=1

|(wn − w∗) · vk|2 =

d∑
k=1

|Akρ
n
k +Bkρ̄

n
k |2

≤
d∑

k=1

(|Ak|+ |Bk|)2|ρk|2n

≤ 4Csn
d∑

k=1

|(w0 − w∗) · vk|2 = 4Csn|w0 − w∗|2.

This derives the following result.

Momentum Gradient Descent - Heavy Ball

Suppose the loss function f(w) is quadratic (7.8.2) and strongly con-
vex, and let r = m/L. Let C be given by (7.9.11). Then the descent
sequence w0, w1, w2, . . . given by (7.9.2) with learning rate and decay
rate

t =
1

L
· 4

(1 +
√
r)2

, s =

(
1−

√
r

1 +
√
r

)2

,

converges to w∗ at the rate

|wn − w∗|2 ≤ 4C

(
1−

√
r

1 +
√
r

)2n

|w0 − w∗|2, n = 1, 2, . . . (7.9.12)

This heavy ball descent, due to Polyak [26], is an improvement over GD-II
(7.8.10), because

√
r is substantially larger than r when r is small. The down-

side of this momentum method is that the convergence (7.9.12) is only guar-

7.9. ACCELERATED GRADIENT DESCENT 467

anteed for f(w) quadratic (7.8.2). In fact, there are examples of non-quadratic
f(w) where heavy ball descent does not converge to w∗. Nevertheless, this
method is widely used.

The momentum method can be modified by evaluating the gradient at the
lookahead point w◦ (7.9.1),

Momentum Descent Step With Lookahead Gradient

w◦ = w + s(w − w−),

w+ = w◦ − t∇f(w◦).
(7.9.13)

This leads to accelerated gradient descent, or momentum descent with
lookahead gradient. This result, due to Nesterov [23], is valid for any strongly
convex function, not just quadratics.

The iteration (7.9.13) is in two steps, a momentum step followed by a basic
gradient descent step. The momentum step takes us from the current point
w to the lookahead point w◦, and the gradient descent step takes us from w◦

to the successive point w+.
Starting from w0, and setting w−1 = w0, here it turns out the loss se-

quence f(w0), f(w1), f(w2), . . . is not always decreasing. Because of this, we
seek another function V (w) where the corresponding sequence V (w0), V (w1),
V (w2), . . . is decreasing.

To explain this, it’s best to assume w∗ = 0 and f(w∗) = 0. This can always
be arranged by translating the coordinate system. Then it turns out

V (w) = f(w) +
L

2
|w − ρw−|2, (7.9.14)

with a suitable choice of ρ, does the job. With the choices

t =
1

L
, s =

1−
√
r

1 +
√
r
, ρ = 1−

√
r,

we will show
V (w+) ≤ ρV (w). (7.9.15)

In fact, we see below (7.9.22), (7.9.23) that V is reduced by an additional
quantity proportional to the momentum term.

The choice t = 1/L is a natural choice from basic gradient descent (7.3.4).
The derivation of (7.9.15) below forces the choices for s and ρ.

Given a point w, while w+ is well-defined by (7.9.13), it is not clear what
w− means. There are two ways to insert meaning here. Either evaluate V (w)

468 CHAPTER 7. MACHINE LEARNING

along a sequence w0, w1, w2, . . . and set, as before, w−
n = wn−1, or work

with the function W (w) = V (w+) instead of V (w). If we assume (w+)− = w,
then W (w) is well-defined. With this understood, we nevertheless stick with
V (w) as in (7.9.14) to simplify the calculations.

We first show how (7.9.15) implies the result. Using (w0)
− = w0 and

(7.8.3),

V (w0) = f(w0) +
L

2
|w0 − ρw0|2 = f(w0) +

m

2
|w0|2 ≤ 2f(w0).

Moreover f(w) ≤ V (w). Iterating (7.9.15), we obtain

f(wn) ≤ V (wn) ≤ ρnV (w0) ≤ 2ρnf(w0).

This derives

Momentum Descent - Lookahead Gradient

Let r = m/L and set f1(w) = f(w) − f(w∗). Then the sequence w0,
w1, w2, . . . given by (7.9.13) with short step learning rate and decay
rate

t ≤ 1

L
, s =

1−
√
r

1 +
√
r

converges to w∗ at the rate

f1(wn) ≤ 2
(
1−

√
r
)n

f1(w0), n = 1, 2, (7.9.16)

While the convergence rate for accelerated descent is slightly worse than
heavy ball descent, the value of accelerated descent is its validity for all
strongly convex functions satisfying (7.8.1), and the fact, also due to Nesterov
[23], that this convergence rate is best-possible among all such functions.

Now we derive (7.9.15). Assume (w+)− = w and w∗ = 0, f(w∗) = 0. We
know w◦ = (1 + s)w − sw− and w+ = w◦ − tg◦, where g◦ = ∇f(w◦).

Assume t ≤ 1/L. Since w+ = w◦ − tg◦, (7.3.4) implies

f(w+) ≤ f(w◦)− t

2
|g◦|2. (7.9.17)

By (4.5.14) with x = w and a = w◦,

f(w◦) ≤ f(w)− g◦ · (w − w◦)− m

2
|w − w◦|2. (7.9.18)

By (4.5.14) with x = w∗ = 0 and a = w◦,

f(w◦) ≤ g◦ · w◦ − m

2
|w◦|2. (7.9.19)

7.9. ACCELERATED GRADIENT DESCENT 469

Now assume t = 1/L. Multiply (7.9.18) by ρ and (7.9.19) by 1 − ρ and
add, then insert the sum into (7.9.17). After some simplification, this yields

f(w+) ≤ ρf(w) + g◦ · (w◦ − ρw)− r

2t

(
ρ|w − w◦|2 + (1− ρ)|w◦|2

)
− t

2
|g◦|2.

(7.9.20)
Since

(w◦ − ρw)− tg◦ = w+ − ρw,

we have

1

2t
|w+ − ρw|2 =

1

2t
|w◦ − ρw|2 − g◦ · (w◦ − ρw) +

t

2
|g◦|2.

Adding this to (7.9.20) leads to

V (w+) ≤ ρf(w)− r

2t

(
ρ|w − w◦|2 + (1− ρ)|w◦|2

)
+

1

2t
|w◦ − ρw|2. (7.9.21)

Let

R(a, b) = r
(
ρs2|b|2 + (1− ρ)|a+ sb|2

)
− |(1− ρ)a+ sb|2 + ρ|(1− ρ)a+ ρb|2.

Solving for f(w) in (7.9.14) and inserting into (7.9.21) leads to

V (w+) ≤ ρV (w)− 1

2t
R(w,w − w−). (7.9.22)

If we can choose s and ρ so that R(a, b) is a positive scalar multiple of |b|2,
then, by (7.9.22), (7.9.15) follows, completing the proof.

Based on this, we choose s, ρ to make R(a, b) independent of a, which is
equivalent to ∇aR = 0. But

∇aR = 2(1− ρ)

((
r − (1− ρ)2

)
a+

(
ρ2 − s(1− r)

)
b

)
,

so ∇aR = 0 is two equations in two unknowns s, ρ. This leads to the choices
for s and ρ made above. Once these choices are made, s(1 − r) = ρ2 and
ρ > s. From this,

R(a, b) = R(0, b) = (rs2 − s2 + ρ3)|b|2 = ρ2(ρ− s)|b|2, (7.9.23)

which is positive.

Chapter A

Appendices

Some of the material in these appendices is first seen in high school. Because
repeating the exposure leads to a deeper understanding, we review it in a
manner useful to us here.

We start with basic counting, and show how the factorial function leads
directly to the exponential. Given its convexity and its importance for entropy
(§5.2), the exponential is treated carefully (§A.3).

The other use of counting is in graph theory (§3.3), which lays the ground-
work for neural networks (§7.2).

After this, we review two-dimensional geometry: Points and vectors in the
plane, 2 × 2 matrices, and complex numbers, followed by two foundational
appendices on convergence and minimizers. The last appendix has a different
flavor, and covers coding SQL from within Python.

A.1 Permutations and Combinations

Suppose we have three balls in a bag, colored red, green, and blue. Suppose
they are pulled out of the bag and arranged in a line. We then obtain six
possibilities, listed in Figure A.1.

Why are there six possibilities? Because they are three ways of choosing
the first ball, then two ways of choosing the second ball, then one way of
choosing the third ball, so the total number of ways is

6 = 3× 2× 1.

In particular, we see that the number of ways multiply, 6 = 3× 2× 1.
Similarly, there are 5× 4× 3× 2× 1 = 120 ways of arranging five distinct

balls. Since this pattern appears frequently, it has a name.
If n is a positive integer, then n-factorial is

471

472 CHAPTER A. APPENDICES

n! = n× (n− 1)× (n− 2)× · · · × 2× 1.

The factorial function grows large rapidly, for example,

10! = 10× 9× 8× 7× 6× 5× 4× 3× 2× 1 = 3, 628, 800.

Notice also

(n+ 1)! = (n+ 1)× n× (n− 1)× · · · × 2× 1 = (n+ 1)× n!,

and (n+ 2)! = (n+ 2)× (n+ 1)!, and so on.

Fig. A.1 6 = 3! arrangements of 3 balls.

Arrangements of n Objects

The number of arrangements of n objects is n!.

We also have
1! = 1, 0! = 1.

It’s clear that 1! = 1. It’s less clear that 0! = 1, but it’s reasonable if you
think about it: The number of arrangements of zero balls results in only one
possibility — no arrangements. The code for n! is

from scipy.special import factorial

factorial(n,exact=True)

More generally, we can consider the number of ways of selecting k balls
from n balls, for some fixed number k ≤ n. There are two varieties of selec-

A.1. PERMUTATIONS AND COMBINATIONS 473

tions that can be made: Ordered selections and unordered selections. These
are permutations and combinations.

An ordered selection is a permutation, and the number of permutations
of k objects, or a k-tuple of objects, from n objects is denoted P (n, k). In
particular, a permutation of n objects from n objects is an arrangement, so
P (n, n) = n!.

The act of selecting a k-tuple from n objects can be decomposed into two
parts: Selecting a (k− 1)-tuple t, then selecting an additional object i not in
t. This is the basis for the code

def perm_tuples(n,k):

if k == 0: return [()]

else: return [(i,*t) for i in range(n) for t in

↪→ perm_tuples(n,k-1) if i not in t]

This code returns all k-tuples of integers x satisfying 0 ≤ x < n, and P (n, k)
equals len(perm_tuples(n,k)). For example, perm_tuples(5,2) returns

[(0,1), (0,2), (0,3), (0,4), (1,0), (1,2), (1,3), (1,4), (2,0),

↪→ (2,1), (2,3), (2,4), (3,0), (3,1), (3,2), (3,4), (4,0), (4,1),

↪→ (4,2), (4,3)]

In Python, P (n, k) is

from scipy.special import perm

n, k = 5, 2

perm(n, k)

so the code

perm(n,k,exact=True) == len(perm_tuples(n,k))

returns True.
For ordered selections, there are n choices for the first ball, n− 1 choices

for the second ball, and so on, until we have n− (k − 1) choices for the k-th
ball. Thus

P (n, k) = n× (n− 1)× · · · × (n− k + 1).

Because the selection order is taken into account, selecting ball #2 then ball
#3 is considered distinct from selecting ball #3 then ball #2.

474 CHAPTER A. APPENDICES

Permutation of k Objects from n Objects

The number of permutations of k objects from n objects is

P (n, k) = n(n− 1)(n− 2) . . . (n− k + 1) =
n!

(n− k)!
.

The last formula follows by canceling,

n!

(n− k)!
=

n(n− 1) . . . (n− k + 1)(n− k)!

(n− k)!
= n(n− 1) . . . (n− k + 1).

Note P (x, k) is defined for any real number x by the same formula,

P (x, k) = x(x− 1)(x− 2) . . . (x− k + 1).

An unordered selection is a combination, and the number of combinations
of k objects from n objects is denoted C(n, k). Here the selection order doesn’t
count, so the number of combinations of n objects from n objects is C(n, n) =
1.

When a selection of k objects is made, and the k selected objects are per-
muted, this results in the same unordered selection, but results in a different
ordered selection. Since the number of permutations of k objects is k!, it
follows P (n, k) equals k! times C(n, k).

Combinations of k Objects from n Objects

The number of combinations of k objects from n objects is

C(n, k) =
P (n, k)

k!
=

n!

k!(n− k)!
.

Writing out the fraction C(n, k),

C(n, k) =
n(n− 1)(n− 2) . . . (n− k + 1)

1 · 2 · 3 · · · · · k
. (A.1.1)

The formula (A.1.1) is easy to remember: There are k terms in the numerator
as well as the denominator, the factors in the denominator increase starting
from 1, and the factors in the numerator decrease starting from n.

The act of selecting an unordered k-tuple from n objects is equivalent to
restricting the selection to k-tuples with increasing entries. This is the basis
for the code

A.1. PERMUTATIONS AND COMBINATIONS 475

def comb_tuples(n,k):

if k == 0: return [()]

elif k == 1: return perm_tuples(n,1)

else: return [(i, *t) for i in range(n) for t in

↪→ comb_tuples(n,k-1) if i < t[0]]

Then comb_tuples(n,k) returns all combinations of k integers x satisfying
0 ≤ x < n, and C(n, k) equals len(comb_tuples(n,k)).

The code for comb_tuples(n,k) is identical to that of perm_tuples(n,k),
except the tuple entries are now restricted to be in increasing order. For
example, comb_tuples(5,2) returns

[(0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4),

↪→ (3,4)]

In Python, C(n, k) is

from scipy.special import comb

n, k = 5, 2

comb(n, k)

so the code

comb(n,k,exact=True) == len(comb_tuples(n,k))

returns True.
The number C(n, k) is also called n-choose-k and the binomial coefficient.
Since P (x, k) is defined for any real number x, so is C(x, k):

C(x, k) =
P (x, k)

k!
=

x(x− 1)(x− 2) . . . (x− k + 1)

1 · 2 · 3 · · · · · k
.

An important question is the rate of growth of the factorial function n!.
Attempting to answer this question leads to the exponential (§A.3) and to
the entropy (§4.2). Here is how this happens.

Since n! is a product of the n factors

1, 2, 3, . . . , n− 1, n,

each no larger than n, it is clear that

476 CHAPTER A. APPENDICES

n! < nn.

However, because half of the factors are less then n/2, we expect an approx-
imation smaller than nn, maybe something like (n/2)n or (n/3)n.

To be systematic about it, assume

n! is approximately equal to e
(n
e

)n
for n large, (A.1.2)

for some constant e. We seek the best constant e that fits here. In this ap-
proximation, we multiply by e so that (A.1.2) is an equality when n = 1.

Using the binomial theorem, in §A.3 we show

3
(n
3

)n
≤ n! ≤ 2

(n
2

)n
, n ≥ 1. (A.1.3)

Based on this, a constant e satisfying (A.1.2) must lie between 2 and 3,

2 ≤ e ≤ 3.

To figure out the best constant e to pick, we see how much both sides
of (A.1.2) increase when we replace n by n + 1. Write (A.1.2) with n + 1
replacing n, obtaining

(n+ 1)! is approximately equal to e

(
n+ 1

e

)n+1

for n large.

(A.1.4)
Dividing the left sides of (A.1.2), (A.1.4) yields

(n+ 1)!

n!
= (n+ 1).

Dividing the right sides yields

e((n+ 1)/e)n+1

e(n/e)n
= (n+ 1) · 1

e
·
(
1 +

1

n

)n

. (A.1.5)

To make these quotients match as closely as possible, we should choose

e ≈
(
1 +

1

n

)n

, for n large. (A.1.6)

Choosing n = 1, 2, 3, . . . , 100, . . . results in

e ≈ 2, 2.25, 2.37, . . . , 2.705,

As n → ∞, we obtain Euler’s constant e (§A.3).
Equation (A.1.2) can be improved to Stirling’s approximation

A.2. THE BINOMIAL THEOREM 477

n! ≈
√
2πn

(n
e

)n
, for n large. (A.1.7)

This is an asymptotic equality. This means the ratio of the two sides ap-
proaches 1 for large n (see §A.7). Stirling’s approximation is a consequence
of the central limit theorem (Exercise 5.4.13).

Stirling’s approximation is highly accurate for n large: As soon as n = 1,
Stirling’s approximation is 90% accurate, and, as soon as n = 9, Stirling’s
approximation is 99% accurate.

Exercises

Exercise A.1.1 The n-th Hermite number is

Hn =
(2n)!

2nn!
, n = 0, 1, 2, 3, . . .

Use scipy.special.factorial to find the least n for which Hn is greater
than a billion.

Exercise A.1.2 (Summation notation exercise) Let n = 1, 2, Show

∞∑
k=n

(k − n) · n
k

k!
=

nn+1

n!
. (A.1.8)

(First break the sum into two sums, then write out the first few terms of each
sum separately, and notice all terms but one cancel.)

Exercise A.1.3 (Summation notation exercise) Let k = 2, 3, 4, Show the
sum

k−1∑
j=1

j = 1 + 2 + · · ·+ (k − 1) =
k(k − 1)

2
. (A.1.9)

Hint - Write the sum in reverse order, then add the two sums term-by-term.

A.2 The Binomial Theorem

Let x and a be two variables. A binomial is an expression of the form

(a+ x)2, (a+ x)3, (a+ x)4, . . .

The degree of each of these binomials is 2, 3, and 4.
When binomials are expanded by multiplying out, one obtains a sum of

terms. The binomial theorem specifies the exact pattern of the resulting sum.

478 CHAPTER A. APPENDICES

Recall that

(a+ b)(c+ d) = a(c+ d) + b(c+ d) = ac+ ad+ bc+ bd.

Similarly,

(a+ b)(c+ d+ e) = a(c+ d+ e) + b(c+ d+ e) = ac+ ad+ ae+ bc+ bd+ be.

Using this algebra, we can expand each binomial.
Expanding (a+ x)2 yields

(a+ x)2 = (a+ x)(a+ x) = a2 + xa+ ax+ x2 = a2 + 2ax+ x2. (A.2.1)

Similarly, for (a+ x)3, we have

(a+ x)3 = (a+ x)(a+ x)2 = (a+ x)(a2 + 2ax+ x2)

= a3 + 2a2x+ ax2 + xa2 + 2xax+ x3

= a3 + 3a2x+ 3ax2 + x3.

(A.2.2)

For (a+ x)4, we have

(a+ x)4 = (a+ x)(a+ x)3 = (a+ x)(a3 + 3a2x+ 3ax2 + x3)

= a4 + 3a3x+ 3a2x2 + ax3 + a3x+ 3a2x2 + 3ax3 + x4

= a4 + 4a3x+ 6a2x2 + 4ax3 + x4.

(A.2.3)

Thus

(a+ x)2 = a2 + 2ax+ x2

(a+ x)3 = a3 + 3a2x+ 3ax2 + x3

(a+ x)4 = a4 + 4a3x+ 6a2x2 + 4ax3 + x4

(a+ x)5 = ⋆a5 + ⋆a4x+ ⋆a3x2 + ⋆a2x3 + ⋆ax4 + ⋆x5.

(A.2.4)

Here ⋆ means we haven’t found the coefficient yet.

There is a pattern in (A.2.4). In the first line, the powers of a are in
decreasing order, 2, 1, 0, while the powers of x are in increasing order, 0, 1,
2. In the second line, the powers of a decrease from 3 to 0, while the powers
of x increase from 0 to 3. In the third line, the powers of a decrease from 4
to 0, while the powers of x increase from 0 to 4.

This pattern of powers is simple and clear. Now we want to find the pattern
for the coefficients in front of each term. In (A.2.4), these coefficients are
(1, 2, 1), (1, 3, 3, 1), (1, 4, 6, 4, 1), and (⋆, ⋆, ⋆, ⋆, ⋆, ⋆). These coefficients are the
binomial coefficients.

A.2. THE BINOMIAL THEOREM 479

Before we determine the pattern, we introduce a useful notation for these
coefficients by writing(

2

0

)
= 1,

(
2

1

)
= 2,

(
2

2

)
= 1

and (
3

0

)
= 1,

(
3

1

)
= 3,

(
3

2

)
= 3,

(
3

3

)
= 1

and (
4

0

)
= 1,

(
4

1

)
= 4,

(
4

2

)
= 6,

(
4

3

)
= 4,

(
4

4

)
= 1

and(
5

0

)
= ⋆,

(
5

1

)
= ⋆,

(
5

2

)
= ⋆,

(
5

3

)
= ⋆,

(
5

4

)
= ⋆,

(
5

5

)
= ⋆.

With this notation, the number (
n

k

)
(A.2.5)

is the coefficient of an−kxk when you multiply out (a+x)n. This is the bino-
mial coefficient. Here n is the degree of the binomial, and k, which specifies
the term in the resulting sum, varies from 0 to n (not 1 to n).

It is important to remember that, in this notation, the binomial (a+ x)2

expands into the sum of three terms a2, 2ax, x2. These are term 0, term 1,
and term 2. Alternatively, one says these are the zeroth term, the first term,
and the second term. Thus the second term in the expansion of the binomial
(a+x)4 is 6a2x2, and the binomial coefficient

(
4
2

)
= 6. In general, the binomial

(a+ x)n of degree n expands into a sum of n+ 1 terms.
Since the binomial coefficient

(
n
k

)
is the coefficient of an−kxk when you

multiply out (a+ x)n, we have the binomial theorem.

Binomial Theorem

The binomial (a+ x)n equals(
n

0

)
an +

(
n

1

)
an−1x+

(
n

2

)
an−2x2 + · · ·+

(
n

n− 1

)
axn−1 +

(
n

n

)
xn.

(A.2.6)

Using summation notation, the binomial theorem states

480 CHAPTER A. APPENDICES

(a+ x)n =

n∑
k=0

(
n

k

)
an−kxk. (A.2.7)

This result is only useful when we obtain usable formulas for
(
n
k

)
.

The binomial coefficient
(
n
k

)
is called “n-choose-k”, because it is the coef-

ficient of the term corresponding to choosing k x’s when multiplying the n
factors in the product

(a+ x)n = (a+ x)(a+ x)(a+ x) . . . (a+ x).

For example, the term
(
4
2

)
a2x2 corresponds to choosing two a’s, and two x’s,

when multiplying the four factors in the product

(a+ x)4 = (a+ x)(a+ x)(a+ x)(a+ x).

The binomial coefficients may be arranged in a triangle, Pascal’s triangle
(Figure A.2). Can you figure out the numbers ⋆ in this triangle before peeking
ahead?

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1

n = 6: ⋆ 6 15 20 15 6 ⋆

n = 7: 1 ⋆ 21 35 35 21 ⋆ 1

n = 8: 1 8 ⋆ 56 70 56 ⋆ 8 1

n = 9: 1 9 36 ⋆ 126 126 ⋆ 36 9 1

n = 10: 1 10 45 120 ⋆ 252 ⋆ 120 45 10 1

Table A.2 Pascal’s triangle.

Based on (A.2.10), here is code generating Pascal’s triangle.

A.2. THE BINOMIAL THEOREM 481

from numpy import *

N = 10

Comb = zeros((N,N),dtype=int)

Comb[0,0] = 1

for n in range(1,N):

Comb[n,0] = Comb[n,n] = 1

for k in range(1,n): Comb[n,k] = Comb[n-1,k] + Comb[n-1,k-1]

Comb

In Pascal’s triangle, the very top row has one number in it: This is the
zeroth row corresponding to n = 0 and the binomial expansion of (a+x)0 = 1.
The first row corresponds to n = 1; it contains the numbers (1, 1), which
correspond to the binomial expansion of (a + x)1 = 1a + 1x. We say the
zeroth entry (k = 0) in the first row (n = 1) is 1 and the first entry (k = 1)
in the first row is 1. Similarly, the zeroth entry (k = 0) in the second row
(n = 2) is 1, and the second entry (k = 2) in the second row (n = 2) is 1.
The second entry (k = 2) in the fourth row (n = 4) is 6. For every row, the
entries are counted starting from k = 0, and end with k = n, so there are
n+ 1 entries in row n. With this understood, the k-th entry in the n-th row
is the binomial coefficient n-choose-k. So 10-choose-2 is(

10

2

)
= 45.

We can learn a lot about the binomial coefficients from this triangle. First,
we have 1’s all along the left edge. Next, we have 1’s all along the right edge.
Similarly, one step in from the left or right edge, we have the row number.
Thus we have(

n

0

)
= 1 =

(
n

n

)
,

(
n

1

)
= n =

(
n

n− 1

)
, n ≥ 1.

Note also Pascal’s triangle has a left-to-right symmetry: If you read off
the coefficients in a particular row, you can’t tell if you’re reading them from
left to right, or from right to left, it’s the same either way: The fifth row is
(1, 5, 10, 10, 5, 1). In terms of our notation, this is written(

n

k

)
=

(
n

n− k

)
, 0 ≤ k ≤ n;

the binomial coefficients remain unchanged when k is replaced by n− k.

482 CHAPTER A. APPENDICES

The key step in finding a formula for n-choose-k is to notice

(a+ x)n+1 = (a+ x)(a+ x)n.

Let’s multiply this out when n = 3. From (A.2.4), we get

(
4

0

)
a4 +

(
4

1

)
a3x+

(
4

2

)
a2x2 +

(
4

3

)
ax3 +

(
4

4

)
x4

=

(
3

0

)
a4 +

(
3

1

)
a3x+

(
3

2

)
a2x2 +

(
3

3

)
ax3

+

(
3

0

)
a3x+

(
3

1

)
a2x2 +

(
3

2

)
ax3 +

(
3

3

)
x4.

Combining terms, this equals(
3

0

)
a4+

((
3

1

)
+

(
3

0

))
a3x+

((
3

2

)
+

(
3

1

))
a2x2+

((
3

3

)
+

(
3

2

))
ax3+

(
3

3

)
x4.

Equating corresponding coefficients of x, we get,(
4

1

)
=

(
3

1

)
+

(
3

0

)
,

(
4

2

)
=

(
3

2

)
+

(
3

1

)
,

(
4

3

)
=

(
3

3

)
+

(
3

2

)
.

In general, a similar calculation establishes(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
, 1 ≤ k ≤ n. (A.2.8)

This allows us to build Pascal’s triangle (Figure A.2), where, apart from
the ones on either end, each term (“the child”) in a given row is the sum of
the two terms (“the parents”) located directly above in the previous row.

Insert x = 1 and a = 1 in the binomial theorem to get

2n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
. (A.2.9)

We conclude the sum of the binomial coefficients along the n-th row of Pas-
cal’s triangle is 2n (remember n starts from 0).

Now insert x = 1 and a = −1. You get

0 =

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · · ±

(
n

n− 1

)
±
(
n

n

)
.

A.2. THE BINOMIAL THEOREM 483

Hence: the alternating1 sum of the binomial coefficients along the n-th row of
Pascal’s triangle is zero.

Let C(n, k) be as in §A.1. We show

Binomial Coefficient

For n ≥ 0, (
n

k

)
= C(n, k) =

n!

k!(n− k)!
, 0 ≤ k ≤ n.

To establish this, because

C(0, 0) = 1 =

(
0

0

)
and

(
n
k

)
satisfies (A.2.8), it is enough to show C(n, k) also satisfies (A.2.8),

C(n+ 1, k) = C(n, k) + C(n, k − 1), 1 ≤ k ≤ n. (A.2.10)

To establish (A.2.10), we simplify

C(n, k) + C(n, k − 1) =
n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

(k − 1)!(n− k)!

(
1

k
+

1

n− k + 1

)
=

n!(n+ 1)

(k − 1)!(n− k)!k(n− k + 1)

=
(n+ 1)!

k!(n+ 1− k)!
= C(n+ 1, k).

This establishes (A.2.10), and, consequently, equality of
(
n
k

)
and C(n, k).

For example,(
7

3

)
=

7 · 6 · 5
1 · 2 · 3

= 35 =

(
7

4

)
and

(
10

2

)
=

10 · 9
1 · 2

= 45 =

(
10

8

)
.

In Python, the code

1 Alternating means the plus-minus pattern +−+−+−

484 CHAPTER A. APPENDICES

from scipy.special import comb

comb(n,k)

comb(n,k,exact=True)

returns the binomial coefficient.

The binomial coefficient
(
n
k

)
makes sense even for fractional n. This can

be seen from (A.1.1). For example, for n = 1/2 and k = 3,

(
1/2

3

)
=

1

2

(
1

2
− 1

)(
1

2
− 2

)
1 · 2 · 3

=
(1/2)(−1/2)(−3/2)

6
=

3

48
. (A.2.11)

This works also for n negative,

(
−1/2

3

)
=

(
−1

2

)(
−1

2
− 1

)(
−1

2
− 2

)
1 · 2 · 3

=
(−1/2)(−3/2)(−5/2)

6
=

−15

48
.

(A.2.12)
In fact, in (A.1.1), n may be any real number, for example n =

√
2.

A.3 The Exponential Function

In this section, our first goal is to derive (A.1.3), as promised in §A.1.
To begin, use the binomial theorem (A.1.1), (A.2.7) with a = 1 and x =

1/n, obtaining(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)
1n−k

(
1

n

)k

=

n∑
k=0

1

k!

n(n− 1)(n− 2) . . . (n− k + 1)

n · n · n · · · · · n
.

Rewriting this by pulling out the first two terms k = 0 and k = 1 leads to(
1 +

1

n

)n

= 1 + 1 +

n∑
k=2

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
. (A.3.1)

From (A.3.1), we can tell a lot. First, since all terms are positive, we see(
1 +

1

n

)n

≥ 2, n ≥ 1.

A.3. THE EXPONENTIAL FUNCTION 485

Second, each factor in (A.3.1) is of the form(
1− j

n

)
, 1 ≤ j ≤ k − 1. (A.3.2)

Since n is in the denominator, each such factor increases with n. Moreover,
as n increases, the number of terms in (A.3.1) increases, hence so does the
sum. We conclude(

1 +
1

n

)n

increases as n increases. (A.3.3)

Third, when k ≥ 2, we know

k! = k(k − 1)(k − 2) . . . 3 · 2 ≥ 2k−1.

Since each factor in (A.3.2) is no greater than 1, by (A.3.1),(
1 +

1

n

)n

≤ 1 + 1 +

n∑
k=2

1

k!
≤ 2 +

n∑
k=2

1

2k−1
. (A.3.4)

But we can show

n∑
k=2

1

2k−1
=

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n−1
≤ 1,

as follows.
A geometric sum is a sum of the form

sn = 1 + a+ a2 + · · ·+ an−1 =

n−1∑
k=0

ak.

Multiplying sn by a results in almost the same sum,

asn = a+ a2 + a3 + · · ·+ an−1 + an = sn + an − 1,

yielding
(a− 1)sn = an − 1.

When a ̸= 1, we may divide by a− 1, obtaining

sn =

n−1∑
k=0

ak = 1 + a+ a2 + · · ·+ an−1 =
an − 1

a− 1
. (A.3.5)

Inserting a = 1/2, we conclude

486 CHAPTER A. APPENDICES

n∑
k=2

1

2k−1
=

n−1∑
k=1

1

2k
= sn − 1 = 2

(
1− 2−n

)
− 1 ≤ 1, n ≥ 2.

By (A.3.4), we arrive at

2 ≤
(
1 +

1

n

)n

≤ 3, n ≥ 1. (A.3.6)

Now we use (A.3.6) to establish (A.1.3). Write (A.1.3) as an ≤ bn ≤ cn.
When n = 1,

a1 = b1 = c1.

Moreover, as n increases, an, bn, cn all increase. Therefore, to establish
(A.1.3), it is enough to show bn increases faster than an, and cn increases
faster than bn, both as n increases.

To measure how an, bn, cn increase with n, divide the (n+ 1)-st term by
the n-th term: It is enough to show

an+1

an
≤ bn+1

bn
≤ cn+1

cn
.

But we already know
bn+1

bn
= n+ 1,

and, from (A.3.6),

an+1

an
=

3((n+ 1)/3)n+1

3(n/3)n
= (n+ 1) · 1

3
·
(
1 +

1

n

)n

≤ n+ 1 =
bn+1

bn
,

and, from (A.3.6) again,

bn+1

bn
= n+ 1 ≤ (n+ 1) · 1

2
·
(
1 +

1

n

)n

=
2((n+ 1)/2)n+1

2(n/2)n
=

cn+1

cn
.

Since we’ve shown bn increases faster than an, and cn increases faster than
bn, we have derived (A.1.3).

Since a bounded increasing sequence has a limit (§A.8), by (A.3.3), we
have the following strengthening of (A.1.6).

Euler’s Constant

The limit

A.3. THE EXPONENTIAL FUNCTION 487

e = lim
n→∞

(
1 +

1

n

)n

(A.3.7)

exists and satisfies 2 ≤ e ≤ 3.

Standard properties of limits, such as

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn, lim
n→∞

anbn = lim
n→∞

an lim
n→∞

bn,

are in §A.7. Nevertheless, the intuition is clear: (A.3.7) is saying there is a
specific positive number e with(

1 +
1

n

)n

≈ e

for n large.

By definition, Euler’s constant e satisfies (A.3.7). To obtain a second for-
mula for e, insert n = ∞ in (A.3.1). Using 1/∞ = 0, since the k-th term
approaches 1/k!, and since the number of terms increases with n, we obtain
the second formula

e = 1 + 1 +

∞∑
k=2

1

k!

(
1− 1

∞

)(
1− 2

∞

)
. . .

(
1− k − 1

∞

)
=

∞∑
k=0

1

k!
.

For a guarantee that plugging n = ∞ into (A.3.1) really makes sense, see
Exercise A.3.5. To summarize,

Euler’s Constant

Euler’s constant satisfies

e =

∞∑
k=0

1

k!
= 1 + 1 +

1

2
+

1

6
+

1

24
+

1

120
+

1

720
+ . . . (A.3.8)

Depositing one dollar in a bank offering 100% interest returns two dollars
after one year. Depositing one dollar in a bank offering the same annual
interest compounded at mid-year returns(

1 +
1

2

)2

= 2.25

488 CHAPTER A. APPENDICES

dollars after one year.
Depositing one dollar in a bank offering the same annual interest com-

pounded at n intermediate time points returns (1 + 1/n)n dollars after one
year.

Passing to the limit, depositing one dollar in a bank and continuously
compounding at an annual interest rate of 100% returns e dollars after one
year. Because of this, (A.3.7) is often called the compound-interest formula.

Now we derive the result of continuously compounding at any specified
annual interest rate x. Note here x is a proportion, not a percent. An interest
rate of 30% corresponds to x = .3 in the exponential function.

Exponential Function

For any real number x, the limit

expx = lim
n→∞

(
1 +

x

n

)n
(A.3.9)

exists. In particular, exp 0 = 1 and exp 1 = e.

Fig. A.3 The exponential function expx.

Note, in the compound-interest interpretation, when x > 0, the bank is
giving you interest, while, if x < 0, the bank is taking away interest, leading
to a continual loss.

To derive this, assume first x > 0 is a positive real number. Then, exactly
as before, using the binomial theorem,

A.3. THE EXPONENTIAL FUNCTION 489(
1 +

x

n

)n
, n ≥ 1,

is increasing with n, so the limit in (A.3.9) is well-defined.
To establish the existence of the limit when x < 0, we first show

(1− x)n ≥ 1− nx, 0 < x < 1, n ≥ 1. (A.3.10)

This follows inductively: Each of the following inequalities is implied by the
preceding one,

(1− x) = 1− x

(1− x)2 = 1− 2x+ x2 ≥ 1− 2x

(1− x)3 = (1− x)(1− x)2 ≥ (1− x)(1− 2x) = 1− 3x+ 2x2 ≥ 1− 3x

(1− x)4 = (1− x)(1− x)3 ≥ (1− x)(1− 3x) = 1− 4x+ 3x3 ≥ 1− 4x

.

This establishes (A.3.10) for all n ≥ 1.
Now let x be any real number. Replacing x by x2/n2 in (A.3.10), we obtain

1 ≥
(
1− x2

n2

)n

≥ 1− x2

n
.

As n → ∞, both sides of this last equation approach 1, so

lim
n→∞

(
1− x2

n2

)n

= 1. (A.3.11)

Now let n grow without bound in(
1 +

x

n

)n (
1− x

n

)n
=

(
1− x2

n2

)n

.

Since the limit expx is well-defined when x > 0, by (A.3.11), we obtain

expx · lim
n→∞

(
1− x

n

)n
= 1, x > 0.

This shows the limit expx in (A.3.9) is well-defined when x < 0, and

exp(−x) =
1

expx
, for all x.

The code

490 CHAPTER A. APPENDICES

from numpy import *

from matplotlib.pyplot import *

plot(x,exp(x))

grid()

show()

returns Figure A.3.

Repeating the logic yielding (A.3.1), we have

(
1 +

x

n

)n
= 1 + x+

n∑
k=2

xk

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
. (A.3.12)

Letting n → ∞ in (A.3.12) as before, results in the following.

Exponential Series

The exponential function is always positive and satisfies, for every real
number x,

expx =

∞∑
k=0

xk

k!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+ . . . (A.3.13)

The graph of expx is in Figure A.3.

We use the binomial theorem one more time to show

Law of Exponents

For real numbers x and y,

exp(x+ y) = expx · exp y.

To see this, multiply out the sums

(a0 + a1 + a2 + a3 + . . .)(b0 + b1 + b2 + b3 + . . .)

in a “symmetric” manner, obtaining

a0b0 +(a0b1 + a1b0)+ (a0b2 + a1b1 + a2b0)+ (a0b3 + a1b2 + a2b1 + a3b0)+ . . .

A.3. THE EXPONENTIAL FUNCTION 491

Using summation notation, the n-th term in this last sum is

n∑
k=0

akbn−k = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0.

Thus (∞∑
k=0

ak

)(∞∑
m=0

bm

)
=

∞∑
n=0

(
n∑

k=0

akbn−k

)
.

Now insert

ak =
xk

k!
, bn−k =

yn−k

(n− k)!
.

Then the n-th term in the resulting sum equals, by the binomial theorem,

n∑
k=0

akbn−k =

n∑
k=0

xk

k!

yn−k

(n− k)!
=

1

n!

n∑
k=0

(
n

k

)
xkyn−k =

1

n!
(x+ y)n.

Thus

expx · exp y =

(∞∑
k=0

xk

k!

)(∞∑
m=0

ym

m!

)
=

∞∑
n=0

(x+ y)n

n!
= exp(x+ y).

This derives the law of exponents.
Repeating the law of exponents n times implies

exp(nx) = exp(x+ x+ · · ·+ x) = expx · expx · · · · · expx = (expx)n.

If we write n
√
x = x1/n, replacing x by x/n yields

exp(x/n) = (expx)1/n.

Combining the last two equations yields

exp(nx/m) = ((expx)n)
1/m

= (expx)n/m.

Inserting x = 1 in this last equation, it follows, for any rational number
x = n/m,

expx = exp(1 · x) = (exp 1)x = ex.

Because of this, as a matter of convenience, we write the exponential function
either way, expx or ex, even when x is not rational.

Exponential Notation

For any real number x,
ex = expx.

492 CHAPTER A. APPENDICES

Suppose 0 < r < 1. Then r2 < r, r3 < r, and so on. Replacing x by rx in
the exponential series (A.3.13),

erx = 1 + rx+
1

2!
r2x2 +

1

3!
r3x3 + . . .

< 1 + rx+
1

2!
rx2 +

1

3!
rx3 + . . .

= 1− r + rex.

(A.3.14)

From this we can show

Convexity of the Exponential Function

For 0 < r < 1,

exp((1− r)x+ ry) < (1− r) expx+ r exp y. (A.3.15)

To derive (A.3.15), replace x by y − x in (A.3.14), obtaining

er(y−x) < 1− r + rey−x.

Now multiply both sides by ex, obtaining (A.3.15).
Graphically, the convexity of the exponential functions is the fact that the

line segment joining two points on the graph lies above the graph (Figure
A.4).

0

Fig. A.4 Convexity of the exponential function.

Convexity is discussed further in §4.5.

A.3. THE EXPONENTIAL FUNCTION 493

Exercises

Exercise A.3.1 Assume a bank gives 50% annual interest on deposits. After
one year, what does $1 become? Do this when the money is compounded once,
twice, and at every instant during the year.

Exercise A.3.2 Assume a bank gives -50% annual interest on deposits. After
one year, what does $1 become? Do this when the money is compounded once,
twice, and at every instant during the year.

Exercise A.3.3 Which of the following is correct? For n large,

n+ 1 ≈ n, en+1 ≈ en, ee
n+1

≈ ee
n

.

≈ is asymptotic equality (see §A.7).

Exercise A.3.4 Extend (A.3.10) by showing

(1− a)(1− b)(1− c) ≥ 1− (a+ b+ c),

valid for a, b, c in (0, 1). Use this to show

1−
(
1− 1

n

)(
1− 2

n

)(
1− 3

n

)
≤ 1

n
+

2

n
+

3

n
.

This remains true for any number of factors.

Exercise A.3.5 Use the previous exercise, (A.1.9), (A.3.1), and (A.3.4), to
derive the error estimate

0 ≤ 2 +

n∑
k=2

1

k!
−
(
1 +

1

n

)n

≤ 3

2n
, n ≥ 2.

This is a complete derivation of (A.3.8).

Exercise A.3.6 Replace x by x/n in (A.3.10) to show

1− x < e−x, x > 0. (A.3.16)

Exercise A.3.7 Use (A.3.5) to derive the geometric series

1

1− a
=

∞∑
n=0

an = 1 + a+ a2 + a3 + . . . , −1 < a < 1. (A.3.17)

Exercise A.3.8 Take the derivative of (A.3.17) to obtain

1

(1− a)2
=

∞∑
n=1

nan−1 = 1+2a+3a2 +4a3 + . . . , −1 < a < 1. (A.3.18)

494 CHAPTER A. APPENDICES

A.4 Two Dimensions

This section is a review of the geometry of vectors and matrices in two di-
mensions. This is the cartesian plane R2, also called 2-dimensional real space.
The plane R2 is a vector space, in the sense described in §1.3.

v

(0, 2) (3, 2)

(0, 1)

Fig. A.5 A vector v.

In the cartesian plane, a vector is an arrow v joining the origin to a point
(Figure A.5). In this way, points and vectors are almost interchangeable, as a
point x in Rd corresponds to the vector v starting at the origin 0 and ending
at x.

In the cartesian plane, each vector v has a shadow. This is the triangle
constructed by dropping the perpendicular from the tip of v to the x-axis, as
in Figure A.6.

This cannot be done unless one first draws a horizontal line (the x-axis),
then a vertical line (the y-axis). In this manner, each vector v has cartesian
coordinates v = (x, y). In Figure A.5, the coordinates of v are (3, 2). In
particular, the vector 0 = (0, 0), the zero vector, corresponds to the origin.

0

v1

0

v2

Fig. A.6 Vectors v1 and v2 and their shadows in the plane.

In the cartesian plane, vectors v1 = (x1, y1) and v2 = (x2, y2) are added
by adding their coordinates,

A.4. TWO DIMENSIONS 495

Addition of vectors

If v1 = (x1, y1) and v2 = (x2, y2), then

v1 + v2 = (x1 + x2, y1 + y2). (A.4.1)

Because points and vectors are interchangeable, the same formula is used
for addition P + P ′ of points P and P ′.

This addition is the same as combining their shadows as in Figure A.7. In
Python, lists and tuples do not add this way. Lists and tuples have to first
be converted into numpy arrays.

v1 = (1,2)

v2 = (3,4)

v1 + v2 == (1+3,2+4) # returns False

v1 = [1,2]

v2 = [3,4]

v1 + v2 == [1+3,2+4] # returns False

from numpy import *

v1 = array([1,2])

v2 = array([3,4])

v1 + v2 == array([1+3,2+4]) # returns True

For example, v1 = (−3, 1) and v2 = (2,−2) returns

v1 + v2 = (−3, 1) + (2,−2) = (−3 + 2, 1− 2) = (−1,−1).

0

Fig. A.7 Adding v1 and v2

In Python, u == v is exact equality of values. When the entries of u and
v are ints, this is not a problem. However, when the entries of u and v are

496 CHAPTER A. APPENDICES

floats, u == v may return False even though the floats agree to within the
underlying precision of the Python code.

To remedy this, it’s best to use isclose(u,v) for scalars or allclose(u,v)
for arrays. This returns True when u and v agree to within the underlying
precision. In this chapter, we ignore this point, but we are more careful start-
ing in Chapter 2.

Scaling of vectors

If v = (x, y), then
tv = (tx, ty).

A vector v = (x, y) in the plane may be scaled by scaling the shadow as in
Figure A.8. This is vector scaling by t. Note when t is negative, the shadow
is also flipped. In Python, we write

from numpy import *

v = array([1,2])

3*v == array([3,6]) # returns True

0

v

tv

0

v

tv

Fig. A.8 Scaling with t = 2 and t = −2/3

Given a vector v, the scalings tv of v form a line passing through the origin
0 (Figure A.10). This line is the span of v (more on this in §2.4). Scalings tv
of v are also called multiples of v.

If t, s are scalars and u, v are vectors, it is easy to check linearity

t(u+ v) = tu+ tv and (s+ t)u = su+ tu,

and
t(sv) = (ts)v.

A.4. TWO DIMENSIONS 497

Thus scaling v by s, and then scaling the result by t, has the same effect as
scaling v by ts, in a single step. Because points and vectors are interchange-
able, the same formula tP is used for scaling points P by t.

We set −v = (−1)v, and define subtraction of vectors by

v1 − v2 = v1 + (−v2).

from numpy import *

v1 = array([1,2])

v2 = array([3,4])

v1 - v2 == array([1-3,2-4]) # returns True

Subtraction of vectors

If v1 = (x1, y1) and v2 = (x2, y2), then

v1 − v2 = (x1 − x2, y1 − y2) (A.4.2)

Distance Formula

If v1 = (x1, y1) and v2 = (x2, y2), then the distance between v1 and
v2 is

|v1 − v2| =
√

(x1 − x2)2 + (y1 − y2)2.

0

r

(x, y)

θ

y

x

Fig. A.9 The polar representation of v = (x, y).

The distance of v = (x, y) to the origin 0 = (0, 0) is its magnitude or norm
or length

498 CHAPTER A. APPENDICES

r = |v| = |v − 0| =
√
x2 + y2.

In Python,

from numpy import *

from scipy.linalg import norm

v = array([1,2])

norm(v) == sqrt(5)# returns True

For future use, we recall the trigonometric function sin θ and cos θ. These
are defined in terms of r, x, and y (Figure A.9)

x = r cos θ, y = r sin θ. (A.4.3)

This is the polar representation of (x, y).

The unit circle consists of the vectors which are distance 1 from the origin
0. When v is on the unit circle, the magnitude of v is 1, and we say v is a
unit vector. In this case, the line formed by the scalings of v intersects the
unit circle at ±v (Figure A.10).

When v is a unit vector, r = 1, and (Figure A.9),

v = (x, y) = (cos θ, sin θ). (A.4.4)

0

−v

v

Fig. A.10 v and its antipode −v.

The unit circle intersects the horizontal axis at (1, 0), and (−1, 0), and
intersects the vertical axis at (0, 1), and (0,−1). These four points are equally
spaced on the unit circle (Figure A.10).

By the distance formula, a vector v = (x, y) is a unit vector when

A.4. TWO DIMENSIONS 499

x2 + y2 = 1.

More generally, any circle with center Q = (a, b) and radius r consists of
points (x, y) satisfying

(x− a)2 + (y − b)2 = r2.

Let R be a point on the unit circle, and let t > 0. From this, we see the scaled
point tR is on the circle with center (0, 0) and radius t. Moreover, it follows
a point P is on the circle of center Q and radius r iff P = Q+ rR for some
R on the unit circle.

Given this, it is easy to check

|tv| = |t| |v|

for any scalar t and vector v.
From this, if a vector v is unit and r > 0, then rv has magnitude r. If v is

any vector not equal to the zero vector, then r = |v| is positive, and∣∣∣∣1r v
∣∣∣∣ = 1

r
|v| = 1

r
r = 1,

so v/r is a unit vector.

v1

θ

v2

v2 − v1

Fig. A.11 Two vectors v1 and v2.

Now we discuss the dot product in two dimensions. Let v1 = (x1, y1) and
v2 = (x2, y2) be two vectors in the plane. The dot product of v1 and v2 is
given algebraically as

v1 · v2 = x1x2 + y1y2,

500 CHAPTER A. APPENDICES

or geometrically as
v1 · v2 = |v1| |v2| cos θ,

where θ is the angle between v1 and v2. To show that these are the same,
below we derive the

Dot Product Identity

x1x2 + y1y2 = v1 · v2 = |v1| |v2| cos θ. (A.4.5)

From the algebraic definition of dot product, we have v ·v = x2+y2 = |v|2.
Since v2 − v1 = (x2 − x1, y2 − y1),

|v2 − v1|2 = (v2 − v1) · (v2 − v1) = (x2 − x1)
2 + (y2 − y1)

2.

Expanding the squares, we obtain

|v2 − v1|2 = |v2|2 − 2v1 · v2 + |v1|2. (A.4.6)

As an example of the usefulness of the dot product identity, the linearity
of the dot product

(su+ tv) · w = su · w + tv · w

follows immediately from the algebraic definition, but is not at all obvious
from the viewpoint of the geometric definition.

In Python, the dot product is given by numpy.dot,

from numpy import *

v1 = array([1,2])

v2 = array([3,4])

dot(v1,v2) == 1*3 + 2*4 # returns True

Using the geometric definition of the dot product, we can write

cos θ =
u · v
|u| |v|

.

As a consequence, we have code for the angle between two vectors (we
write Angle to distinguish from the built-in numpy.angle).

from numpy import *

def Angle(u,v):

A.4. TWO DIMENSIONS 501

a = dot(u,v)

b = dot(u,u)

c = dot(v,v)

theta = arccos(a / sqrt(b*c))

return degrees(theta)

Recall that −1 ≤ cos θ ≤ 1. Using the dot product identity (A.4.5), we
obtain the important

Cauchy-Schwarz Inequality

If u and v are any two vectors, then

−|u| |v| ≤ u · v ≤ |u| |v|. (A.4.7)

Vectors u and v are orthogonal or perpendicular if the angle between them
is a right angle (90 degrees or π/2 radians). Since cos(π/2) = 0, we see vectors
are orthogonal when their dot product is zero.

When orthogonal vectors u and v are also unit vectors, we say u and v are
orthonormal. As a consequence of the Cauchy-Schwarz inequality,

Parallel, Anti-Parallel, and Orthogonal Vectors

Let u and v be two vectors. Then u · v achieves its maximum |u| |v|
when u and v point in the same direction, achieves its minimum |u| |v|
when u and v point in opposite directions, and equals zero when u
and v are orthogonal.

b

θ

a

c

Fig. A.12 Pythagoras for general triangles.

502 CHAPTER A. APPENDICES

To derive the dot product identity, we first derive Pythagoras’ theorem for
general triangles (Figure A.12)

c2 = a2 + b2 − 2ab cos θ. (A.4.8)

To derive (A.4.8), we drop a perpendicular to the base b, obtaining two
right triangles, as in Figure A.13.

By Pythagoras applied to each right triangle,

a2 = d2 + f2 and c2 = e2 + f2.

Also b = e+ d, so e = b− d, so

e2 = (b− d)2 = b2 − 2bd+ d2.

By the definition of cos θ, d = a cos θ. Putting this all together,

c2 = e2 + f2 = (b− d)2 + f2

= f2 + d2 + b2 − 2db

= a2 + b2 − 2ab cos θ,

which is (A.4.8).

b

θ

a

c

f

d

e

Fig. A.13 Proof of Pythagoras for general triangles.

Next, connect Figures A.11 and A.12 by noting a = |v2| and b = |v1| and
c = |v2 − v1|. By (A.4.6),

c2 = |v2 − v1|2 = |v2|2 − 2v1 · v2 + |v1|2 = a2 + b2 − 2(x1x2 + y1y2),

thus
c2 = a2 + b2 − 2(x1x2 + y1y2). (A.4.9)

A.4. TWO DIMENSIONS 503

Comparing the terms in (A.4.8) and (A.4.9), we arrive at the dot product
identity (A.4.5).

If P = (x, y), let P⊥ = (−y, x) (pronounced “P -perp”), and let v = OP
and v⊥ = OP ′ be the vectors emanating from the origin, and ending at P
and P⊥. Then

v · v⊥ = (x, y) · (−y, x) = 0.

This shows v and v⊥ are perpendicular (Figure A.14).
From Figure A.14, we see points P and P ′ on the unit circle satisfy P ·P ′ =

0 iff P ′ = ±P⊥.

0

v
v⊥

−v⊥

P

P⊥

−P⊥ a

b
c

P

P + P⊥

O

P⊥

Fig. A.14 P and P⊥ and v and v⊥.

We now solve two linear equations in two unknowns x, y. We start with
the homogeneous linear system

ax+ by = 0, cx+ dy = 0. (A.4.10)

Let A be the 2× 2 matrix

A =

(
a b
c d

)
(A.4.11)

Assume (a, b) ̸= (0, 0). Then it is easy to exhibit a nonzero solution of
the first equation in (A.4.10): choose (x, y) = (−b, a) = (a, b)⊥. If we want
this to be a solution of the second equation as well, we must have cx+ dy =
ad− bc = 0.

504 CHAPTER A. APPENDICES

On the other hand, if (c, d) ̸= (0, 0), (x, y) = (−d, c) = (c, d)⊥ is a nonzero
solution of the second equation in (A.4.10). If we want this to be a solution
of the first equation as well, we must have ax+ by = bc− ad = 0.

Based on this, we make the following definition. The determinant of A is

det(A) = det

(
a b
c d

)
= ad− bc. (A.4.12)

Above we found solutions of (A.4.10) when det(A) = 0. We now show the
only solution is (x, y) = (0, 0) when det(A) ̸= 0.

Multiply the first equation in (A.4.10) by d and the second by b and
subtract, obtaining

(ad− bc)x = d(ax+ by)− b(cx+ dy) = 0.

When ad − bc ̸= 0, this leads to x = 0. Similarly, in (A.4.10), multiply the
first equation by c and the second by a and subtract, obtaining

(bc− ad)y = c(ax+ by)− a(cx+ dy) = 0.

When ad− bc ̸= 0, this leads to y = 0.
Summarizing, we conclude

Homogeneous Linear System

Let A be the matrix (A.4.11). There are three cases.

• If det(A) ̸= 0, the only solution of (A.4.10) is (x, y) = (0, 0).
• If det(A) = 0 but A ̸= 0, every solution of (A.4.10) is a scalar

multiple of (x, y) = (−b, a), or of (x, y) = (−d, c), depending on
whether (a, b) ̸= (0, 0) or (c, d) ̸= (0, 0).

• If A = 0, any (x, y) is a solution of (A.4.10).

This covers the homogeneous case. For the inhomogeneous linear system

ax+ by = e, cx+ dy = f, (A.4.13)

again there are the same three cases.

• If A = 0, the system (A.4.13) has a solution only if (e, f) = (0, 0), in
which case, any (x, y) is a solution.

• If A ̸= 0 but det(A) = 0, multiplying and subtracting as above, we obtain

(ad− bc)x = d(ax+ by)− b(cx+ dy) = de− bf,

(ad− bc)y = a(cx+ dy)− c(ax+ by) = af − ce.
(A.4.14)

This implies ce = af and de = bf . Conversely, when ce = af and de = bf ,

A.4. TWO DIMENSIONS 505

(x, y) = (e/a, 0), (x, y) = (0, e/b), (x, y) = (f/c, 0), (x, y) = (0, f/d)

are solutions, when a ̸= 0, b ̸= 0, c ̸= 0, or d ̸= 0 respectively.
• If det(A) ̸= 0, dividing (A.4.14) by ad− bc leads to

x =
de− bf

ad− bc
, y =

af − ce

ad− bc
. (A.4.15)

Putting all this together, we conclude

Inhomogeneous Linear System

Let A be the matrix (A.4.11). There are three cases.

• If det(A) ̸= 0, (A.4.13) has the unique solution (A.4.15).
• If det(A) = 0 but A ̸= 0, (A.4.13) has a solution iff ce = af and
de = bf , in which case, there are four possible solutions, listed
above, depending on which of a, b, c, d is nonzero.

• If A = 0, (A.4.13) has a solution if (e, f) = (0, 0), in which case,
any (x, y) is a solution.

All other solutions differ from these solutions by a solution of (A.4.10).

In §2.9, we will understand the three cases in terms of the rank of A equal
to 2, 1, or 0.

The trace of A is the sum of the diagonal entries,

A =

(
a b
c d

)
=⇒ trace(A) = a+ d. (A.4.16)

The determinant and trace are the basic functions of 2× 2 matrices.
We now go over the properties of 2×2 matrices. These we use in §1.4, and

these properties are a prelude to Chapter 2.
We go over matrix-vector, matrix-matrix, and tensor products, and we

connect them to the dot product. For the remainder of the section, matrices
are 2× 2 and vectors are in R2.

The matrix (A.4.11) can be written in terms of the two vectors u = (a, b)
and v = (c, d), as follows

A =

(
a b
c d

)
=

(
u
v

)
, u = (a, b), v = (c, d).

In this case, we call u and v the rows of A. On the other hand, A may be
written as

506 CHAPTER A. APPENDICES

A =

(
a c
b d

)
=
(
u v
)
, u = (a, b), v = (c, d).

In this case, we call u and v the columns of A. Many texts then write u and
v as

u =

(
a
b

)
, v =

(
c
d

)
. (A.4.17)

We do not usually do this when u and v are on their own, because then they
are just vectors. We only do this when u and v being multiplied with matrices
or are rows or columns of matrices.

In fact, when we do write (A.4.17), we are thinking of u and v as 2 × 1
matrices, not as vectors. This shows there are at least three ways to think
about a matrix: as rows, or as columns, or as a single block.

The simplest operations on matrices are addition and scaling. Addition is

A =

(
a b
c d

)
, A′ =

(
a′ b′

c′ d′

)
=⇒ A+A′ =

(
a+ a′ b+ b′

c+ c′ d+ d′

)
,

and scaling is

tA =

(
ta tb
tc td

)
.

As with vectors, addition and scaling are linear

s(A+B) = sA+ sB, (s+ t)A = sA+ tA.

The transpose At of the matrix A is

A =

(
a b
c d

)
=⇒ At =

(
a c
b d

)
.

Then the rows of At are the columns of A, and vice-versa.
If Q satisfies Qt = Q, then Q is a symmetric matrix. In this case, the rows

of Q equal the columns of Q, and Q looks like

Q =

(
a b
b c

)
.

A general matrix A consists of four numbers a, b, c, d, and a symmetric
matrix Q consists of three numbers a, b, c.

Let x = (s, t) be a vector. We now explain how to multiply the matrix A
by the vector x. The result is then another vector Ax. This is called matrix-
vector multiplication.

A.4. TWO DIMENSIONS 507

To do this, we write A as rows A =

(
u
v

)
, then use the dot product to

define
Ax = (u · x, v · x) = (as+ bt, cs+ dt).

When multiplying this way, we often write

Ax =

(
a b
c d

)(
s
t

)
=

(
as+ bt
cs+ dt

)
=

(
u · x
v · x

)
,

and we think of x and Ax as column vectors.
This terminology is introduced to keep things consistent: It’s always row-

times-column with row on the left and column on the right. Nevertheless, a
vector, a row vector, and a column vector are all the same thing, just a vector.

Matrix-vector multiplication and scaling are related by

A(sx) = s(Ax) = (sA)x

for any scalar s, and is linear

A(u+ v) = Au+Av, (A+B)u = Au+Bu.

Let A = (u, v) be a matrix with columns u and v, and let x = (s, t) be a
vector. To express Ax in terms of u, v, write

Ax =

(
a c
b d

)(
s
t

)
=

(
as+ ct
bs+ dt

)
=

(
as
bs

)
+

(
ct
dt

)
= su+ tv.

Summarizing,

Matrix-Vector Product in Terms of Rows and Columns

Let A be a matrix and x = (s, t) a vector. If A has rows u, v, then
Ax = (u · x, v · x). If A has columns u, v, then Ax = su+ tv.

As a consequence, a matrix A may be identified by its matrix-vector prod-
ucts Ax over all vectors x,

Matrix-Vector Product Uniquely Identifies the Matrix

Let A and A′ be matrices. If Ax = A′x for every vector x, then A = A′.

To see this, let u, v and u′, v′ be the columns of A, A′. Inserting x =
(s, t) = (1, 0) into

su+ tv = Ax = A′x = su′ + tv′.

yields u = u′, and repeating with x = (0, 1) yields v = v′.

508 CHAPTER A. APPENDICES

Let x and y be vectors, with x = (s, t), and let A be a matrix with rows
u, v. Then At has columns u, v, so we have

Ay = (u · y, v · y), Atx = su+ tv.

Taking the dot product of Ay with x leads to

x ·Ay = su · y + tv · y.

Taking the dot product of Atx with y leads to

(Atx) · y = (su+ tv) · y = su · y + tv · y.

Since the last two displays are equal, we arrive at the

Dot Product Transpose Identity

Let A be a matrix and x, y vectors. Then

(Atx) · y = x ·Ay and (Ax) · y = x · (Aty). (A.4.18)

We established the first equation in (A.4.18). The second equation follows
by switching x and y and using a · b = b · a.

Just like we can multiply matrices and vectors, we can also multiply two
matrices A and A′ and obtain a product AA′. This is matrix-matrix multi-

plication. Following the row-column rule above, we write A =

(
u
v

)
as rows

and A′ = (u′, v′) as columns and define

AA′ = (Au′, Av′) =

(
u · u′ u · v′
v · u′ v · v′

)
.

If we do this the other way, we obtain

A′A =

(
u′ · u u′ · v
v′ · u v′ · v

)
,

so in general
AA′ ̸= A′A.

The matrix-vector product and the matrix-matrix product are related by
the identity

A.4. TWO DIMENSIONS 509

(AA′)x = A(A′x). (A.4.19)

To check this, let A′ have columns u′, v′, and let x = (s, t). Then A′x =
su′ + tv′ so

A(A′x) = A(su′ + tv′) = sAu′ + tAv′ = (Au′, Av′)x = (AA′)x.

We conclude multiplying a vector by two matrices, one after the other, is the
same as multiplying the vector by their matrix product.

As a consequence, the matrix-matrix product is also linear

A(B + C) = AB +AC, (A+B)C = AC +BC.

We can use (A.4.19) to derive

Transpose of Matrix-Matrix Product

If A and B are matrices, then

(AB)t = BtAt.

This follows from

(AB)x · y = (A(Bx)) · y = Bx ·Aty = x ·Bt(Aty) = x · (BtAt)y,

valid for any x and y.

If u = (a, b) and v = (c, d) are vectors, their tensor product is the matrix

u⊗ v =

(
ac ad
bc bd

)
=
(
cu du

)
=

(
av
bv

)
.

Here we wrote u⊗v as a single block, and also in terms of rows and columns.
If we do this the other way, we get

v ⊗ u =

(
ca cb
da db

)
,

so
(u⊗ v)t = v ⊗ u.

When u = v, u⊗ v = v ⊗ v is a symmetric matrix.
Just like for the other products, the tensor product is linear

(su+ tv)⊗ w = su⊗ w + tv ⊗ w.

Here is code for tensor.

510 CHAPTER A. APPENDICES

from numpy import *

def tensor(u,v): return array([[a*b for b in v] for a in u])

There is no need to use this, since numpy.outer does the same job,

from numpy import *

A = outer(u,v)

From the definition of u⊗ v, the following equations are immediate,

det(u⊗ v) = 0, trace(u⊗ v) = u · v.

Here are the basic identities for the tensor product.

Tensor Product Identities

The following identities hold.

1. If u, v, w are vectors,

(u⊗ v)w = (v · w)u. (A.4.20)

2. If a, b, c, d are vectors,

a · (b⊗ c)d = (a · b)(c · d). (A.4.21)

3. If Q = v ⊗ v,

u ·Qu = u · (v ⊗ v)u = (u · v)2. (A.4.22)

4. If A has columns u, v,

AAt = u⊗ u+ v ⊗ v. (A.4.23)

5. For matrices A, B, and vectors u, v,

A(u⊗ v)Bt = (Au)⊗ (Bv). (A.4.24)

For (A.4.20), suppose u = (s, t). Then

(u⊗ v)w =

(
sv
tv

)
w = (sv · w, tv · w) = (v · w)u.

For (A.4.21), replace u, v, w in (A.4.20) by b, c, d, then take the dot
product with a.

For (A.4.22), replace a, b, c, d in (A.4.21) by v, u, u, v.

A.4. TWO DIMENSIONS 511

For (A.4.23), let x be any vector. Since At has rows u, v, Atx = (u ·x, v ·x).
Since A has columns u, v,

AAtx = A(Atx) = (u · x)u+ (v · x)v = (u⊗ u+ v ⊗ v)x.

For (A.4.24), let x be any vector. Then

((u⊗ v)Bt)x = (u⊗ v)(Btx) = (v ·Btx)u = (Bv · x)u,

so

(A(u⊗v)Bt)x = A((u⊗v)Bt)x) = A((Bv ·x)u) = (Bv ·x)Au = (Au⊗Bv)x.

A rotation in the plane is the matrix

U = U(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Here θ is the angle of rotation. By the trigonometric addition formulas
(A.5.6),

U(θ)U(θ′) =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ′ − sin θ′

sin θ′ cos θ′

)
=

(
cos(θ + θ′) − sin(θ + θ′)
sin(θ + θ′) cos(θ + θ′)

)
= U(θ + θ′).

This says rotating by θ′ followed by rotating by θ is the same as rotating by
θ + θ′.

There is a special matrix I, the identity matrix,

I =

(
1 0
0 1

)
.

The matrix I satisfies
AI = IA = A

for any matrix A.
Also, for each matrix A with det(A) ̸= 0, the matrix

A−1 =
1

det(A)

(
d −b
−c a

)
=

1

ad− bc

(
d −b
−c a

)

512 CHAPTER A. APPENDICES

is the inverse of A. The inverse matrix satisfies

AA−1 = I = A−1A.

Since

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I,

we have

Inverse of Matrix-Matrix Product

If A and B are matrices, then

(AB)−1 = B−1A−1.

Using the matrix inverse property, the solution of

Ax = b

is
x = A−1b,

since
Ax = AA−1b = Ib = b.

With this, we can rewrite (A.4.13) as(
a b
c d

)(
x
y

)
=

(
e
f

)
,

and the solution (A.4.15) can be rewritten(
x
y

)
=

(
a b
c d

)−1(
e
f

)
=

1

ad− bc

(
d −b
−c a

)(
e
f

)
=

1

ad− bc

(
de− bf
af − ce

)
.

We study inverse matrices in depth in §2.3.

Let A have columns u, v. Then At has rows u, v. Since matrix multiplica-
tion is row × column,

AtA =

(
u
v

)(
u v
)
=

(
u · u u · v
v · u v · v

)
.

A.4. TWO DIMENSIONS 513

Now suppose AtA = I. Then u · u = 1 = v · v and u · v = 0, so u and v are
orthogonal unit vectors, or orthonormal vectors. We have shown

Orthogonal Matrices

Let A be a matrix. Then AtA = I iff the columns of A are orthonor-
mal, and AAt = I iff the rows of A are orthonormal.

The second statement follows by applying the first to At instead of A. A
matrix U is orthogonal if

U tU = I = UU t.

Thus a matrix is orthogonal iff its rows are orthonormal, and its columns are
orthonormal. Later we see that, for a square matrix, either equation, UU t = I
or U tU = I, implies the other.

Exercises

Exercise A.4.1 Solve the linear system

ax+ by = c, −bx+ ay = d.

Exercise A.4.2 Let u = (1, a), v = (b, 2), and w = (3, 4). Solve

u+ 2v + 3w = 0

for a and b.

Exercise A.4.3 Let u = (1, 2), v = (3, 4), and w = (5, 6). Find a and b such
that

au+ bv = w.

Exercise A.4.4 Let P be a nonzero point in the plane. What is
(
P⊥)⊥?

Exercise A.4.5 Let A =

(
8 −8
−7 −3

)
and B =

(
3 −2
2 −2

)
. Compute AB and

BA.

Exercise A.4.6 Let A =

(
9 2

−36 −8

)
. Find a nonzero 2 × 2 matrix B satis-

fying AB = 0.

Exercise A.4.7 Solve for X(
−7 4
4 −3

)
− 4X =

(
−9 5
6 −9

)
.

514 CHAPTER A. APPENDICES

Exercise A.4.8 Use (A.4.20) to compute the matrix-matrix product (u⊗v)2.

Exercise A.4.9 Find a nonzero 2× 2 matrix A satisfying A2 = 0.

Exercise A.4.10 If V is a symmetric 2× 2 matrix, show

(trace(V))2 = 2det(V) + trace(V 2).

Exercise A.4.11 With V a 2× 2 matrix and t scalar, show

det(I + tV) = 1 + t · trace(V) + t2 det(V).

Exercise A.4.12 With Q and V 2 × 2 matrices, Q invertible, and t scalar,
show

det(Q+ tV)

det(Q)
= 1 + t · trace(Q−1V) + t2 det(Q−1V).

Exercise A.4.13 What is the trace of A =

(
9 2

−36 −8

)
?

Exercise A.4.14 Let A be a 2×2 matrix with rows u, v. The wedge product
of u and v is the matrix

u ∧ v = u⊗ v − v ⊗ u.

Show

u ∧ v =

(
0 δ
−δ 0

)
,

where δ = det(A).

Exercise A.4.15 Let u be a unit vector, and let A = u⊗ u. Compute A100.

Exercise A.4.16 Calculate the areas of the triangles and the squares in
Figure A.14. From that, deduce Pythagoras’s theorem c2 = a2 + b2.

Exercise A.4.17 Let u and v be unit vectors, and let A = u⊗ v. If A2 = 0,
what is the angle between u and v?

Exercise A.4.18 Let W =

(
0 1
−1 0

)
. What is W 211?

A.5 Complex Numbers

In §A.4, we study points in two dimensions, and we saw how points can be
added and subtracted. In §2.1, we study points in any number of dimensions,
and there we also add and subtract points.

A.5. COMPLEX NUMBERS 515

In two dimensions, each point has a shadow (Figure A.6). By stacking
shadows, points in the plane can be multiplied and divided (Figure A.15). In
this sense, points in the plane behave like numbers, because they follow the
usual rules of arithmetic.

This ability of points in the plane to follow the usual rules of arithmetic
is, apart from the real line, unique to two dimensions, and not present in any
other dimension. When thought of in this manner, points in the plane are
called complex numbers, and the plane is the complex plane.

To define multiplication of points, let P = (x, y) and P ′ = (x′, y′) be points
on the unit circle. Stack the shadow of P ′ on top of the shadow of P , as in
Figure A.15. Because angle stacking is at the basis of angle measurement
[13], we must do this without knowledge of angle measure.

Here is how one does this without any angle measurement: Mark Q = x′P
at distance x′ along the vector OP joining O and P , and draw the circle
with radius y′ and center Q. Then this circle intersects the unit circle at two
points, both called P ′′.

P

O

1

P ′

O

1

O

Q

O

P ′′

Q

P ′′

Fig. A.15 Multiplying and dividing points on the unit circle.

We think of the first point P ′′ as the result of multiplying P and P ′, and
we write P ′′ = PP ′, and we think of the second point P ′′ as the result of
dividing P by P ′, and we write P ′′ = P/P ′. Then we have

516 CHAPTER A. APPENDICES

Multiplication and Division of Points

For P = (x, y) and P ′ = (x′, y′) on the unit circle, when x′y′ ̸= 0,

P ′′ = PP ′ = (xx′ − yy′, x′y + xy′),

P ′′ = P/P ′ = (xx′ + yy′, x′y − xy′).
(A.5.1)

To derive (A.5.1), let P⊥ = (−y, x) (“P -perp”). Then

x′P + y′P⊥ = (x′x, x′y) + (−y′y, y′x) = (xx′ − yy′, x′y + xy′),

x′P − y′P⊥ = (x′x, x′y)− (−y′y, y′x) = (xx′ + yy′, x′y − xy′),

so (A.5.1) is equivalent to

P ′′ = x′P ± y′P⊥. (A.5.2)

To establish (A.5.2), since P ′′ is on the circle of center Q and radius y′,
we may write P ′′ = Q+ y′R, for some point R on the unit circle (see §A.4).

Interpreting points as vectors, and using (A.4.6), P ′′ = x′P + y′R is on
the unit circle iff

1 = |x′P + y′R|2 = |x′P |2 + 2x′P · y′R+ |y′R|2

= x′2|P |2 + 2x′y′P ·R+ y′
2|R|2

= x′2 + y′
2
+ 2x′y′P ·R

= 1 + 2x′y′P ·R.

But this happens iff P · R = 0, which happens iff R = ±P⊥ (Figure A.14).
This establishes (A.5.2).

More generally, if P and P ′ are not on the unit circle, the formula for the
product PP ′ remains unchanged, while the formula for the quotient P/P ′

must be modified.
To see how, let r = |P | and r′ = |P ′|, and let R be any point satisfying

|R| = r. Then
P ′′ = Q+ y′R = x′P + y′R

satisfies |P ′′| = rr′ exactly when R = ±P⊥, leading to the two points in
(A.5.1).

Let P̄ be the conjugate (x,−y) of P = (x, y). The first P ′′ is the product

PP ′ = (xx′ − yy′, x′y + xy′), (A.5.3)

and the second P ′′ is the hermitian product PP̄ ′ of P and P̄ ′.

A.5. COMPLEX NUMBERS 517

The correct formula for division is given by

P/P ′ =
1

r′2
PP̄ ′ =

1

x′2 + y′2
(xx′ + yy′, x′y − xy′), r′ ̸= 0. (A.5.4)

When r′ = 1, (A.5.4) reduces to the formula in (A.5.1).
With this understood, it is easily checked that division undoes multiplica-

tion,
(P/P ′)P ′ = P.

In fact, one can check that multiplication and division as defined by (A.5.3)
and (A.5.4) follow the usual rules of arithmetic, for any two points P and P ′

in the plane, not necessarily on the unit circle.

It is natural to identify points on the horizontal axis with real numbers,
because, using (A.5.1), P = (x, 0) and P ′ = (x′, 0) implies

P+P ′ = (x, 0)+(x′, 0) = (x+x′, 0), PP ′ = (xx′−00, x0+x′0) = (xx′, 0).

Because of this, we can write P = x instead of P = (x, 0), and we call the
horizontal axis the real axis.

Similarly, let i = (0, 1). Then the point i is on the vertical axis, and, using
(A.5.1), one can check

iy = (0, 1)(y, 0) = (−0, y) = y⊥

(y⊥ was defined in §A.4). Thus the vertical axis consists of all points of the
form iy. These are called imaginary numbers, and the vertical axis is the
imaginary axis.

−1 0 1 2 3

i

2i 3 + 2i

Fig. A.16 Complex numbers

Using i, any point P = (x, y) may be written

P = x+ iy,

since

518 CHAPTER A. APPENDICES

x+ iy = (x, 0) + (0, 1)(y, 0) = (x, 0) + (0, y) = (x, y).

This leads to Figure A.16.
When writing a complex number as x + iy, the real part is x, and the

imaginary part is y (not iy). In this way, real numbers x are considered
complex numbers with zero imaginary part, x = x+ i0.

By (A.5.1), i2 = (0, 1)2 = (−1, 0) = −1. This shows

Square Root of −1

The complex number i satisfies i2 = −1.

When thinking of points in the plane as complex numbers, it is traditional
to denote them by z instead of P . By (A.5.1), we have

z = x+ iy, z′ = x′ + iy′ =⇒ zz′ = (xx′ − yy′) + i(x′y + xy′),

and
z

z′
=

x+ iy

x′ + iy′
=

(xx′ + yy′) + i(x′y − xy′)

x′2 + y′2
.

In particular, one can always “move” the i from the denominator to the
numerator by the formula

1

z
=

1

x+ iy
=

x− iy

x2 + y2
=

z̄

|z|2
.

Here x2 + y2 = r2 = |z|2 is the absolute value squared of z, and z̄ is the
conjugate of z.

Let r, θ be the polar coordinates of P = (x, y) (Figure A.9). When we

write z = x+ iy, r is the absolute value of z, r = |z| =
√

x2 + y2, and

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ).

Let r, r′, r′′ and θ, θ′, θ′′ be the polar coordinates of z, z′, z′′ = zz′. Then
Figure A.15 says θ′′ = θ+θ′. Using angle stacking together with his bisection
method, Archimedes [14] defined angle measure θ, providing the theoretical
basis for the addition formula θ′′ = θ + θ′.

By elementary algebra,

(x2 + y2)(x′2 + y′
2
) = (xx′ − yy′)2 + (x′y + xy′)2. (A.5.5)

A.5. COMPLEX NUMBERS 519

Since this says r2r′
2
= r′′

2
, we conclude

Polar Coordinates of Complex Numbers

If (r, θ) and (r′, θ′) are the polar coordinates of complex numbers z
and z′, and (r′′, θ′′) are the polar coordinates of the product z′′ = zz′,
then

r′′ = rr′ and θ′′ = θ + θ′.

From this and (A.5.1), using (x, y) = (cos θ, sin θ), (x′, y′) = (cos θ′, sin θ′),
we have the addition formulas

sin(θ + θ′) = sin θ cos θ′ + cos θ sin θ′,

cos(θ + θ′) = cos θ cos θ′ − sin θ sin θ′.
(A.5.6)

For example, if ω = cos θ + i sin θ, then the polar coordinates of ω are
r = 1 and θ. It follows the polar coordinates of ω2 are r = 1 and 2θ, so
ω2 = cos(2θ) + i sin(2θ).

By the same logic, for any power k, the polar coordinates of ωk are r = 1
and kθ, so ωk = cos(kθ) + i sin(kθ).

We can reverse the logic in the previous paragraph to compute square
roots. We define the square root of a complex number z to be a complex
number w satisfying w2 = z. In this case, we write w =

√
z. If w is a square

root, so is −w, so there are two square roots w = ±
√
z.

The formula for w =
√
z is

z = x+ yi =⇒
√
z =

r + x√
2r + 2x

+
yi√

2r + 2x
. (A.5.7)

Here r =
√
x2 + y2 and this formula is valid as long as z is not a negative

number or zero. When z is a negative number or zero, z = −x with x ≥ 0.
in this case, we have

√
z = i

√
x. Therefore every complex number, other than

zero, has two square roots.
When z is on the unit circle, r = 1, (A.5.7) reduces to

√
z =

1 + x√
2 + 2x

+
yi√

2 + 2x
.

We will need the roots of unity in §3.2. This generalizes square roots, cube
roots, etc.

520 CHAPTER A. APPENDICES

A complex number ω is a root of unity if ωd = 1 for some power d. If d is
the power, we say ω is a d-th root of unity.

For example, the square roots of unity are ±1, since (±1)2 = 1. Here we
have

1 = cos 0 + i sin 0, −1 = cosπ + i sinπ.

The fourth roots of unity are ±1 and ±i, since (±1)4 = 1 and (±i)4 = 1.
Here we have

1 = cos 0 + i sin 0,

i = cos(π/2) + i sin(π/2),

−1 = cosπ + i sinπ,

−i = cos(3π/2) + i sin(3π/2).

In general, the roots of unity are denoted by powers of ω, so the square
roots of unity are 1 and ω = −1, and the fourth roots of unity are 1, ω = i,
ω2 = −1, ω3 = −i.

Let ω = cos θ + i sin θ. Since 1 = cos(2π) + i sin(2π) and ωk = cos(kθ) +
i sin(kθ), a d-th root of unity ω satisfies

ω = cos(2π/d) + i sin(2π/d). (A.5.8)

If ωd = 1, then (
ωk
)d

=
(
ωd
)k

= 1k = 1.

With ω given by (A.5.8), this implies

1, ω, ω2, . . . , ωd−1

are the d-th roots of unity.

ω 1

ω2 = 1

ω

ω2

1

ω3 = 1

ω

ω2

ω3

1

ω4 = 1

Fig. A.17 The second, third, and fourth roots of unity

If we set

ω = −1

2
+ i

√
3

2
= cos(2π/3) + i sin(2π/3),

A.5. COMPLEX NUMBERS 521

then a calculation shows

1, ω, ω2 = −1

2
− i

√
3

2

are the cube roots of unity,

13 = 1, ω3 = 1, (ω2)3 = 1.

Similarly, the fifth roots of unity are 1, ω, ω2, ω3, ω4, where

ω = −1

4
+

√
5

4
+ i

√√
5

8
+

5

8
= cos(2π/5) + i sin(2π/5).

ω

ω2

ω3

ω4

1

ω5 = 1

ωω2

ω3

ω4 ω5

1

ω6 = 1

ω

ω2
ω3ω4

ω5

ω6

ω7

ω8

ω9

ω10

ω11 ω12
ω13

ω14

1

ω15 = 1

Fig. A.18 The fifth, sixth, and fifteenth roots of unity

Summarizing,

Roots of Unity

Let d ≥ 1 and let

ω = cos(2π/d) + i sin(2π/d),

Then the d-th roots of unity are

1, ω, ω2, . . . , ωd−1.

The roots satisfy

ωk = cos(2πk/d) + i sin(2πk/d), k = 0, 1, 2, . . . , d− 1.

Here we write ω instead of ωd, we do not indicate the dependence of ω on
d.

Since ωd = 1, one has, from Figures A.17 and A.18,

522 CHAPTER A. APPENDICES

ωk + ω−k = ωk + ωd−k = 2 cos(2πk/d), k = 0, 1, 2, . . . , d− 1. (A.5.9)

This we need in §3.2.

A polynomial is an expression of the form

p(z) = zd + c1z
d−1 + c2z

d−2 + · · ·+ cd.

For example, p(z) = z3 − 5z+2 or p(z) = z2 − 2z+2. Here z is the variable,
and the constants c1, c2, . . . , cd are the coefficients.

A root of a polynomial p(z) is a complex number a satisfying p(a) = 0.
For example, the roots of z2 − 2z + 2 are 1 ± i, and the roots of z5 − 1 are
the fifth roots of unity 1, ω, ω2, ω3, ω4. In general, the roots of zd − 1 are
the d-th roots of unity 1, ω, ω2, . . . , ωd−1.

The fundamental theorem of algebra states that every polynomial has as
many roots as its degree: If the degree of p(z) is d, there are d (not necessarily
distinct) roots a1, a2, . . . , ad of p(z), and p(z) may be factored into a product

p(z) =

d∏
k=1

(z − ak) = (z − a1)(z − a2) . . . (z − ad). (A.5.10)

Conversely, given a1, a2, . . . , ad, (A.5.10) exhibits a polynomial with these
as roots.

In particular, when p(z) = zd − 1, we have

zd − 1

z − 1
=

d−1∏
k=1

(z − ωk). (A.5.11)

Here is sympy code for the roots of unity.

from sympy import solve, symbols, init_printing

init_printing()

z = symbols('z')

d = 5

solve(z**d - 1)

In numpy, the roots of p(z) = az2 + bz + c are returned by

A.5. COMPLEX NUMBERS 523

from numpy import roots

roots([a,b,c])

Since the cube roots of unity are the roots of p(z) = z3 − 1, the code

from numpy import roots

roots([1,0,0,-1])

returns the cube roots

array([-0.5+0.8660254j, -0.5-0.8660254j, 1. +0.j])

Exercises

Exercise A.5.1 Let P = (1, 2) and Q = (3, 4) and R = (5, 6). Calculate PQ,
P/Q, PR, P/R, QR, Q/R.

Exercise A.5.2 Let a = 1 + 2i and b = 3 + 4i and c = 5 + 6i. Calculate ab,
a/b, ac, a/c, bc, b/c.

Exercise A.5.3 We say z′ is the reciprocal of z if zz′ = 1. Show the reciprocal
of z = x+ yi is

z′ =
x− yi

x2 + y2
.

Exercise A.5.4 Show
√
z given by (A.5.7) satisfies (

√
z)2 = z.

Exercise A.5.5 Check (A.5.5) is correct.

√
c

0

ρ+

ρ−

Fig. A.19 Complex conjugate roots ρ±.

524 CHAPTER A. APPENDICES

Exercise A.5.6 Let a, b, c be complex numbers, with a ̸= 0. Show the roots
of p(z) = az2 + bz + c are given by the Babylonian quadratic formula

z =
−b±

√
b2 − 4ac

2a
.

Exercise A.5.7 Let b, c be real numbers, with b2 < c. If ρ = x+ yi satisfies
ρ(ρ+ 2b) + c = 0, show |ρ| =

√
c (Figure A.19).

Exercise A.5.8 Let 1, ω, . . . , ωd−1 be the d-th roots of unity. Using the
code below, compute the product

(1− ω)(1− ω2)(1− ω3) . . . (1− ωd−1).

What is the answer? Try different degrees d.

from sympy import prod, solve, symbols, simplify

z = symbols('z')
roots = solve(z**d - 1)

prod([1-a if a != 1 else 1 for a in roots]).simplify()

The answer can be derived algebraically by using (A.5.11).

Exercise A.5.9 Given three distinct (non-equal) numbers a, b, c, there is a
quadratic p(z) = r+sz+tz2 satisfying p(a) = 0, p(b) = 0, and p(c) = 1. (With
d = 2 and roots a and b, divide (A.5.10) by a constant to make p(c) = 1.)

Exercise A.5.10 Given three distinct (non-equal) numbers a, b, c, and three
numbers α, β, γ, there is a quadratic p(z) = r+ sz+ tz2 satisfying p(a) = α,
p(b) = β, and p(c) = γ. Repeat the previous exercise three times, once each
for roots a and b, then b and c, then c and a, and take a linear combination
of the results.

A.6 Integration

This section is a review of integration, using the fundamental theorem of
calculus and Python.

Let y = f(x) be a function, and let its graph be as in Figure A.20. The
integral

I =

∫ b

a

f(x) dx (A.6.1)

is the area under the graph between the vertical lines at a and b.

A.6. INTEGRATION 525

To repeat, the integral is a number, the area of a specific region under the
graph y = f(x). In Figure A.20, the integral (A.6.1) is the sum of three areas:
red, green, blue.

We use Figure A.20 to derive the

Fundamental Theorem of Calculus (FTC)

If F ′(x) = f(x), then∫ b

a

f(x) dx = F (b)− F (a). (A.6.2)

0 a x x+ dx b

f(x)

Fig. A.20 Areas under the graph.

To derive this, let A(x) denote the area under the graph between the y-
axis and the vertical line at x. Then A(x) is the sum of the gray area and
the red area, A(a) is the gray area, and A(b) is the sum of four areas: gray,
red, green, and blue. It follows the integral (A.6.1) equals A(b)−A(a).

Since A(x + dx) is the sum of three areas, gray, red, green, it follows
A(x + dx) − A(x) is the green area. But the green area is approximately a
rectangle of width dx and height f(x). Hence the green area is approximately
f(x)× dx, or

A(x+ dx)−A(x) ≈ f(x) dx.

As a consequence of this analysis,

A(x+ dx)−A(x)

dx
≈ f(x).

The smaller dx is, the closer the green area is to a rectangle. Taking the limit
dx → 0, the green rectangle becomes infinitely thin, and we obtain

526 CHAPTER A. APPENDICES

A′(x) = lim
dx→0

A(x+ dx)−A(x)

dx
= f(x).

Now let F (x) be any function satisfying F ′(x) = f(x). Then A(x) and
F (x) have the same derivative, so A(x)−F (x) has derivative zero. By (4.1.2),
A(x)− F (x) is a constant C, or A(x) = F (x) + C. This implies∫ b

a

f(x) dx = A(b)−A(a) = (F (b) + C)− (F (a) + C) = F (b)− F (a).

This completes the derivation of the fundamental theorem of calculus.
Often one writes F (x)|ba for F (b)− F (a). The FTC then reads∫ b

a

f(x) dx = F (x)

∣∣∣∣x=b

x=a

.

When F ′(x) = f(x), F (x) is called an anti-derivative or indefinite integral
of f(x). This should not be confused with the integral (A.6.1), which is a
number, an area.

Since the total area between a and b may be sliced into many thin green
rectangles, interpreting the symbol

∫
as “sum” explains the notation (A.6.1).

Important consequences of the FTC are integral additivity,∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

and integral scaling, ∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

For example, if f(x) = xd, then, by (4.1.4), F (x) = xd+1/(d+ 1) satisfies
F ′(x) = f(x), so, by the FTC,∫ b

a

xn dx = F (b)− F (a) =
bd+1

d+ 1
− ad+1

d+ 1
.

When d = 2, a = −1, b = 1, this is 2/3, which is the area under the parabola
in Figure A.21.

When a = 0, b = 1,

A.6. INTEGRATION 527∫ 1

0

td dt =
1

d+ 1
. (A.6.3)

Fig. A.21 Area under the parabola.

When F (x) can’t be found, we can’t use the FTC. Instead we use Python
to evaluate the integral (A.6.1) as follows.

from scipy.integrate import quad

d = 2

def f(x): return x**d

a,b = -1, 1

integral of f(x) over the interval [a,b]

plus error

quad(f,a,b)

This not only returns the computed integral I but also an estimate of the
error between the computed integral and the theoretical value,

(0.6666666666666666, 7.401486830834376e-15).

quad refers to quadrature, which is another term for integration.
Another example is the area under one hump of the sine curve in Figure

A.22, ∫ π

0

sinx dx = − cosπ − (− cos 0) = −(−1) + 1 = 2.

Here f(x) = sinx, F (x) = − cosx, F ′(x) = f(x). The Python code quad

returns (2.0, 2.220446049250313e-14).

528 CHAPTER A. APPENDICES

Fig. A.22 The graph and area under sinx.

It is important to realize the integral (A.6.1) is the signed area under the
graph: Portions of areas that are below the x-axis are counted negatively. For
example, ∫ 2π

0

sinx dx = − cos(2π)− (− cos 0) = −1 + 1 = 0.

Explicitly, ∫ 2π

0

sinx dx =

∫ π

0

sinx dx+

∫ 2π

π

sinx dx = 2− 2 = 0,

so the areas under the first two humps in Figure A.22 cancel.

Fig. A.23 Integral of sinx/x.

A.6. INTEGRATION 529

Here is code for Figures A.21, A.22, A.23.

from numpy import *

from matplotlib.pyplot import *

from scipy.integrate import quad

def plot_and_integrate(f,a,b,pi_ticks=False):

draw x-axis and y-axis

axhline(0, color='black', lw=1)

axvline(0, color='black', lw=1)

set x-axis ticks as multiples of pi/2

if pi_ticks: set_pi_ticks(a,b)

x = linspace(a,b,100)

plot(x,f(x))

positive = f(x) >= 0

negative = f(x) < 0

fill_between(x, f(x), 0, color = 'g', where = positive, alpha = .5)

fill_between(x, f(x), 0, color = 'r', where = negative, alpha = .5)

just the integral, no error estimate

I = quad(f, a, b, limit=1000)[0]

title("integral equals " + str(I),fontsize = 10)

grid()

show()

def f(x): return sin(x)/x

a, b = 0.001, 3*pi

plot_and_integrate(f,a,b,pi_ticks=True)

Above, the Python function set_pi_ticks(a,b) sets the x-axis tick mark
labels at the multiples of π/2 The code for set_pi_ticks is in §4.1.

The exercises are meant to be done using the code in this section. For the
infinite limits below, use numpy.inf.

Exercises

Exercise A.6.1 Plot and integrate f(x) = x2 + A sin(5x) over the interval
[−10, 10], for amplitudes A = 0, 1, 2, 4, 15. Note the integral doesn’t depend
on A. Why?

Exercise A.6.2 Plot and integrate (Figure A.23)∫ 3π

0

sinx

x
dx.

Exercise A.6.3 Plot and integrate f(x) = exp(−x) over [a, b] with a = 0,
b = 1, 10, 100, 1000, 10000.

530 CHAPTER A. APPENDICES

Exercise A.6.4 Plot and integrate f(x) =
√
1− x2 over [−1, 1].

Exercise A.6.5 Plot and integrate f(x) = 1/
√
1− x2 over [−1, 1].

Exercise A.6.6 Plot and integrate f(x) = (− log x)n over [0, 1] for n =
2, 3, 4. What is the answer for general n?

Exercise A.6.7 With k = 7, n = 10, plot and integrate using Python∫ 1

0

xk(1− x)n−k dx.

From (5.2.8), what is the exact integral?

Exercise A.6.8 Plot and integrate f(x) = sin(nx)/x over [0, π] with n =
1, 2, 3, 4, What’s the limit of the integral as n → ∞?

Exercise A.6.9 Use numpy.inf to compute

2

π

∫ ∞

0

sinx

x
dx.

Exercise A.6.10 Use numpy.inf to plot the normal pdf and compute its
integral

1√
2π

∫ ∞

−∞
e−x2/2 dx.

Exercise A.6.11 Let σ(x) = 1/(1+e−x). Plot and integrate f(x) = σ(x)(1−
σ(x)) over [−10, 10]. What is the answer for (−∞,∞)?

Exercise A.6.12 Let Pn(x) be the Legendre polynomial of degree n (§4.1).
Use num_legendre (§4.1) to compute the integral∫ 1

−1

Pn(x)
2 dx

for n = 1, 2, 3, 4. What is the integral for general n? Hint – take the reciprocal
of the answers.

A.7 Asymptotics and Convergence

Let x1, x2, . . . be a sequence of scalars. What does it mean to say xn is
asymptotically zero? It means for n sufficiently large, xn is arbitrarily small.
To make this precise, we introduce some terminology.

We say xn is bounded if all terms lie in some bounded interval, a ≤ xn ≤ b.
If b > 0, we say xn is bounded by b if |xn| ≤ b. For example xn = sin(n) is
bounded by b = 1. The constant b is a bound.

A.7. ASYMPTOTICS AND CONVERGENCE 531

We say xn is eventually bounded by a positive constant b, if, after ignoring
finitely many terms, the remaining terms are bounded by b. For example,
xn = 1/n is eventually bounded by b = .01, since, after ignoring the first
ninety-nine terms, the sequence is bounded by b. The sequence x1 = 1, x2 = 1,
x3 = 1, . . . , is eventually bounded by 1, but not eventually bounded by 0.5.

If xn is bounded by 5, then xn is eventually bounded by 5. On the other
hand, if xn is eventually bounded by 5, then xn is bounded, but not nec-
essarily by 5, since we are ignoring finitely many terms, when writing the
bound.

Typically we use the greek letter epsilon ϵ to denote small positive num-
bers.

Asymptotic Vanishing

If for any positive constant ϵ, no matter how small, a sequence xn is
eventually bounded by ϵ, we say xn is asymptotically zero or asymp-
totically vanishing, and we write xn ≈ 0.

For example, xn = 1, 1, 1, . . . is not asymptotically zero, since xn is not
eventually bounded by ϵ = 0.5.

On the other hand, xn = 1/n is asymptotically zero: To bound the se-
quence by ϵ = 1/10, we ignore the first nine terms. To bound the sequence by
ϵ = 1/100, we ignore the first ninety-nine terms. To bound the sequence by
ϵ = 1/10000, we ignore the first 9999 terms. Notice the smaller the desired
bound, the more terms need to be ignored.

Immediate consequences of the asymptotic vanishing definition are the
following properties.

1. |xn| ≤ en and en ≈ 0 imply xn ≈ 0.
2. xn ≈ 0 and yn ≈ 0 implies xn + yn ≈ 0,
3. xn ≈ 0 and yn eventually bounded implies xnyn ≈ 0.

These are intuitively clear. As a special case, for any constant c,

xn ≈ 0 =⇒ cxn ≈ 0.

A sequence xn is asymptotically positive if, apart from finitely many terms,
xn is positive. More generally, xn is asymptotically nonzero if, apart from
finitely many terms, xn is not zero.

We say xn is asymptotically one, if the difference xn − 1 is asymptotically
zero. In this case, we write

xn ≈ 1.

As a consequence of the above properties, we show

532 CHAPTER A. APPENDICES

Convergence of Reciprocals

If xn ≈ 1, then 1/xn ≈ 1.

To derive this, assume xn ≈ 1. Then xn − 1 ≈ 0, so xn − 1 is eventu-
ally bounded by any positive constant. In particular, xn − 1 is eventually
bounded by ϵ = 1/2, which means xn is eventually in the interval (1/2, 3/2),
so eventually xn ≥ 1/2, or 1/xn is eventually bounded. By property 3,

1

xn
− 1 =

1

xn
(1− xn) ≈ 0,

yielding the result.
The exercises exhibit many other consequences of the above properties.

The point of the exercises is that they depend only on these properties, or
their consequences.

Let y1, y2, . . . be another sequence. We say xn is asymptotically equal to
yn, and we write

xn ≈ yn, (A.7.1)

if yn is asymptotically nonzero, and the ratio xn/yn is asymptotically one, or
xn/yn ≈ 1. As part of this, we are assuming yn is asymptotically nonzero, to
ensure we aren’t dividing by zero.

From the definition, it is not clear that xn ≈ yn is equivalent to yn ≈ xn.
Nevertheless, this is correct (Exercise A.7.10). Summarizing,

Asymptotic Equality

an ≈ bn ⇐⇒ an
bn

≈ 1 ⇐⇒ an
bn

− 1 ≈ 0.

For example, let an = n, bn = n+ 1, cn = n2. When n = 1000,

an = 1000, bn = 1001,
an
bn

= .9990000,

so here we do have an ≈ bn for n large. On the hand, here cn is a million,
and an is a thousand, so we don’t have an ≈ cn.

This is exactly what is meant in (A.1.7). While both sides in (A.1.7) in-
crease without bound, their ratio is close to one, for large n.

In general, an ≈ bn is not the same as an − bn ≈ 0: ratios and differences
behave differently. For example, based on (A.1.7), the following code

from numpy import *

def factorial(n):

A.7. ASYMPTOTICS AND CONVERGENCE 533

if n == 1: return 1

else: return n * factorial(n-1)

def stirling(n): return sqrt(2*pi*n) * (n/e)**n

a = factorial(100)

b = stirling(100)

a/b, a-b

returns
(1.000833677872004, 7.773919124995513× 10154).

The first entry is close to one, but the second entry is far from zero.
If, however, bn ≈ b for some nonzero constant b, then (Exercise A.7.15)

ratios and differences are the same,

an ≈ bn ⇐⇒ an − bn ≈ 0. (A.7.2)

In particular, for a ̸= 0, an ≈ a is the same as an − a ≈ 0.

When we have an − a ≈ 0, we say a is the limit of an, and we write

a = lim
n→∞

an. (A.7.3)

As we saw above, limits and asymptotic equality are the same, as long as the
limit is not zero. When a is the limit of an, we also say an converges to a, or
an approaches a and we write an → a.

With this notation, asymptotic vanishing is an → 0, asymptotically one is
an → 1, and asymptotic equality is an/bn → 1.

Limits can be taken for sequences of points in Rd as well. Let an be a
sequence of points in Rd. We say an converges to a if an · v converges to a · v
for every vector v. Here we also write an → a and we write (A.7.3).

In Chapter 6, ≈ is used for random variables. We say random variables
Xn are asymptotically equal to random variables Yn, and we write Xn ≈ Yn,
if their corresponding probabilities are asymptotically equal,

Prob(a < Xn < b) ≈ Prob(a < Yn < b),

for any interval (a, b).
In particular, when Y does not depend on n, the asymptotic equality

Xn ≈ Y is short for

534 CHAPTER A. APPENDICES

Prob(a < Xn < b) ≈ Prob(a < Y < b). (A.7.4)

When Y is normal or standard normal or chi-squared, we also write Xn ≈
normal or Xn ≈ N(0, 1) or Xn ≈ χ2

d.
Since probabilities are positive, here both interpretations in (A.7.2) hold,

hence we also have

Prob(a < Xn < b) → Prob(a < Y < b).

Also, Xn ≈ Y in the sense of (A.7.4) is equivalent to approximations of
the means

E(f(Xn)) → E(f(Y)),

and equivalent to approximations of the moment-generating functions

MXn(t) → MY (t).

Exercises

Exercise A.7.1 Let k be fixed. Show(
n
k

)(
n

k−1

)
+
(

n
k+1

) ≈ 0 and 2−n

(
n

k

)
≈ 0, n → ∞.

(Use (A.2.9) for the second part.)

Exercise A.7.2 Show the infinite sum

∞∑
n=1

1

n(n+ 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ . . .

equals 1. (If tn = 1/n, the n-th term is tn − tn+1. Write out the sum term-
by-term.)

Exercise A.7.3 Show the infinite sum

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+

1

42
+ . . .

is less than 2. In fact, as was first shown by Euler, this infinite sum equals
π2/6 [16]. (Compare with the infinite sum in the previous exercise.)

Exercise A.7.4 Let α and β be constants, with α > 0 and β nonnegative.
Show the infinite sum

∞∑
n=1

α

(n+ β)2
=

α

(1 + β)2
+

α

(2 + β)2
+

α

(3 + β)2
+

α

(4 + β)2
+ . . .

A.7. ASYMPTOTICS AND CONVERGENCE 535

is less than 2α, by repeating the argument in the previous exercise.

Exercise A.7.5 Show the infinite sum

∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ . . .

is infinite, by grouping the terms into mini-batches, where the n-th mini-batch
bn is the sum of the 2n−1 terms ending with the term 1/2n. For example, for
n = 1, 2, 3,

b1 =
1

2
, b2 =

1

3
+

1

4
, b3 =

1

5
+

1

6
+

1

7
+

1

8
.

Verify each mini-batch bn is not less than 1/2, for every n = 1, 2, 3, 4, 5,
Use this to conclude this infinite sum equals ∞.

Exercise A.7.6 Let α and β be constants, with α > 0 and β nonnegative.
Show the infinite sum

∞∑
n=1

α

n+ β
=

α

1 + β
+

α

2 + β
+

α

3 + β
+

α

4 + β
+ . . .

is infinite, by repeating the argument in the previous exercise.

Exercise A.7.7 Let m > 0 and L ≥ 0. Given scalars tn converging to zero,
let pn be the product

pn =

n∏
k=1

(1− 2mtk + L2t2k), n = 1, 2, . . .

For example, if L = 0,

pn = (1− 2mt1)(1− 2mt2) . . . (1− 2mtn), n = 1, 2, . . .

Suppose
t1 + t2 + t3 + · · · = ∞, t21 + t22 + t23 + · · · < ∞.

Then tn → 0, so the factors in pn are eventually all positive, which implies
pn/pN is positive for N large enough and all n ≥ N . Use (A.3.16) to show
pn converges to zero as n → ∞.

Exercise A.7.8 Let α and β be constants, with α > 0 and β nonnegative.
Show

tn =
α

n+ β
, n = 1, 2, . . .

satisfies
tntn+1 = α(tn − tn+1), n = 1, 2, . . .

536 CHAPTER A. APPENDICES

Exercise A.7.9 Let α and β be constants, with α > 0 and β nonnegative,
and let

tn =
α

n+ β
, n = 1, 2, . . .

Use the previous exercise to show recursively

n∏
k=1

(
1− tk

α

)
=

β

n+ β
, n = 1, 2, . . .

Exercise A.7.10 If an ≈ bn, then bn ≈ an.

Exercise A.7.11 If an ≈ 1 and bn ≈ 1, then anbn ≈ 1.

Exercise A.7.12 If an ≈ bn and bn ≈ cn, then an ≈ cn.

Exercise A.7.13 If an ≈ a′n and bn ≈ b′n, then anbn ≈ a′nb
′
n.

Exercise A.7.14 Let a ̸= 0. If an ≈ a, then an − a ≈ 0, and conversely.

Exercise A.7.15 If bn ≈ b and b ̸= 0, then (A.7.2) holds.

Exercise A.7.16 If an − bn ≈ 0 and bn → b, then an → b.

Exercise A.7.17 Let µ be a constant and let X̄1, X̄2, . . . be a sequence of
random variables. For example, in the LLN, X̄n is the sample mean. Show
X̄n ≈ µ is equivalent to

Prob(a < X̄n < b) ≈ 0,

for any interval (a, b) not containing µ.

Exercise A.7.18 If an → a and bn → b, then

an + bn → a+ b, anbn → ab.

Exercise A.7.19 If an ≤ bn ≤ cn and an → L and cn → L, then bn → L
(squeezing lemma).

A.8 Existence of Minimizers

Several times in the text, we deal with minimizing functions, most notably for
the pseudo-inverse of a matrix (§2.3), for proper continuous functions (§4.3),
and for gradient descent (§7.3).

Previously, the technical foundations underlying the existence of minimiz-
ers were ignored. In this section, we review the foundational material sup-
porting the existence of minimizers.

A.8. EXISTENCE OF MINIMIZERS 537

For example, since y = ex is an increasing function, the minimum

min
0≤x≤1

ex = min{ex | 0 ≤ x ≤ 1}

is y∗ = e0 = 1, and the minimizer, the location at which the minimum occurs,
is x∗ = 0. Here we have one minimizer.

For the function y = x4−2x2 in Figure 4.4, the minimum over −2 ≤ x ≤ 2
is y∗ = −1, which occurs at the minimizers x∗ = ±1. Here we have two
minimizers.

On the other hand, there is no minimizer for y = ex on the entire real line
−∞ < x < ∞, because as x approaches −∞, ex approaches zero, but never
reaches it. Our goal in this section is to establish conditions which guarantee
the existence of minimizers.

A sequence xn is increasing if x1 ≤ x2 ≤ x3 ≤ A sequence xn is
decreasing if x1 ≥ x2 ≥ x3 ≥ If xn is increasing, then −xn is decreasing,
and vice-versa.

In §A.7, we had bounded sequences and limits. A foundational axiom for
real numbers, the completeness property, is the following.

Completeness Property

Let xn be a bounded increasing sequence. Then xn has a limit

lim
n→∞

xn.

By multiplying a sequence by a minus, we also see every bounded decreas-
ing sequence has a limit. In general, a bounded sequence need not converge.
However below we see it subconverges.

Let x1, x2, . . . be a sequence. A subsequence is a selection of terms

xn1 , xn2 , xn3 , . . . , n1 < n2 < n3 <

Here it is important that the indices n1 < n2 < n3 < . . . be strictly increas-
ing.

If a sequence x1, x2, . . . has a subsequence x′
1, x

′
2, . . . converging to x∗,

then we say the sequence x1, x2, . . . subconverges to x∗. For example, the
sequence 1, −1, 1, −1, 1, −1, . . . subconverges to 1 and also subconverges
to −1, as can be seen by considering the odd-indexed terms and the even-
indexed terms separately.

538 CHAPTER A. APPENDICES

Bounded Sequences Must Subconverge

Let x1, x2, . . . be a bounded sequence of vectors. Then there is a
subsequence x′

1, x
′
2, . . . converging to some x∗.

To see this, assume first x1, x2, . . . are scalars, and let x1, x2, . . . be a
bounded sequence of numbers, say a ≤ xn ≤ b for n ≥ 1. Bisect the interval
I0 = [a, b] into two equal subintervals. Then at least one of the subintervals,
call it I1, has infinitely many terms of the sequence. Select x′

1 in I1 and let
x∗
1 be the left endpoint of I1.
Now bisect I1 into two equal subintervals. Then at least one of the subin-

tervals, call it I2, has infinitely many terms of the sequence. Select x′
2 in I2

and let x∗
2 be the left endpoint of I2. Continuing in this manner, we obtain a

subsubsequence x′
1, x

′
2, . . . with x′

n in In, and a sequence x∗
1, x

∗
2,

Since the intervals are nested

I0 ⊃ I1 ⊃ I2 ⊃ . . . ,

the sequence x∗
1, x

∗
2, . . . is increasing. By the completeness property,

x∗ = lim
n→∞

x∗
n

exists. By definition of limit, this says en = x∗
n − x∗ ≈ 0.

Since the length of In equals (b− a)/2n, and 2−n → 0,

0 ≤ x′
n − x∗

n ≤ (b− a)2−n,

hence x′
n − x∗

n ≈ 0. By Exercise A.7.16, we conclude x′
n → x∗.

Now let x1, x2, . . . be a sequence of vectors in Rd, and let v be a vector;
then x1 · v, x2 · v, . . . are scalars, so, from the previous paragraph, there is a
subsequence x′

n · v (depending on v) converging to some x∗
v.

Let e1, e2, . . . , ed be the standard basis in Rd. By choosing v = e1, there
is a subsequence x′

1, x
′
2, . . . such that the first features of x′

n converge. By
choosing v = e2, and focusing on the subsequence x′

1, x
′
2, . . . , there is a

sub-subsequence x′′
1 , x

′′
2 , . . . such that the first and second features of x′′

n

converge. Continuing in this manner, we obtain a subsequence x∗
1, x

∗
2, . . .

such that the k-th feature of the subsequence converges to the k-th feature
of a single x∗, for every 1 ≤ k ≤ d. From this, it follows that x∗

n converges to
x∗.

A.8. EXISTENCE OF MINIMIZERS 539

Let S be a set of vectors and let y = f(x) be a scalar-valued function
bounded below on S, f(x) ≥ b for some number b, for all x in S. Then b is a
lower bound for f(x) over S.

A minimizer is a vector x∗ satisfying

f(x∗) ≤ f(x), for every x in S.

As we saw above, a minimizer may or may not exist, and, when the minimizer
does exist, there may be several minimizers.

A function y = f(x) is continuous if f(xn) approaches f(x
∗) whenever xn

approaches x∗,

xn → x∗ =⇒ f(xn) → f(x∗),

for every x∗ and every xn → x∗. Here an → a means an − a ≈ 0, see §A.7.
Now we can establish

Existence of Minimizers

If f(x) is continuous on Rd and S is a bounded set in Rd, then there
is a minimizer x∗,

f(x∗) = min
x in S

f(x). (A.8.1)

In general, the minimizer x∗ may lie outside the set S. To guarantee x∗

belongs to S, typically one assumes an additional requirement, the closedness
of S. In our applications of this result, we seek a minimizer somewhere in Rd,
so this point is of no concern.

To establish the result, let m1 be a lower bound for f(x) over S, and let
x1 be any point in S. Then f(x1) ≥ m1. Let

c =
f(x1) +m1

2

be the midpoint between m1 and f(x1).
There are two possibilities. Either c is a lower bound or not. In the first

case, define m2 = c and x2 = x1. In the second case, there is a point x2 in
S satisfying f(x2) < c, and we define m2 = m1. As a consequence, in either
case, we have f(x2) ≥ m2, m1 ≤ m2, and

f(x2)−m2 ≤ 1

2
(f(x1)−m1).

Let

c =
f(x2) +m2

2

be the midpoint between m2 and f(x2).

540 CHAPTER A. APPENDICES

There are two possibilities. Either c is a lower bound or not. In the first
case, define m3 = c and x3 = x2. In the second case, there is a point x3 in
S satisfying f(x3) < c, and we define m3 = m2. As a consequence, in either
case, we have f(x3) ≥ m3, m2 ≤ m3, and

f(x3)−m3 ≤ 1

22
(f(x1)−m1).

Continuing in this manner, we have a sequence x1, x2, . . . in S, and an
increasing sequence m1 ≤ m2 ≤ . . . of lower bounds, with

f(xn)−mn ≤ 2

2n
(f(x1)−m1).

Since S is bounded, xn subconverges to some x∗. Since f(x) is continuous,
f(xn) subconverges to f(x∗). Since f(xn) ≈ mn and mn is a lower bound for
all n, f(x∗) is a lower bound, hence x∗ is a minimizer.

A.9 SQL

Recall matrices (§2.1), datasets, CSV files, spreadsheets, arrays, dataframes
are basically the same objects.

Databases are collections of tables, where a table is another object similar
to the above. Hence

matrix = dataset = CSV file = spreadsheet = table = array = dataframe
(A.9.1)

One difference is that each entry in a table may be a string, or code, or an
image, not just a number. Nevertheless, every table has rows and columns;
rows are usually called records, and columns are columns.

A database is a collection of several tables that may or may not be linked
by columns with common data. Software that serves databases is a database
server. Often the computer running this software is also called a database
server, or a server for short. Databases created by a database server (software)
are stored as files on the database server.

There are many varieties of database server software. We use MariaDB, a
widely-used open-source database server. By using open-source software, one
is assured to be using the “purest” form of the software, in the sense that
proprietary extensions are avoided, and the software is compatible with the
widest range of commercial variations.

Because database tables can contain millions of records, it is best to ac-
cess a database server programmatically, using an application programming
interface, rather than a graphical user interface. The basic API for inter-
acting with database servers is SQL (structured query language). SQL is a
programming language for creating and modifying databases.

A.9. SQL 541

Any application on your laptop that is used to access a database is called an
SQL client. The database server being accessed may be local, running on the
same computer you are logged into, or remote, running on another computer
on the internet. In our examples, the code assumes a local or remote database
server is being accessed.

Because SQL commands are case-insensitive, by default we write them
in lowercase. Depending on the SQL client, commands may terminate with
semicolons or not. As mentioned above, data may be numbers or strings.

The basic SQL commands are

select from

limit

select distinct

where/where not <column>

where <column> = <data> and/or <column> = <data>

order by <column1>,<column2>

insert into table (<column1>,<column2>,...) \

values (<data1>, <data2>, ...)

is null

update <table> set <column> = <data> where ...

like <regex> (%, _, [abc], [a-f], [!abc])

delete from <table> where ...

select min(<column>) from <table> (also max, count, avg)

where <column> in/not in (<data array>)

between/not between <data1> and <data2>

as

join (left, right, inner, full)

create database <database>

drop database <database>

create table <table>

truncate <table>

alter table <table> add <column> <datatype>

alter table <table> drop column <column>

insert into <table> select

All the objects in (A.9.1) are also equivalent to a Python list-of-dicts. In
this section we explain how to convert between the objects

list-of-dicts ⇐⇒ JSON string ⇐⇒ dataframe ⇐⇒ CSV file ⇐⇒ SQL table
(A.9.2)

For all conversions, we use pandas. We begin describing a Python list-of-dicts,
because this does not require any additional Python packages.

A Python dictionary or dict is a Python object of the form (prices are in
cents)

542 CHAPTER A. APPENDICES

item1 = {"dish": "Hummus", "price": 800, "quantity": 5}

This is an unordered listing of key-value pairs. Here the keys are the strings
dish, price, and quantity. Keys need not be strings; they may be integers or
any unmutable Python objects. Since a Python list is mutable, a key cannot
be a list. Values may be any Python objects, so a value may be a list. In
a dict, values are accessed through their keys. For example, item1["dish"]
returns 'Hummus'.

A list-of-dicts is simply a Python list whose elements are Python dicts, for
example,

item2 = {"dish": "Avocado", "price": 900, "quantity": 2}

L = [item1,item2]

Here L is a list and

len(L), L[0]["dish"]

returns

(2,'Hummus')

In other words, L is a list-of-dicts,

L == [{"dish": "Hummus", "price": 800, "quantity": 5}, {"dish": ...

↪→ }]

returns True.
A list-of-dicts L can be converted into a string using the json module, as

follows:

frpm json import *

s = dumps(L)

Now print L and print s. Even though L and s “look” the same, L is a list,
and s is a string. To emphasize this point, note

• len(L)== 2 and len(s)== 99,
• L[0:2] == L and s[0:2] == '[{'
• L[8] returns an error and s[8] == ':'

To convert back the other way, use

A.9. SQL 543

from json import *

L1 = loads(s)

Then L == L1 returns True. Strings having this form are called JSON strings,
and are easy to store in a database as VARCHARs (see Figure A.27).

The basic object in the Python package pandas is the dataframe (Figures
A.24, A.25, A.27, A.28). pandas can convert a dataframe df to many, many
other formats

df.to_dict(), df.to_csv(), df.to_excel(), df.to_sql(), df.to_json(),

↪→ ...

To convert a list-of-dicts to a dataframe is easy. The code

from pandas import *

df = DataFrame(L)

df

returns the dataframe in Figure A.24 (prices are in cents).

Fig. A.24 Dataframe from list-of-dicts.

To go the other way is equally easy. The code

L1 = df.to_dict('records')
L == L1

returns True. Here the option 'records' returns a list-of-dicts; other options
returns a dict-of-dicts or other combinations.

To convert a CSV file into a dataframe, use the code

menu_df = read_csv("menu.csv")

menu_df

This returns Figure A.25 (prices are in cents).
To go the other way, to convert the dataframe df to the CSV file

menu1.csv, use the code

544 CHAPTER A. APPENDICES

Fig. A.25 Menu dataframe and SQL table.

df.to_csv("menu1.csv")

df.to_csv("menu2.csv",index=False)

The option index=False suppresses the index column, so menu2.csv has
two columns, while menu1.csv has three columns. Also useful is the method
.to_excel, which returns an excel file.

Now we explain how to convert between a dataframe and an SQL table.
What we have seen so far uses only pandas. To convert to SQL, we need two
more packages, sqlalchemy and pymysql.

The package sqlalchemy allows us to connect to a database server from
within Python, and the package pymysql is the code necessary to complete
the connection to the MariaDB database server. For example, if we are con-
necting to an Oracle database server, we would use the package cx-Oracle

instead of pymysql.
In Python, the standard package installation method is to use pip. To

install sqlalchemy and pymysql, type within jupyter:

pip install sqlalchemy

pip install pymysql

To connect using sqlalchemy, we first collect the connection data into one
URI string,

A.9. SQL 545

protocol = "mysql+pymysql://"

credentials = "username:password"

server = "@servername"

port = ":3306"

uri = protocol + credentials + server + port

This string contains your database username, your database password, the
database server name, the server port, and the protocol. If the database is
”rawa”, the URI is

database = "/rawa"

uri = protocol + credentials + server + port + database

Using this uri, the connection is made as follows

from sqlalchemy import create_engine

engine = sqlalchemy.create_engine(uri)

(In sqlalchemy, a connection is called an “engine”.) After this, to store the
dataframe df into a table Menu, use the code

df.to_sql('Menu',engine,if_exists='replace')

The if_exists = 'replace' option replaces the table Menu if it existed prior
to this command. Other options are if_exists='fail' and if_exists='append'.
The default is if_exists='fail', so

df.to_sql('Menu',engine)

returns an error if Menu exists.
To read a table into a dataframe, use for example the code

from sqlalchemy import text

query1 = text("select * from rawa.OrdersIn")

query2 = text("select * from rawa.OrdersIn where items

↪→ like '%Hummus%';")
connection = engine.connect()

df1 = read_sql(query1, connection)

df2 = read_sql(query2, connection)

546 CHAPTER A. APPENDICES

Fig. A.26 Rawa restaurant.

Better Python coding technique is to place read_sql and to_sql in a
with block, as follows

with engine.connect() as connection:

df = pd.read_sql(query, connection)

df.to_sql('Menu',engine)

One benefit of this syntax is the automatic closure of the connection upon
completion. This completes the discussion of how to convert between dataframes
and SQL tables, and completes the discussion of conversions between any of
the objects in (A.9.2).

As an example how all this goes together, here is a task:

Given two CSV files menu.csv and orders.csv downloaded from a restaurant website
(Figure A.26), create three SQL tables Menu, OrdersIn, OrdersOut.

The two CSV files are (click)

orders.csv and menu.csv.

The three SQL table columns are as follows (price, tip, tax, subtotal, total
are in cents)

/* Menu */

dish varchar

price integer

/* ordersin */

orderid integer

created datetime

https://omar-hijab.org/teaching/csv_files/restaurant/orders.csv
https://omar-hijab.org/teaching/csv_files/restaurant/menu.csv

A.9. SQL 547

customerid integer

items json

/* ordersout */

orderid integer

subtotal integer

tip integer

tax integer

total integer

Fig. A.27 OrdersIn dataframe and SQL table.

To achieve this task, we download the CSV files menu.csv and orders.csv,
then we carry out these steps. (price and tip in menu.csv and orders.csv

are in cents so they are INTs.)

1. Read the CSV files into dataframes menu_df and orders_df.
2. Convert the dataframes into list-of-dicts menu and orders.
3. Create a list-of-dicts OrdersIn with keys orderId, created, customerId

whose values are obtained from list-of-dicts orders.
4. Create a list-of-dicts OrdersOut with keys orderId, tip whose values are

obtained from list-of-dicts orders (tips are in cents so they are INTs).
5. Add a key items to OrdersIn whose values are JSON strings specifying

the items ordered in orders, using the prices in menu (these are in cents so

548 CHAPTER A. APPENDICES

they are INTs). The JSON string is of a list-of-dicts in the form discussed
above L = [item1, item2] (see row 0 in Figure A.27).
Do this by looping over each order in the list-of-dicts orders, then loop-
ing over each item in the list-of-dicts menu, and extracting the quantity
ordered of the item item in the order order.

6. Add a key subtotal to OrdersOut whose values (in cents) are computed
from the above values.
Add a key tax to OrdersOut whose values (in cents) are computed using
the Connecticut tax rate 7.35%. Tax is applied to the sum of subtotal
and tip.
Add a key total to OrdersOut whose values (in cents) are computed
from the above values (subtotal, tax, tip).

7. Convert the list-of-dicts OrdersIn, OrdersOut to dataframes OrdersIn_df,
OrdersOut_df.

8. Upload menu_df, OrdersIn_df, OrdersOut_df to tables Menu, OrdersIn,
OrdersOut.

The resulting dataframes ordersin_df and ordersout_df, and SQL ta-
bles OrdersIn and OrdersOut, are in Figures A.27 and A.28.

Fig. A.28 OrdersOut dataframe and SQL table.

A.9. SQL 549

Complete Code for the Task

step 1

from pandas import *

protocol = "https://"

server = "omar-hijab.org"

path = "/teaching/csv_files/restaurant/"

url = protocol + server + path

menu_df = read_csv(url + "menu.csv")

orders_df = read_csv(url + "orders.csv")

step 2

menu = menu_df.to_dict('records')
orders = orders_df.to_dict('records')

step 3

OrdersIn = h

for r in orders:

d = {}

d["orderId"] = r["orderId"]

d["created"] = r["created"]

d["customerId"] = r["customerId"]

OrdersIn.append(d)

step 4

OrdersOut = h

for r in orders:

d = {}

d["orderId"] = r["orderId"]

d["tip"] = r["tip"]

OrdersOut.append(d)

step 5

from json import *

for i,r in enumerate(OrdersIn):

itemsOrdered = h

for item in menu:

dish = item["dish"]

price = item["price"]

if dish in orders[i]:

quantity = orders[i][dish

if quantity > 0:

d = {"dish": dish, "price": price, "quantity":

↪→ quantity}

itemsOrdered.append(d)

r["items"] = dumps(itemsOrdered)

steps 6

550 CHAPTER A. APPENDICES

for i,r in enumerate(OrdersOut):

items = loads(OrdersIn[i]["items"])

subtotal = sum([item["price"]*item["quantity"] for item in items

↪→])

r["subtotal"] = subtotal

tip = OrdersOut[i]["tip"]

tax = int(.0735*(tip + subtotal))

total = subtotal + tip + tax

r["tax"] = tax

r["total"] = total

step 7

ordersin_df = DataFrame(OrdersIn)

ordersout_df = DataFrame(OrdersOut)

step 8

from sqlalchemy import create_engine, text

connect to the database

protocol = "mysql+pymysql://"

credentials = "username:password@"

server = "servername"

port = ":3306"

database = "/rawa"

uri = protocol + credentials + server + port + database

engine = create_engine(uri)

dtype1 = { "dish":sqlalchemy.String(60), "price":sqlalchemy.Integer }

dtype2 = {

"orderId":sqlalchemy.Integer,

"created":sqlalchemy.String(30),

"customerId":sqlalchemy.Integer,

"items":sqlalchemy.String(1000)

}

dtype3 = {

"orderId":sqlalchemy.Integer,

"tip":sqlalchemy.Integer,

"subtotal":sqlalchemy.Integer,

"tax":sqlalchemy.Integer,

"total":sqlalchemy.Integer

}

with engine.connect() as connection:

menu_df.to_sql('Menu', engine,

if_exists = 'replace', index = False, dtype = dtype1)

ordersin_df.to_sql("OrdersIn", engine,

index = False, if_exists = 'replace', dtype = dtype2)

ordersout_df.to_sql("OrdersOut", engine,

index = False, if_exists = 'replace', dtype = dtype3)

A.9. SQL 551

Moral of this section

In this section, all work was done in Python on a laptop, no SQL was used on
the database, other than creating a table or downloading a table. Generally,
this is an effective workflow:

• Use SQL to do big manipulations on the database (joining and filtering).
• Use Python to do detailed computations on your laptop (analysis).

Now we consider the following simple problem. The total number of orders
in 3970. What is the total number of plates? To answer this, we loop through
all the orders, summing the number of plates in each order. The answer is
14,949 plates.

from json import *

from pandas import *

from sqlalchemy import create_engine, text

protocol = "mysql+pymysql://"

credentials = "username:password@"

server = "servername"

port = ":3306"

database = "/rawa"

uri = protocol + credentials + server + port + database

engine = sqlalchemy.create_engine(uri)

connection = engine.connect()

query = text("select * from OrdersIn")

df = read_sql(query, connection)

num = 0

for item in df["items"]:

plates = loads(item)

num += sum([plate["quantity"] for plate in plates])

print(num)

A more streamlined approach is to use map. First we define a function
whose input is a JSON string in the format of df["items"], and whose
output is the number of plates.

from json import *

def num_plates(item):

dishes = loads(item)

return sum([dish["quantity"] for dish in dishes])

552 CHAPTER A. APPENDICES

Then we use map to apply to this function to every element in the series
df["items"], resulting in another series. Then we sum the resulting series.

num = df["items"].map(num_plates).sum()

print(num)

Since the total number of plates is 14,949, and the total number of orders
is 4970, the average number of plates per order is 3.76.

REFERENCES 553

References

[1] J. Akey. Genome 560: Introduction to Statistical Genomics. 2008. url:
https://www.gs.washington.edu/academics/courses/akey/56008

/lecture/lecture1.pdf.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Information

Science and Statistics. Springer, 2006.
[3] S. Bubeck. Convex Optimization: Algorithms and Complexity. Vol. 8.

Foundations and Trends in Machine Learning. Now Publishers, 2015.
[4] H. Cramér. Mathematical Methods of Statistics. Princeton University

Press, 1946.
[5] M. P. Deisenroth, A. A. Faisal, and C. S. Ong.Mathematics for Machine

Learning. Cambridge University Press, 2020.
[6] J. L. Doob. “Probability and Statistics”. In: Transactions of the Amer-

ican Mathematical Society 36 (1934), pp. 759–775.
[7] Math Stack Exchange. url: https://math.stackexchange.com/que

stions/4195547/derivation-of-stirling-approximation-from-c

lt.
[8] T. S. Ferguson. A Course in Large Sample Theory. Springer, 1996.
[9] R. A. Fisher. “The conditions under which χ2 measures the discrep-

ancy between observation and hypothesis”. In: Journal of the Royal
Statistical Society 87 (1924), pp. 442–450.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. url: http://www.deeplearningbook.org.

[11] Google. Machine Learning. url: https://developers.google.com/m
achine-learning.

[12] R. M. Gray. “Toeplitz and Circulant Matrices: A Review”. In: Foun-
dations and Trends in Communications and Information Theory 2.3
(2006), pp. 155–239. issn: 1567-2190. url: http://dx.doi.org/10.1
561/0100000006.

[13] E. L. Grinberg and O. Hijab. “The fundamental theorem of trigonom-
etry”. Preprint.

[14] T. L. Heath. The Works of Archimedes. Cambridge University Press,
1897.

[15] O. Hijab. “Binary Classifiers and Logistic Regression”. Preprint.
[16] O. Hijab. Introduction to Calculus and Classical Analysis, Fourth Edi-

tion. Springer, 2016.
[17] I. Steinwart and A. Christmann. Support Vector Machines. Springer,

2008.
[18] N. Janakiev. Classifying the Iris Data Set with Keras. 2018. url: htt

ps://janakiev.com/blog/keras-iris.
[19] L. Jiang. A Visual Explanation of Gradient Descent Methods. 2020.

url: https://towardsdatascience.com/a-visual-explanation-o
f-gradient-descent-methods-momentum-adagrad-rmsprop-adam-

f898b102325c.

https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture1.pdf
https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture1.pdf
https://math.stackexchange.com/questions/4195547/derivation-of-stirling-approximation-from-clt
https://math.stackexchange.com/questions/4195547/derivation-of-stirling-approximation-from-clt
https://math.stackexchange.com/questions/4195547/derivation-of-stirling-approximation-from-clt
http://www.deeplearningbook.org
https://developers.google.com/machine-learning
https://developers.google.com/machine-learning
http://dx.doi.org/10.1561/0100000006
http://dx.doi.org/10.1561/0100000006
https://janakiev.com/blog/keras-iris
https://janakiev.com/blog/keras-iris
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

554 REFERENCES

[20] J. W. Longley. “An Appraisal of Least Squares Programs for the Elec-
tronic Computer from the Point of View of the User”. In: Journal of
the American Statistical Association 62.319 (1967), pp. 819–841.

[21] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming.
Springer, 2008.

[22] M. Minsky and S. Papert. Perceptrons, An Introduction to Computa-
tional Geometry. MIT Press, 1988.

[23] Y. Nesterov. Lectures on Convex Optimization. Springer, 2018.
[24] K. Pearson. “On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that
it can be reasonably supposed to have arisen from random sampling”.
In: Philosophical Magazine Series 5 50:302 (1900), pp. 157–175.

[25] R. Penrose. “A generalized inverse for matrices”. In: Proceedings of the
Cambridge Philosophical Society 51 (1955), pp. 406–413.

[26] B. T. Polyak. “Some methods of speeding up the convergence of itera-
tion methods”. In: USSR Computational Mathematics and Mathemat-
ical Physics 4(5) (1964), pp. 1–17.

[27] The WeBWorK Project. url: https://openwebwork.org/.
[28] S. Raschka. PCA in three simple steps. 2015. url: https://sebastia

nraschka.com/Articles/2015_pca_in_3_steps.html.
[29] H. Robbins and S. Monro. “A Stochastic Approximation Method”. In:

The Annals of Mathematical Statistics 22.3 (1951), pp. 400–407.
[30] S. M. Ross. Probability and Statistics for Engineers and Scientists, Sixth

Edition. Academic Press, 2021.
[31] M. J. Schervish. Theory of Statistics. Springer, 1995.
[32] G. Strang. Linear Algebra and its Applications. Brooks/Cole, 1988.
[33] Stanford University. CS224N: Natural Language Processing with Deep

Learning. url: https://web.stanford.edu/class/cs224n.
[34] I. Waldspurger. Gradient Descent With Momentum. 2022. url: https

://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s1/adva

nced_gradient_descent.pdf.
[35] Wikipedia. Logistic Regression. url: https://en.wikipedia.org/wi

ki/Logistic_regression.
[36] Wikipedia. Seven Bridges of Königsberg. url: https://en.wikipedi

a.org/wiki/Seven_Bridges_of_Konigsberg.
[37] S. J. Wright and B. Recht. Optimization for Data Analysis. Cambridge

University Press, 2022.

https://openwebwork.org/
https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html
https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html
https://web.stanford.edu/class/cs224n
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s1/advanced_gradient_descent.pdf
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s1/advanced_gradient_descent.pdf
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s1/advanced_gradient_descent.pdf
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg

Python Index

*, 9, 16

append, 184

def.Angle, 500
def.assign_clusters, 184
def.backward_prop, 229, 237,

404
def.ball, 38
def.batch_weight_gradient,

425
def.biases, 396
def.cartesian_product, 336
def.chi2_independence, 381
def.cluster, 184
def.comb_tuples, 474
def.confidence_interval, 363,

373
def.derivative, 237
def.dimension_staircase, 112
def.display_image, 179
def.downstream, 404
def.draw_major_minor_axes, 33
def.edges, 396
def.ellipse, 28
def.find_first_defect, 110
def.forward_prop, 229, 236, 398
def.gd, 415
def.goodness_of_fit, 377
def.H, 277

def.hexcolor, 11
def.incoming, 234, 398
def.initial_weights, 397
def.inject_source, 398
def.inject_target, 403
def.inputs, 396
def.J, 399
def.local, 402
def.matrix_text, 29
def.nearest_index, 183
def.neurons, 396
def.newton, 410
def.num_biases, 407
def.num_edges, 407
def.num_inputs, 407
def.num_legendre, 193
def.num_neurons, 407
def.num_outputs, 407
def.num_plates, 551
def.outgoing, 235, 398
def.outputs, 396
def.pca, 177
def.pca_with_svd, 178
def.perm_tuples, 473
def.plot_and_integrate, 529
def.plot_cluster, 184
def.plot_descent, 411
def.poly, 450
def.project, 101
def.project_to_ortho, 102

555

556 PYTHON INDEX

def.pvalue, 326
def.random_batch_mean, 268
def.sample_training

batch, 425
minibatch, 427
single, 422
stochastic, 427

def.set_pi_ticks, 206
def.single_weight_gradient,

422
def.stirling, 277
def.sym_legendre, 192
def.tensor, 422, 509
def.ttest, 374
def.type2_error, 369, 375
def.uniq, 5
def.update_means, 184
def.update_weights, 422
def.zero_variance, 87
def.ztest, 367
dict, 541
display, 132

enumerate, 179

import, 9
itertools.product, 38

join, 11
json.dumps, 542
json.loads, 542

lambda, 234
lamda, 131
list, 7

map, 206
matplotlib.patches

Circle, 37
Rectangle, 37

matplotlib.pyplot.axes, 37
add_patch, 37
axis, 37
set_axis_off, 37

matplotlib.pyplot.contour, 28
matplotlib.pyplot.figure, 179

matplotlib.pyplot.grid, 7
matplotlib.pyplot.hist, 265
matplotlib.pyplot.imshow, 8, 9
matplotlib.pyplot.legend, 28
matplotlib.pyplot.meshgrid,

28
matplotlib.pyplot.plot, 18, 20
matplotlib.pyplot.scatter, 7,

18
matplotlib.pyplot.show, 7
matplotlib.pyplot.stairs, 112
matplotlib.pyplot.subplot,

179
matplotlib.pyplot.text, 29
matplotlib.pyplot.title, 277
matplotlib.pyplot.xlabel, 450
matplotlib.pyplot.xticks, 206
matplotlib.pyplot.ylim, 332

numpy.allclose, 130, 496
numpy.amax, 450
numpy.amin, 450
numpy.arange, 18, 28
numpy.arccos, 500
numpy.argmin, 183
numpy.argsort, 177
numpy.array, 8, 41
numpy.ceil, 206
numpy.column_stack, 64
numpy.copy, 422
numpy.corrcoef, 25, 58
numpy.cov, 24, 58
numpy.cumsum, 176
numpy.degrees, 500
numpy.diag, 47, 171
numpy.dot, 48
numpy.dstack, 336
numpy.exp, 277
numpy.eye, 46
numpy.fill_diagonal, 396
numpy.floor, 206
numpy.full, 396
numpy.inf, 530
numpy.invert, 396
numpy.isclose, 140, 496

PYTHON INDEX 557

numpy.linalg.matrix_rank,
109, 110

numpy.linspace, 38
numpy.log, 277
numpy.mean, 14
numpy.meshgrid, 38, 336
numpy.ones, 46
numpy.outer, 381, 510
numpy.pi, 277
numpy.random.default_rng, 16
binomial, 264, 275, 357
choice, 11
normal, 325, 356, 429
random, 15, 20, 242, 397
shuffle, 268, 398

numpy.reshape, 179
numpy.roots, 522
numpy.row_stack, 45
numpy.set_printoptions, 9
numpy.shape, 41
numpy.sort, 176
numpy.sqrt, 500
numpy.where, 396
numpy.zeros, 46, 171

pandas.DataFrame, 543
pandas.DataFrame.to_csv, 543
pandas.DataFrame.to_dict, 543
pandas.DataFrame.to_sql, 545
pandas.read_csv, 448, 543
pandas.read_sql, 545

scipy.integrate.quad, 527
scipy.linalg.block_diag, 47
scipy.linalg.eig, 126
scipy.linalg.eigh, 127, 176
scipy.linalg.inv, 62
scipy.linalg.norm, 183, 498
scipy.linalg.null_space, 76
scipy.linalg.orth, 71
scipy.linalg.pinv, 64, 101
scipy.linalg.svd, 171
scipy.optimize.newton, 217
scipy.spatial.ConvexHull, 242
simplices, 242

scipy.special.comb, 475
scipy.special.expit, 284
scipy.special.factorial, 472
scipy.special.perm, 473
scipy.special.softmax, 343
scipy.stats.binom, 275
scipy.stats.chi2, 331
scipy.stats.entropy, 217, 277
scipy.stats.

↪→ multivariate_normal ,
335

scipy.stats.norm, 313
scipy.stats.poisson, 302
scipy.stats.t, 371, 373
sklearn.datasets.load_iris, 2
sklearn.decomposition

.PCA, 179
sklearn.preprocessing

.StandardScaler, 58
sqlalchemy.create_engine, 545
sqlalchemy.text, 545
sympy.*, 48
sympy.diag, 47
sympy.diagonalize, 131
sympy.diff, 192
sympy.eigenvects, 131
sympy.init_printing, 131
sympy.lambdify, 193
sympy.Matrix, 41
sympy.Matrix.col, 45
sympy.Matrix.cols, 45
sympy.Matrix.columnspace, 70
sympy.Matrix.eye, 46
sympy.Matrix.hstack, 44, 64, 78
sympy.Matrix.inv, 62
sympy.Matrix.nullspace, 76
sympy.Matrix.ones, 46
sympy.Matrix.rank, 115
sympy.Matrix.row, 45
sympy.Matrix.rows, 45
sympy.Matrix.rowspace, 74
sympy.Matrix.zeros, 46
sympy.prod, 524
sympy.shape, 41
sympy.simplify, 192

558 PYTHON INDEX

sympy.solve, 297, 522

sympy.symbols, 192

tuple, 495

zip, 182

Index

≈, 530
1, 145, 155, 339, 342, 436

angle, 117
Archimedes
angle measure, 518
axiom, 208

arcsine law, 209
asymptotically
equal, 383, 532
nonzero, 531
normal, 383
one, 531
positive, 531
zero, 383, 531

average, 11

basis, 107
of eigenvectors, 129
of singular vectors, 168
one-hot encoded, 73
orthonormal, 108, 118, 129
standard, 42, 73

Bayes theorem, 280, 282, 284
perceptron, 285

binomial, 477
coefficient, 475, 478, 480
density, 281
theorem, 477, 479
chi-squared, 210

Newton’s, 204
bound, 222

cartesian plane, 494
Cauchy-Schwarz inequality, 50,

501
central limit theorem, 266, 317

and Stirling’s approximation,
477

chi-squared, 329
correlated, 335, 338

circle, 499
unit, 498

coin-tossing, 272
bias, 272
entropy, 276
relative, 278

column space, 70
columns, 44

orthonormal, 54
combination, 474

convex, 241
linear, 68

complex
conjugate, 516
division, 515, 517
hermitian product, 516
multiplication, 515, 516
numbers, 515
plane, 515

559

560 INDEX

polar representation, 519
roots of unity, 519

concave function, 198
condition number, 456
confidence, 322
interval, 362
level, 361

contingency table, 380
converges, 533
convex
combination, 241
dual, 203, 251, 345, 350
hull, 241, 440
set, 241

convex function, 198, 249
strictly, 199, 249
strongly, 187, 201, 456

correlation
coefficient, 22, 58
matrix, 22, 58
negative, 22, 58
positive, 22, 58

cumulant-generating function,
214, 291, 342

and variance, 296

dataset, 1
attributes, 1
augmented, 391
centered, 13
dimension, 118
example, 1
features, 1
full-rank, 118
Iris, 1
label, 1
mean, 19
MNIST, 6
multi-class, 434
observation, 1
projected, 25, 103, 179
reduced, 26, 84, 103, 179
sample, 1
separable, 247
strongly, 441

weakly, 441
soft-class, 434
standard, 21, 22, 57
target, 1
two-class, 247, 434
variance, 21
vectors or points, 13

decision boundary, 247, 285, 441
degree

binomial, 477
chi-squared, 329
graph node, 154
sequence, 154

derivative, 187
directional, 218
downstream, 232, 402
formula, 189
local, 402
logarithm, 198
maximizers, 195
minimizers, 195
partial, 218
second, 191, 225
convexity, 199
strict convexity, 199

upstream, 232, 402
descent

gradient, 412
Newton, 410
sequence, 412

diagonalizable, 130
diagonalization

eigen, 129
singular, 170

dice-rolling
bias, 349
entropy, 346
relative, 349

dimension, 107
staircase, 110

direct sum, 104
distance formula, 497
distribution

arcsine, 312
Bernoulli, 275

INDEX 561

binomial, 274
chi-squared, 329, 330
exponential, 312
logistic, 306
normal, 313, 315
Poisson, 302
Student, 370
T -, 370
uniform, 304
Z-, 313, 315

dot product, 48, 500

eigenspace, 139
eigenvalue, 126
bottom, 137
clustering, 148
decomposition, 129
minimum variance, 137
projected variance, 136
top, 136
transpose, 127

eigenvectors, 126
best-aligned vector, 136
is right singular vector, 172
linearly independent, 128
orthogonal, 128

entropy, 211, 346
absolute, 211, 346
cross-, 351
relative, 215, 348

error
information, 350
mean logistic, 400, 435
mean square, 399, 431

Euler, 156, 487, 534
Euler’s constant, 486
events, 257
certain, 258
complementary, 258
difference, 258
exclusive, 258
exhaustive, 258
highly significant, 323
impossible, 258
independent, 263

intersection, 258
null, 260
significant, 323
sure, 260
symmetric, 272
union, 258

experiment, 257
exponential

function, 488
matrix, 61
series, 490

factorial, 471
full-rank

dataset, 118
matrix, 115

function
beta, 286
concave, 198
convex, 198, 249
cumulant-generating, 214, 291,

342
independence, 300
relative, 349

cumulative distribution, 290,
305

error, 409, 430
level, 222
logistic, 213, 284
logit, 213
loss, 409, 430
mean error, 388
mean loss, 388
moment-generating
chi-squared, 331
independence, 298, 299
normal, 315
standard normal, 315

probability density, 302, 313
probability mass, 290
proper, 222
and trainability, 433

relu, 311, 393
central limit theorem, 329
Stirling’s approximation, 329

562 INDEX

sigmoid, 213, 284
softmax, 343
relative, 351

strictly convex, 199, 249
fundamental theorem
of algebra, 522
of calculus, 525

geometric
series, 493
sum, 485

gradient, 219
descent, 410, 412
accelerated, 467
convex case, 456
heavy ball, 466
I, 457
II, 459
learning rates, 412, 413, 418
momentum, 463
short step, 413, 457
stochastic, 416, 428, 460
with lookahead gradient, 468

weight, 405, 421
graph, 151
bipartite, 162
complement, 158
complete, 153
component, 160
connected, 155
cycle, 153, 155
directed, 151
edge, 151, 388
incoming, 388
outgoing, 388

eulerian, 157
forest, 155
isomorphism, 160
laplacian, 163
node
input, 154
output, 154

nodes, 151, 388
adjacent, 151
connected, 155

degree, 154
dominating, 154
hidden, 388
in-degree, 154
input, 388
isolated, 154
out-degree, 154
output, 388

order, 152
path, 155
regular, 155
simple, 152
size, 152
sub-, 153
tree, 155
undirected, 151
vertex, 151
walk, 155
eulerian, 156

weighed, 151
weight matrix, 389
wheel, 153

hyperplane, 85, 244
LR, 444
separating, 245, 247, 248
suporting, 246
tangent, 250

hypothesis
alternate, 365
null, 365
testing, 365

iff, 54, 127
incoming edge, 388
information, 212, 345

absolute, 212, 345
cross-, 350
relative, 214, 348

integral, 524
additivity, 526
scaling, 526

inverse, 61
pseudo-, 63, 90

Iris dataset, 1

INDEX 563

Jupyter, 4

Kantorovich’s inequality, 460

law of large numbers, 266, 279,
316, 358

Legendre polynomial, 192
level, 247
limit, 533
line-search, 460
linear
combination, 68
dependence, 75
independence, 75
system, 62, 134
homogeneous, 76, 503
inhomogeneous, 505

transformation, 114, 121
log-odds, 213
logistic function, 213, 284
logit function, 213
loss, 409
information, 436
mean logistic, 400, 435
mean square, 399, 431

machine learning, 387
margin of error, 361
mass-spring system, 142
matrix, 42
addition, 46
adjacency, 152
augmented, 72
centered, 436
circulant, 147
eigenvalues, 147

columns, 506
correlation, 22, 58
diagonal, 45
identity, 62
incidence, 163
inverse, 61, 512
network adjacency, 394
network weight, 394
nonnegative, 27, 53
orthogonal, 116

permutation, 48
positive, 27, 53
projection, 98, 100
pseudo-inverse, 93
rank, 115
approximate, 132

rows, 505
scaling, 46
square, 45
symmetric, 53, 506
trace, 53, 505
transpose, 43, 506
variance, 21, 27, 56
weight, 152, 389

maximizer, 194
global, 194
local, 194, 222

mean, 11, 19, 291, 302, 334
sample, 309

minimizer, 537, 539
existence, 223
global, 194, 222
local, 194, 222
properness, 223
residual, 224

network, 235, 389
deep, 406
incoming list, 233, 389
neural, 389
incoming signal, 390
layered, 406
training, 421

neuron, 235, 389
outgoing signal, 233, 389
perceptron, 390
shallow, 405
dense, 406

trainability, 431
training
batch sample, 425
epoch, 388, 425
iteration, 388, 425
minibatch sample, 427
single sample, 422

564 INDEX

stochastic sample, 427
Newton’s method, 410
norm, 55, 497
nullspace, 76

1, 145, 155, 339, 342, 436
one-hot encoding, 73, 341, 351,

434
orthogonal, 50
complement, 79, 104

orthonormal, 50
outcome, 257
outgoing edge, 388

parabola
lower tangent, 200
upper tangent, 200

Pascal’s triangle, 480
perceptron, 285, 390
Bayes theorem, 391
parallel, 405

permutation, 473
perp, 79, 503
point, 41
critical, 194, 222, 415
inflection, 199, 415

point of best-fit, 19
population, 10
power of a test, 369
principal axes, 33
principal components, 130, 135,

175
probability
additivity, 260
binomial, 272
chain rule, 262
coin-tossing, 273
conditional, 262
monotonicity, 260
multiplication of, 274
one-hot encoded, 434
strict, 434
sub-additivity, 260

product
dot, 48, 117, 500
linearity, 500

matrix-matrix, 51, 508
linearity, 509

matrix-vector, 51, 507
linearity, 507

tensor, 55, 509
linearity, 509

projection, 98
matrix, 100
onto column space, 101
onto nullspace, 105
onto row space, 102

propagation
back, 228, 229
chain, 229
network, 237
neural network, 404

forward, 227, 229
chain, 229
network, 236
neural network, 398

proper function, 222
minimizer, 223

Pythagoras theorem, 502
Python, 4

random variables, 287, 288
arcsine, 312
Bernoulli, 275, 288
binomial, 300
chi-squared, 329
continuous, 290
correlation, 296
discrete, 290
expectation, 291, 302
conditional, 312

exponential, 312
gaussian, 313
identically distributed, 308
independence, 297
logistic, 306
normal, 313
Poisson, 302
standard, 307
Student, 370
vector-valued, 333

INDEX 565

rank, 115
and eigenvalues, 132
and singular values, 168
approximate, 132
column, 70
full-, 115
nonzero eigenvalues, 132
row, 74

regression
linear, 431, 446, 447
convexity, 432
neural network, 431
properness, 432
trainability, 433
with bias, 433
without bias, 433

logistic, 435
convexity, 437
neural network, 435
one-hot encoded, 440
properness, 438
strict, 440
trainability, 440

regularization, 414
relu function, 311, 393
central limit theorem, 329
Stirling’s approximation, 329

residual, 89
vanishing, 90

residual minimizer, 90
and properness, 223
minimum norm, 92
pseudo-inverse, 93
regression equation, 91

row space, 74
rows, 44
orthonormal, 54

scalars, 13
scaling
factor, 122
integral, 526
matrix, 46
principle, 37
vector, 42, 496

sequence, 530
convergent, 533
sub-, 537
subconvergent, 537

series
alternating, 483
exponential, 490
Taylor, 195

set
ball, 252
boundary, 240, 252
closed, 252
complement, 252
convex, 241
interior, 252
level, 239
open, 252
sublevel, 222, 240

sigmoid function, 213, 284
singular

value, 166
decomposition, 168, 170
of pseudo-inverse, 173
versus eigenvalue, 168

vectors, 166
left, 166
right, 166
versus eigenvectors, 172

singular values
transpose, 166

slope, 187
softmax function, 343
space

column, 70
eigen-, 139
feature, 41, 73
null, 76
outcome, 257
row, 74
sample, 10, 257
source, 114
sub-, 80
target, 114
vector, 12

span, 69

566 INDEX

spherical coordinates, 38
standard
deviation, 293
error, 324

statistic, 16
Stirling’s approximation, 476
central limit theorem, 329
relu function, 329

sum
direct, 104
geometric, 485
harmonic, 535
of spans, 103
of vectors, 42

suspensions, 39
system
linear
homogeneous, 503
inhomogeneous, 505

tangent
line, 188

test
chi-squared, 377, 381
goodness of fit, 377
independence, 381
T , 374
Z, 367

trainability, 431
and properness, 433
linear regression, 433
logistic regression, 440
one-hot encoded, 440
strict, 440

transpose, 43
triangle inequality, 50

unit circle, 498

variance, 20, 21, 56, 84
biased, 24
ellipse, 28
explained, 25
inverse ellipse, 28
inverse ellipsoid, 139
matrix, 21

projected, 27, 84, 123, 128
reduced, 27, 84
sample, 339
total, 25
unbiased, 24
zero direction, 84

vector, 12, 41, 494
addition, 42, 495
best-aligned, 31
bias, 406, 430
cartesian, 494
centered, 344
dimension, 41
dot product, 500
gradient, 219
downstream, 402

incoming, 390
length, 49, 497
magnitude, 49
norm, 49, 497
one-hot encoded, 73, 341, 351,

434
orthogonal, 50, 501
orthonormal, 50, 77, 501
outgoing, 233, 390
perp, 79
perpendicular, 501
polar, 498
probability, 341, 377
strict, 342, 434

projected, 98, 99, 101, 102
random, 333, 356
standard, 334

reduced, 98, 99, 101, 102
scaling, 42, 496
shadow, 494
span, 69
subtraction, 497
unit, 49, 498
zero, 42, 494

vectorization, 16, 378
vectors

scaling
linearity, 496

INDEX 567

weight, 389
gradient, 405, 421
hyperplane, 441

matrix, 152
centered, 436

568 INDEX

Omar Hijab obtained his doctorate from the University of
California at Berkeley, and is faculty at Temple University in
Philadelphia, Pennsylvania.

	Preface
	Datasets
	Introduction
	The MNIST Dataset
	Averages and Vector Spaces
	Mean and Variance
	High Dimensions

	Linear Geometry
	Vectors and Matrices
	Products
	Matrix Inverse
	Span and Linear Independence
	Zero Variance Directions
	Pseudo-Inverse
	Projections
	Basis
	Rank

	Principal Components
	Geometry of Matrices
	Eigenvalue Decomposition
	Graphs
	Singular Value Decomposition
	Principal Component Analysis
	Cluster Analysis

	Calculus
	Single-Variable Calculus
	Entropy and Information
	Multi-Variable Calculus
	Back Propagation
	Convex Functions

	Probability
	Probability
	Binomial Probability
	Random Variables
	Normal Distribution
	Chi-squared Distribution
	Multinomial Probability

	Statistics
	Estimation
	Z-test
	T-test
	Chi-Squared Tests

	Machine Learning
	Overview
	Neural Networks
	Gradient Descent
	Network Training
	Linear Regression
	Logistic Regression
	Regression Examples
	Strong Convexity
	Accelerated Gradient Descent

	Appendices
	Permutations and Combinations
	The Binomial Theorem
	The Exponential Function
	Two Dimensions
	Complex Numbers
	Integration
	Asymptotics and Convergence
	Existence of Minimizers
	SQL

	References
	Python Index
	Index

